CRISPR_assoc

CRISPR_assoc
SMART accession number:SM01101
Description: This domain forms an anti-parallel beta strand structure with flanking alpha helical regions.
Interpro abstract (IPR010179):

The CRISPR-Cas system is a prokaryotic defense mechanism against foreign genetic elements. The key elements of this defense system are the Cas proteins and the CRISPR RNA.

Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) are a family of DNA direct repeats separated by regularly sized non-repetitive spacer sequences that are found in most bacterial and archaeal genomes [(PUBMED:17442114)]. CRISPRs appear to provide acquired resistance against mobile genetic elements (viruses, transposable elements and conjugative plasmids). CRISPR clusters contain sequences complementary to antecedent mobile elements and target invading nucleic acids. CRISPR clusters are transcribed and processed into CRISPR RNA (crRNA).

The defense reaction is divided into three stages. In the adaptation stage, the invader DNA is cleaved, and a piece of it is selected to be integrated as a new spacer into the CRISPR locus, where it is stored as an identity tag for future attacks by this invader. During the second stage (the expression stage), the CRISPR RNA (pre-crRNA) is transcribed and subsequently processed into the mature crRNAs. In the third stage (the interference stage), Cas proteins, together with crRNAs, identify and degrade the invader [(PUBMED:17379808), (PUBMED:16545108), (PUBMED:21699496)].

The CRISPR-Cas systems have been sorted into three major classes. In CRISPR-Cas types I and III, the mature crRNA is generally generated by a member of the Cas6 protein family. Whereas in system III the Cas6 protein acts alone, in some class I systems it is part of a complex of Cas proteins known as Cascade (CRISPR-associated complex for antiviral defense). The Cas6 protein is necessary for crRNA production whereas the additional Cas proteins that form the Cascade complex are needed for crRNA stability [(PUBMED:24459147)].

This entry represents the Cse3 (CRISPR/Cas Subtype Ecoli protein 3) family of Cas proteins. The Thermus thermophilus HB8 family member has been crystallised and found to have a structure consisting of two domains with opposing parallel beta-sheets, known as a beta-sheet platform [(PUBMED:16672237)]. This structure is similar to those found in the sex-lethal protein and poly(A)-binding protein and is consistent with an RNA-binding function.

Family alignment:
View or

There are 699 CRISPR_assoc domains in 699 proteins in SMART's nrdb database.

Click on the following links for more information.