Matrix protein (M1) of Influenza virus is a bifunctional membrane/RNA-binding protein that mediates the encapsidation of RNA-nucleoprotein cores into the membrane envelope. It is therefore required that M1 binds both membrane and RNA simultaneously. M1 is comprised of two domains connected by a linker sequence. The C-terminal domain contains alpha-helical structure and appears to be involved in growth and virulence of the virus [ (PUBMED:15892972) (PUBMED:12590584) ].
Zinc- and pH-dependent conformational transition in a putative interdomain linker region of the influenza virus matrix protein M1.
Biochemistry. 2003; 42: 1978-84
Display abstract
The matrix protein M1 of influenza A virus forms a shell beneath the viral envelope and sustains the virion architecture by interacting with other viral components. A structural change of M1 upon acidification of the virion interior in an early stage of virus infection is considered to be a key step to virus uncoating. We examined the structure of a 28-mer peptide (M1Lnk) representing a putative linker region between the N- and C-terminal domains of M1 by using circular dichroism, Raman, and absorption spectroscopy. M1Lnk assumes an alpha-helical structure in a mildly hydrophobic environment irrespective of pH, being consistent with the X-ray crystal structures of an N-terminal fragment of M1 at pH 7 and 4. In the presence of Zn(2+), on the other hand, M1Lnk takes a partially unfolded conformation at neutral pH with a tetrahedral coordination of two Cys residues and two His residues to a Zn(2+) ion in the central part of the peptide. Upon acidification, the peptide releases the Zn(2+) ion and refolds into the alpha-helix-rich structure with a midpoint of transition at pH 5.9. The pH-dependent conformational transition of M1Lnk strongly suggests that the interdomain linker region of M1 also undergoes a pH-dependent unfolding-refolding transition in the presence of Zn(2+). A small but significant portion of the M1 protein is bound to Zn(2+) in the virion, and the Zn(2+)-bound M1 molecule may play a special role in virus uncoating by changing the disposition of the N- and C-terminal domains upon acidification of the virion interior.
Links (links to other resources describing this domain)