Caspase, interleukin-1 beta converting enzyme (ICE) homologues
SMART accession number:SM00115
Description: Cysteine aspartases that mediate programmed cell death (apoptosis). Caspases are synthesised as zymogens and activated by proteolysis of the peptide backbone adjacent to an aspartate. The resulting two subunits associate to form an (alpha)2(beta)2-tetramer which is the active enzyme. Activation of caspases can be mediated by other caspase homologues.
Interpro abstract (IPR015917):

In the MEROPS database peptidases and peptidase homologues are grouped into clans and families. Clans are groups of families for which there is evidence of common ancestry based on a common structural fold:

  • Each clan is identified with two letters, the first representing the catalytic type of the families included in the clan (with the letter 'P' being used for a clan containing families of more than one of the catalytic types serine, threonine and cysteine). Some families cannot yet be assigned to clans, and when a formal assignment is required, such a family is described as belonging to clan A-, C-, M-, N-, S-, T- or U-, according to the catalytic type. Some clans are divided into subclans because there is evidence of a very ancient divergence within the clan, for example MA(E), the gluzincins, and MA(M), the metzincins.
  • Peptidase families are grouped by their catalytic type, the first character representing the catalytic type: A, aspartic; C, cysteine; G, glutamic acid; M, metallo; N, asparagine; S, serine; T, threonine; and U, unknown. The serine, threonine and cysteine peptidases utilise the amino acid as a nucleophile and form an acyl intermediate - these peptidases can also readily act as transferases. In the case of aspartic, glutamic and metallopeptidases, the nucleophile is an activated water molecule. In the case of the asparagine endopeptidases, the nucleophile is asparagine and all are self-processing endopeptidases.

In many instances the structural protein fold that characterises the clan or family may have lost its catalytic activity, yet retain its function in protein recognition and binding.

Cysteine peptidases have characteristic molecular topologies, which can be seen not only in their three-dimensional structures, but commonly also in the two-dimensional structures. These are peptidases in which the nucleophile is the sulphydryl group of a cysteine residue. Cysteine proteases are divided into clans (proteins which are evolutionary related), and further sub-divided into families, on the basis of the architecture of their catalytic dyad or triad [(PUBMED:11517925)].

This group of sequences represent the core of p45 (45 kDa) precursor of caspases, which can be processed to produce the active p20 (20 kDa) and p10 (10 kDa) subunits. Caspases (Cysteine-dependent ASPartyl-specific proteASE) are cysteine peptidases that belong to the MEROPS peptidase family C14 (caspase family, clan CD) based on the architecture of their catalytic dyad or triad [(PUBMED:11517925)]. Caspases are tightly regulated proteins that require zymogen activation to become active, and once active can be regulated by caspase inhibitors. Activated caspases act as cysteine proteases, using the sulphydryl group of a cysteine side chain for catalysing peptide bond cleavage at aspartyl residues in their substrates. The catalytic cysteine and histidine residues are on the p20 subunit after cleavage of the p45 precursor.

Caspases are mainly involved in mediating cell death (apoptosis) [(PUBMED:10578171), (PUBMED:10872455), (PUBMED:15077141)]. They have two main roles within the apoptosis cascade: as initiators that trigger the cell death process, and as effectors of the process itself. Caspase-mediated apoptosis follows two main pathways, one extrinsic and the other intrinsic or mitochondrial-mediated. The extrinsic pathway involves the stimulation of various TNF (tumour necrosis factor) cell surface receptors on cells targeted to die by various TNF cytokines that are produced by cells such as cytotoxic T cells. The activated receptor transmits the signal to the cytoplasm by recruiting FADD, which forms a death-inducing signalling complex (DISC) with caspase-8. The subsequent activation of caspase-8 initiates the apoptosis cascade involving caspases 3, 4, 6, 7, 9 and 10. The intrinsic pathway arises from signals that originate within the cell as a consequence of cellular stress or DNA damage. The stimulation or inhibition of different Bcl-2 family receptors results in the leakage of cytochrome c from the mitochondria, and the formation of an apoptosome composed of cytochrome c, Apaf1 and caspase-9. The subsequent activation of caspase-9 initiates the apoptosis cascade involving caspases 3 and 7, among others. At the end of the cascade, caspases act on a variety of signal transduction proteins, cytoskeletal and nuclear proteins, chromatin-modifying proteins, DNA repair proteins and endonucleases that destroy the cell by disintegrating its contents, including its DNA. The different caspases have different domain architectures depending upon where they fit into the apoptosis cascades, however they all carry the catalytic p10 and p20 subunits.

Caspases can have roles other than in apoptosis, such as caspase-1 (interleukin-1 beta convertase) (EC, which is involved in the inflammatory process. The activation of apoptosis can sometimes lead to caspase-1 activation, providing a link between apoptosis and inflammation, such as during the targeting of infected cells. Caspases may also be involved in cell differentiation [(PUBMED:15066636)].

GO process:apoptotic process (GO:0006915)
GO function:cysteine-type peptidase activity (GO:0008234)
Family alignment:
View or

There are 712 CASc domains in 710 proteins in SMART's nrdb database.

Click on the following links for more information.