Secondary literature sources for AFOR_N
The following references were automatically generated.
- Brondino CD, Romao MJ, Moura I, Moura JJ
- Molybdenum and tungsten enzymes: the xanthine oxidase family.
- Curr Opin Chem Biol. 2006; 10: 109-14
- Display abstract
Mononuclear molybdenum and tungsten are found in the active site of a diverse group of enzymes that, in general, catalyze oxygen atom transfer reactions. Enzymes of the xanthine oxidase family are the best-characterized mononuclear Mo-containing enzymes. Several 3D structures of diverse members of this family are known. Recently, the structures of substrate-bound and arsenite-inhibited forms of two members of this family have also been reported. In addition, spectroscopic studies have been utilized to elucidate fine details that complement the structural information. Altogether, these studies have provided an important amount of information on the characteristics of the active site and the electron transfer pathways.
- Machielsen R, van der Oost J
- Production and characterization of a thermostable L-threonine dehydrogenase from the hyperthermophilic archaeon Pyrococcus furiosus.
- FEBS J. 2006; 273: 2722-9
- Display abstract
The gene encoding a threonine dehydrogenase (TDH) has been identified in the hyperthermophilic archaeon Pyrococcus furiosus. The Pf-TDH protein has been functionally produced in Escherichia coli and purified to homogeneity. The enzyme has a tetrameric conformation with a molecular mass of approximately 155 kDa. The catalytic activity of the enzyme increases up to 100 degrees C, and a half-life of 11 min at this temperature indicates its thermostability. The enzyme is specific for NAD(H), and maximal specific activities were detected with L-threonine (10.3 U x mg(-1)) and acetoin (3.9 U x mg(-1)) in the oxidative and reductive reactions, respectively. Pf-TDH also utilizes L-serine and D-threonine as substrate, but could not oxidize other L-amino acids. The enzyme requires bivalent cations such as Zn2+ and Co2+ for activity and contains at least one zinc atom per subunit. Km values for L-threonine and NAD+ at 70 degrees C were 1.5 mm and 0.055 mm, respectively.
- Mendel RR, Bittner F
- Cell biology of molybdenum.
- Biochim Biophys Acta. 2006; 1763: 621-35
- Display abstract
The transition element molybdenum (Mo) is of essential importance for (nearly) all biological systems as it is required by enzymes catalyzing diverse key reactions in the global carbon, sulfur and nitrogen metabolism. The metal itself is biologically inactive unless it is complexed by a special cofactor. With the exception of bacterial nitrogenase, where Mo is a constituent of the FeMo-cofactor, Mo is bound to a pterin, thus forming the molybdenum cofactor (Moco) which is the active compound at the catalytic site of all other Mo-enzymes. In eukaryotes, the most prominent Mo-enzymes are (1) sulfite oxidase, which catalyzes the final step in the degradation of sulfur-containing amino acids and is involved in detoxifying excess sulfite, (2) xanthine dehydrogenase, which is involved in purine catabolism and reactive oxygen production, (3) aldehyde oxidase, which oxidizes a variety of aldehydes and is essential for the biosynthesis of the phytohormone abscisic acid, and in autotrophic organisms also (4) nitrate reductase, which catalyzes the key step in inorganic nitrogen assimilation. All Mo-enzymes, except plant sulfite oxidase, need at least one more redox active center, many of them involving iron in electron transfer. The biosynthesis of Moco involves the complex interaction of six proteins and is a process of four steps, which also includes iron as well as copper in an indispensable way. Moco as released after synthesis is likely to be distributed to the apoproteins of Mo-enzymes by putative Moco-carrier proteins. Xanthine dehydrogenase and aldehyde oxidase, but not sulfite oxidase and nitrate reductase, require the post-translational sulfuration of their Mo-site for becoming active. This final maturation step is catalyzed by a Moco-sulfurase enzyme, which mobilizes sulfur from l-cysteine in a pyridoxal phosphate-dependent manner as typical for cysteine desulfurases.
- Bol E, Bevers LE, Hagedoorn PL, Hagen WR
- Redox chemistry of tungsten and iron-sulfur prosthetic groups in Pyrococcus furiosus formaldehyde ferredoxin oxidoreductase.
- J Biol Inorg Chem. 2006; 11: 999-1006
- Display abstract
Formaldehyde oxidoreductase (FOR) is one of the tungstopterin iron-sulfur enzymes of the five-membered family of aldehyde oxidoreductases in the hyperthermophilic archaeon Pyrococcus furiosus. In dye-mediated equilibrium redox titrations, the tungsten in active P. furiosus FOR is a two-electron acceptor, W(VI/IV). The intermediate, paramagnetic W(V) state can be trapped only by reduction with substrate, with consecutive one-electron intraprotein electron transfer to the single [4Fe-4S](2+;+) cluster and partial comproportionation of the tungsten over W(IV, V, VI); this is a stable state in the absence of an external electron acceptor. Electron paramagnetic resonance (EPR) spectroscopy reveals a single "low-potential" W(V) spectrum with gxyz values 1.847, 1.898, and 1.972, and a [4Fe-4S]+ cubane in a spin mixture of S = 1/2 (10%) and S = 3/2 (90%) of intermediate rhombicity (E/D = 0.21, greal = 1.91). The development of this intermediate in vitro is slow even at elevated temperature and with a nominal 50:1 excess of substrate over enzyme presumably owing to the very unfavorable hydration equilibrium of the formaldehyde/methylene glycol couple with KD approximately 10(3). Rapid intermediate formation of enzyme at concentrations suitable for EPR spectroscopy (200 microM) is only obtained with extremely high nominal substrate concentration (1 M formaldehyde) and is followed by a slower phase of denaturation. The premise that the free formaldehyde, and not the methylene glycol, is the enzyme's substrate implies that KM for formaldehyde is 3 orders of magnitude less that the previously reported value.
- Thapper A et al.
- Biochemical and spectroscopic characterization of an aldehyde oxidoreductase isolated from Desulfovibrio aminophilus.
- J Inorg Biochem. 2006; 100: 44-50
- Display abstract
Aldehyde oxidoreductase (AOR) activity has been found in a number of sulfate-reducing bacteria. The enzyme that is responsible for the conversion of aldehydes to carboxylic acids is a mononuclear molybdenum enzyme belonging to the xanthine oxidase family. We report here the purification and characterization of AOR isolated from the sulfate-reducing bacterium Desulfovibrio (D.) aminophilus DSM 12254, an aminolytic strain performing thiosulfate dismutation. The enzyme is a homodimer (ca. 200 kDa), containing a molybdenum centre and two [2Fe-2S] clusters per monomer. UV/Visible and electron paramagnetic resonance (EPR) spectra of D. aminophilus AOR recorded in as-prepared and reduced states are similar to those obtained in AORs from Desulfovibrio gigas, Desulfovibrio desulfuricans and Desulfovibrio alaskensis. Despite AOR from D. aminophilus is closely related to other AORs, it presents lower activity towards aldehydes and no activity towards N-heterocyclic compounds, which suggests another possible role for this enzyme in vivo. A comparison of the molecular and EPR properties of AORs from different Desulfovibrio species is also included.
- Havemeyer A, Bittner F, Wollers S, Mendel R, Kunze T, Clement B
- Identification of the missing component in the mitochondrial benzamidoxime prodrug-converting system as a novel molybdenum enzyme.
- J Biol Chem. 2006; 281: 34796-802
- Display abstract
Amidoximes can be used as prodrugs for amidines and related functional groups to enhance their intestinal absorption. These prodrugs are reduced to their active amidines. Other N-hydroxylated structures are mutagenic or responsible for toxic effects of drugs and are detoxified by reduction. In this study, a N-reductive enzyme system of pig liver mitochondria using benzamidoxime as a model substrate was identified. A protein fraction free from cytochrome b5 and cytochrome b5 reductase was purified, enhancing 250-fold the minor benzamidoxime-reductase activity catalyzed by the membrane-bound cytochrome b5/NADH cytochrome b5 reductase system. This fraction contained a 35-kDa protein with homologies to the C-terminal domain of the human molybdenum cofactor sulfurase. Here it was demonstrated that this 35-kDa protein contains molybdenum cofactor and forms the hitherto ill defined third component of the N-reductive complex in the outer mitochondrial membrane. Thus, the 35-kDa protein represents a novel group of molybdenum proteins in eukaryotes as it forms the catalytic part of a three-component enzyme complex consisting of separate proteins. Supporting these findings, recombinant C-terminal domain of the human molybdenum cofactor sulfurase exhibited N-reductive activity in vitro, which was strictly dependent on molybdenum cofactor.
- Fischer K et al.
- Function and structure of the molybdenum cofactor carrier protein from Chlamydomonas reinhardtii.
- J Biol Chem. 2006; 281: 30186-94
- Display abstract
The molybdenum cofactor (Moco) forms the catalytic site in all eukaryotic molybdenum enzymes and is synthesized by a multistep biosynthetic pathway. The mechanism of transfer, storage, and insertion of Moco into the appropriate apo-enzyme is poorly understood. In Chlamydomonas reinhardtii, a Moco carrier protein (MCP) has been identified and characterized recently. Here we show biochemical evidence that MCP binds Moco as well as the tungstate-substituted form of the cofactor (Wco) with high affinity, whereas molybdopterin, the ultimate cofactor precursor, is not bound. This binding selectivity points to a specific metal-mediated interaction with MCP, which protects Moco and Wco from oxidation with t((1/2)) of 24 and 96 h, respectively. UV-visible spectroscopy showed defined absorption bands at 393, 470, and 570 nm pointing to ene-diothiolate and protein side-chain charge transfer bonds with molybdenum. We have determined the crystal structure of MCP at 1.6 Angstrom resolution using seleno-methionated and native protein. The monomer constitutes a Rossmann fold with two homodimers forming a symmetrical tetramer in solution. Based on conserved surface residues, charge distribution, shape, in silico docking studies, structural comparisons, and identification of an anionbinding site, a prominent surface depression was proposed as a Moco-binding site, which was confirmed by structure-guided mutagenesis coupled to substrate binding studies.
- Bardischewsky F, Quentmeier A, Rother D, Hellwig P, Kostka S, Friedrich CG
- Sulfur dehydrogenase of Paracoccus pantotrophus: the heme-2 domain of the molybdoprotein cytochrome c complex is dispensable for catalytic activity.
- Biochemistry. 2005; 44: 7024-34
- Display abstract
Sulfur dehydrogenase, Sox(CD)(2), is an essential part of the sulfur-oxidizing enzyme system of the chemotrophic bacterium Paracoccus pantotrophus. Sox(CD)(2) is a alpha(2)beta(2) complex composed of the molybdoprotein SoxC (43 442 Da) and the hybrid diheme c-type cytochrome SoxD (37 637 Da). Sox(CD)(2) catalyzes the oxidation of protein-bound sulfur to sulfate with a unique six-electron transfer. Amino acid sequence analysis identified the heme-1 domain of SoxD proteins to be specific for sulfur dehydrogenases and to contain a novel ProCysMetXaaAspCys motif, while the heme-2 domain is related to various cytochromes c(2). Purification of sulfur dehydrogenase without protease inhibitor yielded a dimeric SoxCD(1) complex consisting of SoxC and SoxD(1) of 30 kDa, which contained only the heme-1 domain. The heme-2 domain was isolated as a new cytochrome SoxD(2) of about 13 kDa. Both hemes of SoxD in Sox(CD)(2) are redox-active with midpoint potentials at E(m)1 = 218 +/- 10 mV and E(m)2 = 268 +/- 10 mV, while SoxCD(1) and SoxD(2) both exhibit a midpoint potential of E(m) = 278 +/- 10 mV. Electrochemically induced FTIR difference spectra of Sox(CD)(2), SoxCD(1), and SoxD(2) were distinct. A carboxy group is protonated upon reduction of the SoxD(1) heme but not for SoxD(2). The specific activity of SoxCD(1) and Sox(CD)(2) was identical as was the yield of electrons with thiosulfate in the reconstituted Sox enzyme system. To examine the physiological significance of the heme-2 domain, a mutant was constructed that was deleted for the heme-2 domain, which produced SoxCD(1) and transferred electrons from thiosulfate to oxygen. These data demonstrated the crucial role of the heme-1 domain of SoxD for catalytic activity, electron yield, and transfer of the electrons to the cytoplasmic membrane, while the heme-2 domain mediated the alpha(2)beta(2) tetrameric structure of sulfur dehydrogenase.
- Bevers LE, Bol E, Hagedoorn PL, Hagen WR
- WOR5, a novel tungsten-containing aldehyde oxidoreductase from Pyrococcus furiosus with a broad substrate Specificity.
- J Bacteriol. 2005; 187: 7056-61
- Display abstract
WOR5 is the fifth and last member of the family of tungsten-containing oxidoreductases purified from the hyperthermophilic archaeon Pyrococcus furiosus. It is a homodimeric protein (subunit, 65 kDa) that contains one [4Fe-4S] cluster and one tungstobispterin cofactor per subunit. It has a broad substrate specificity with a high affinity for several substituted and nonsubstituted aliphatic and aromatic aldehydes with various chain lengths. The highest catalytic efficiency of WOR5 is found for the oxidation of hexanal (V(max) = 15.6 U/mg, K(m) = 0.18 mM at 60 degrees C). Hexanal-incubated enzyme exhibits S = 1/2 electron paramagnetic resonance signals from [4Fe-4S]1+ (g values of 2.08, 1.93, and 1.87) and W5+ (g values of 1.977, 1.906, and 1.855). Cyclic voltammetry of ferredoxin and WOR5 on an activated glassy carbon electrode shows a catalytic wave upon addition of hexanal, suggesting that ferredoxin can be a physiological redox partner. The combination of WOR5, formaldehyde oxidoreductase, and aldehyde oxidoreductase forms an efficient catalyst for the oxidation of a broad range of aldehydes in P. furiosus.
- Story SV, Shah C, Jenney FE Jr, Adams MW
- Characterization of a novel zinc-containing, lysine-specific aminopeptidase from the hyperthermophilic archaeon Pyrococcus furiosus.
- J Bacteriol. 2005; 187: 2077-83
- Display abstract
Cell extracts of the proteolytic, hyperthermophilic archaeon Pyrococcus furiosus contain high specific activity (11 U/mg) of lysine aminopeptidase (KAP), as measured by the hydrolysis of L-lysyl-p-nitroanilide (Lys-pNA). The enzyme was purified by multistep chromatography. KAP is a homotetramer (38.2 kDa per subunit) and, as purified, contains 2.0 +/- 0.48 zinc atoms per subunit. Surprisingly, its activity was stimulated fourfold by the addition of Co2+ ions (0.2 mM). Optimal KAP activity with Lys-pNA as the substrate occurred at pH 8.0 and a temperature of 100 degrees C. The enzyme had a narrow substrate specificity with di-, tri-, and tetrapeptides, and it hydrolyzed only basic N-terminal residues at high rates. Mass spectroscopy analysis of the purified enzyme was used to identify, in the P. furiosus genome database, a gene (PF1861) that encodes a product corresponding to 346 amino acids. The recombinant protein containing a polyhistidine tag at the N terminus was produced in Escherichia coli and purified using affinity chromatography. Its properties, including molecular mass, metal ion dependence, and pH and temperature optima for catalysis, were indistinguishable from those of the native form, although the thermostability of the recombinant form was dramatically lower than that of the native enzyme (half-life of approximately 6 h at 100 degrees C). Based on its amino acid sequence, KAP is part of the M18 family of peptidases and represents the first prokaryotic member of this family. KAP is also the first lysine-specific aminopeptidase to be purified from an archaeon.
- Boll M, Schink B, Messerschmidt A, Kroneck PM
- Novel bacterial molybdenum and tungsten enzymes: three-dimensional structure, spectroscopy, and reaction mechanism.
- Biol Chem. 2005; 386: 999-1006
- Display abstract
The molybdenum enzymes 4-hydroxybenzoyl-CoA reductase and pyrogallol-phloroglucinol transhydroxylase and the tungsten enzyme acetylene hydratase catalyze reductive dehydroxylation reactions, i.e., transhydroxylation between phenolic residues and the addition of water to a triple bond. Such activities are unusual for this class of enzymes, which carry either a mononuclear Mo or W center. Crystallization and subsequent structural analysis by high-resolution X-ray crystallography has helped to resolve the reaction centers of these enzymes to a degree that allows us to understand the interaction of the enzyme and the respective substrate(s) in detail, and to develop a concept for the respective reaction mechanism, at least in two cases.
- Nichols JD, Rajagopalan KV
- In vitro molybdenum ligation to molybdopterin using purified components.
- J Biol Chem. 2005; 280: 7817-22
- Display abstract
We have previously shown that Escherichia coli MoeA and MogA are required in vivo for the final step of molybdenum cofactor biosynthesis, the addition of the molybdenum atom to the dithiolene of molybdopterin. MoeA was also shown to facilitate the addition of molybdenum in an assay using crude extracts from E. coli moeA(-) cells. The experiments detailed in this report utilized an in vitro assay for MoeA-mediated molybdenum ligation to de novo synthesized molybdopterin using only purified components and monitoring the reconstitution of human aposulfite oxidase. In this assay, maximum activation was achieved by delaying the addition of aposulfite oxidase to allow for adequate molybdenum coordination to occur. Tungsten, which substitutes for molybdenum in hyperthermophilic organisms, could also be ligated to molybdopterin using this system, though not as efficiently as molybdenum. Addition of thiol compounds to the assay inhibited activity. Addition of MogA also inhibited the reaction. However, in the presence of ATP and magnesium, addition of MogA to the assay increased the level of aposulfite oxidase reconstitution beyond that observed with MoeA alone. This effect was not observed in the absence of MoeA. The results presented here demonstrate that MoeA is responsible for mediating molybdenum ligation to molybdopterin, whereas MogA stimulates this activity in an ATP-dependent manner.
- Porcelli M et al.
- S-adenosylhomocysteine hydrolase from the archaeon Pyrococcus furiosus: biochemical characterization and analysis of protein structure by comparative molecular modeling.
- Proteins. 2005; 58: 815-25
- Display abstract
S-adenosylhomocysteine hydrolase (AdoHcyHD) is an ubiquitous enzyme that catalyzes the breakdown of S-adenosylhomocysteine, a powerful inhibitor of most transmethylation reactions, to adenosine and L-homocysteine. AdoHcyHD from the hyperthermophilic archaeon Pyrococcus furiosus (PfAdoHcyHD) was cloned, expressed in Escherichia coli, and purified. The enzyme is thermoactive with an optimum temperature of 95 degrees C, and thermostable retaining 100% residual activity after 1 h at 90 degrees C and showing an apparent melting temperature of 98 degrees C. The enzyme is a homotetramer of 190 kDa and contains four cysteine residues per subunit. Thiol groups are not involved in the catalytic process whereas disulfide bond(s) could be present since incubation with 0.8 M dithiothreitol reduces enzyme activity. Multiple sequence alignment of hyperthermophilic AdoHcyHD reveals the presence of two cysteine residues in the N-terminus of the enzyme conserved only in members of Pyrococcus species, and shows that hyperthermophilic AdoHcyHD lack eight C-terminal residues, thought to be important for structural and functional properties of the eukaryotic enzyme. The homology-modeled structure of PfAdoHcyHD shows that Trp220, Tyr181, Tyr184, and Leu185 of each subunit and Ile244 from a different subunit form a network of hydrophobic and aromatic interactions in the central channel formed at the subunits interface. These contacts partially replace the interactions of the C-terminal tail of the eukaryotic enzyme required for tetramer stability. Moreover, Cys221 and Lys245 substitute for Thr430 and Lys426, respectively, of the human enzyme in NAD-binding. Interestingly, all these residues are fairly well conserved in hyperthermophilic AdoHcyHDs but not in mesophilic ones, thus suggesting a common adaptation mechanism at high temperatures.
- Hagedoorn PL, Chen T, Schroder I, Piersma SR, de Vries S, Hagen WR
- Purification and characterization of the tungsten enzyme aldehyde:ferredoxin oxidoreductase from the hyperthermophilic denitrifier Pyrobaculum aerophilum.
- J Biol Inorg Chem. 2005; 10: 259-69
- Display abstract
A tungsten-containing aldehyde:ferredoxin oxidoreductase (AOR) has been purified to homogeneity from Pyrobaculum aerophilum. The N-terminal sequence of the isolated enzyme matches a single open reading frame in the genome. Metal analysis and electron paramagnetic resonance (EPR) spectroscopy indicate that the P. aerophilum AOR contains one tungsten center and one [4Fe-4S](2+/1+) cluster per 68-kDa monomer. Native AOR is a homodimer. EPR spectroscopy of the purified enzyme that has been reduced with the substrate crotonaldehyde revealed a W(V) species with g(zyx) values of 1.952, 1.918, 1.872. The substrate-reduced AOR also contains a [4Fe-4S](1+) cluster with S=3/2 and zero field splitting parameters D=7.5 cm(-1) and E/D=0.22. Molybdenum was absent from the enzyme preparation. The P. aerophilum AOR lacks the amino acid sequence motif indicative for binding of mononuclear iron that is typically found in other AORs. Furthermore, the P. aerophilum AOR utilizes a 7Fe ferredoxin as the putative physiological redox partner, instead of a 4Fe ferredoxin as in Pyrococcus furiosus. This 7Fe ferredoxin has been purified from P. aerophilum, and the amino acid sequence has been identified using mass spectrometry. Direct electrochemistry of the ferredoxin showed two one-electron transitions, at -306 and -445 mV. In the presence of 55 microM ferredoxin the AOR activity is 17% of the activity obtained with 1 mM benzyl viologen as an electron acceptor.
- Grunden AM, Jenney FE Jr, Ma K, Ji M, Weinberg MV, Adams MW
- In vitro reconstitution of an NADPH-dependent superoxide reduction pathway from Pyrococcus furiosus.
- Appl Environ Microbiol. 2005; 71: 1522-30
- Display abstract
A scheme for the detoxification of superoxide in Pyrococcus furiosus has been previously proposed in which superoxide reductase (SOR) reduces (rather than dismutates) superoxide to hydrogen peroxide by using electrons from reduced rubredoxin (Rd). Rd is reduced with electrons from NAD(P)H by the enzyme NAD(P)H:rubredoxin oxidoreductase (NROR). The goal of the present work was to reconstitute this pathway in vitro using recombinant enzymes. While recombinant forms of SOR and Rd are available, the gene encoding P. furiosus NROR (PF1197) was found to be exceedingly toxic to Escherichia coli, and an active recombinant form (rNROR) was obtained via a fusion protein expression system, which produced an inactive form of NROR until cleavage. This allowed the complete pathway from NAD(P)H to the reduction of SOR via NROR and Rd to be reconstituted in vitro using recombinant proteins. rNROR is a 39.9-kDa protein whose sequence contains both flavin adenine dinucleotide (FAD)- and NAD(P)H-binding motifs, and it shares significant similarity with known and putative Rd-dependent oxidoreductases from several anaerobic bacteria, both mesophilic and hyperthermophilic. FAD was shown to be essential for activity in reconstitution assays and could not be replaced by flavin mononucleotide (FMN). The bound FAD has a midpoint potential of -173 mV at 23 degrees C (-193 mV at 80 degrees C). Like native NROR, the recombinant enzyme catalyzed the NADPH-dependent reduction of rubredoxin both at high (80 degrees C) and low (23 degrees C) temperatures, consistent with its proposed role in the superoxide reduction pathway. This is the first demonstration of in vitro superoxide reduction to hydrogen peroxide using NAD(P)H as the electron donor in an SOR-mediated pathway.
- Heidenreich T, Wollers S, Mendel RR, Bittner F
- Characterization of the NifS-like domain of ABA3 from Arabidopsis thaliana provides insight into the mechanism of molybdenum cofactor sulfuration.
- J Biol Chem. 2005; 280: 4213-8
- Display abstract
The molybdenum cofactor sulfurase ABA3 from Arabidopsis thaliana specifically regulates the activity of the molybdenum enzymes aldehyde oxidase and xanthine dehydrogenase by converting their molybdenum cofactor from the desulfo-form into the sulfo-form. ABA3 is a two-domain protein with an NH2-terminal domain sharing significant similarities to NifS proteins that catalyze the decomposition of l-cysteine to l-alanine and elemental sulfur for iron-sulfur cluster synthesis. Although different in its physiological function, the mechanism of ABA3 for sulfur mobilization was found to be similar to NifS proteins. The protein binds a pyridoxal phosphate cofactor and a substrate-derived persulfide intermediate, and site-directed mutagenesis of strictly conserved binding sites for the cofactor and the persulfide demonstrated that they are essential for molybdenum cofactor sulfurase activity. In vitro, the NifS-like domain of ABA3 activates aldehyde oxidase and xanthine dehydrogenase in the absence of the C-terminal domain, but in vivo, the C-terminal domain is required for proper activation of both target enzymes. In addition to its cysteine desulfurase activity, ABA3-NifS also exhibits selenocysteine lyase activity. Although l-selenocysteine is unlikely to be a natural substrate for ABA3, it is decomposed more efficiently than l-cysteine. Besides mitochondrial AtNFS1 and plastidial AtNFS2, which are both proposed to be involved in iron-sulfur cluster formation, ABA3 is proposed to be a third and cytosolic NifS-like cysteine desulfurase in A. thaliana. However, the sulfur transferase activity of ABA3 is used for post-translational activation of molybdenum enzymes rather than for iron-sulfur cluster assembly.
- Santamaria-Araujo JA et al.
- The tetrahydropyranopterin structure of the sulfur-free and metal-free molybdenum cofactor precursor.
- J Biol Chem. 2004; 279: 15994-9
- Display abstract
The molybdenum cofactor (Moco), a highly conserved pterin compound coordinating molybdenum (Mo), is required for the activity of all Mo-dependent enzymes with the exception of nitrogenase. Moco is synthesized by a unique and evolutionary old multi-step pathway with two intermediates identified so far, the sulfur-free and metal-free pterin derivative precursor Z and molybdopterin, a pterin with an enedithiolate function essential for Mo ligation. The latter pterin component is believed to form a tetrahydropyranopterin similar to the one found for Moco in the crystal structure of Mo as well as tungsten (W) enzymes. Here we report the spectroscopic characterization and structure elucidation of precursor Z purified from Escherichia coli overproducing MoaA and MoaC, two proteins essential for bacterial precursor Z synthesis. We have shown that purified precursor Z is as active as precursor Z present in E. coli cell extracts, demonstrating that no modifications during the purification procedure have occurred. High resolution electrospray ionization mass spectrometry afforded a [M + H]+ ion compatible with a molecular formula of C10H15N5O8P. Consequently 1H NMR spectroscopy not allowed structural characterization of the molecule but confirmed that this intermediate undergoes direct oxidation to the previously well characterized non-productive follow-up product compound Z. The 1H chemical shift and coupling constant data are incompatible with previous structural proposals and indicate that precursor Z already is a tetrahydropyranopterin system and carries a geminal diol function in the C1' position.
- Nieter Burgmayer SJ, Pearsall DL, Blaney SM, Moore EM, Sauk-Schubert C
- Redox reactions of the pyranopterin system of the molybdenum cofactor.
- J Biol Inorg Chem. 2004; 9: 59-66
- Display abstract
This work provides the first extensive study of the redox reactivity of the pyranopterin system that is a component of the catalytic site of all molybdenum and tungsten enzymes possessing molybdopterin. The pyranopterin system possesses certain characteristics typical of tetrahydropterins, such as a reduced pyrazine ring; however, it behaves as a dihydropterin in redox reactions with oxidants. Titrations using ferricyanide and dichloroindophenol (DCIP) prove a 2e(-)/2H(+) stoichiometry for pyranopterin oxidations. Oxidations of pyranopterin by Fe(CN)(6)(3-) or DCIP are slower than tetrahydropterin oxidation under a variety of conditions, but are considerably faster than observed for oxidations of dihydropterin. The rate of pyranopterin oxidation by DCIP was studied in a variety of media. In aqueous buffered solution the pyranopterin oxidation rate has minimal pH dependence, whereas the rate of tetrahydropterin oxidation decreases 100-fold over the pH range 7.4-8.5. Although pyranopterin reacts as a dihydropterin with oxidants, it resists further reduction to a tetrahydropterin. No reduction was achieved by catalytic hydrogenation, even after several days. The reducing ability of the commonly used biological reductants dithionite and methyl viologen radical cation was investigated, but experiments showed no evidence of pyranopterin reduction by any of these reducing agents. This study illustrates the dual personalities of pyranopterin and underscores the unique place that the pyranopterin system holds in the spectrum of pterin redox reactions. The work presented here has important implications for understanding the biosynthesis and reaction chemistry of the pyranopterin cofactor in molybdenum and tungsten enzymes.
- Wang JJ, Kryatova OP, Rybak-Akimova EV, Holm RH
- Comparative kinetics and mechanism of oxygen and sulfur atom transfer reactions mediated by bis(dithiolene) complexes of molybdenum and tungsten.
- Inorg Chem. 2004; 43: 8092-101
- Display abstract
Although the kinetics and mechanism of metal-mediated oxygen atom (oxo) transfer reactions have been examined in some detail, sulfur atom (sulfido) transfer reactions have not been similarly scrutinized. The reactions [M(IV)(O-p-C(6)H(4)X')(S(2)C(2)Me(2))(2)](1-) + Ph(3)AsQ --> [M(VI)Q(O-p-C(6)H(4)X')(S(2)C(2)Me(2))(2)](1-) + Ph(3)As (M = Mo, W; Q = O, S) with variable substituent X' have been investigated in acetonitrile in order to determine the relative rates of oxo versus sulfido transfer at constant structure (square pyramidal) of the atom acceptor and of atom transfer at constant structure of the atom donor and metal variability of the atom acceptor. All reactions exhibit second-order kinetics and entropies of activation (-25 to -45 eu) consistent with an associative transition state. At parity of atom acceptor, k(2)(S) (0.25-0.75 M(-1)s(-1)) > k(2)(O) (0.023-0.060 M(-1)s(-1)) with M = Mo and k(2)(S) (4.1-66.7 M(-1)s(-1)) > k(2)(O) (1.8-9.8 M(-1)s(-1)) with M = W. At constant atom donor and X', k(2)(W) > k(2)(Mo) with reactivity ratios k(2)(W)/k(2)(Mo) = 78-184 (Q = O) and 16-89 (Q = S). Rate constants refer to 298 K. At constant M and Q, rates increase in the order X' = Me less, similar OMe < H < Br < COMe < CN; increasing electron-withdrawing propensity accelerates reaction rates. The probable transition state involves significant Ph(3)AsQ...M bond-making (X' rate trend) and concomitant As-Q bond weakening (bond energy order As-O > As-S). Orders of oxo and sulfido donor ability of substrates and complexes are deduced on the basis of qualitative reactivity properties determined here and elsewhere. This work complements previous studies of the reaction systems [M(IV)(O-p-C(6)H(4)X')(S(2)C(2)Me(2))(2)](1-)/XO where the substrates are N-oxides and S-oxides and k(2)(W) > k(2)(Mo) at constant substrate also applies. The reaction order of substrates is Me(3)NO > (CH(2))(4)SO > Ph(3)AsS > Ph(3)AsO. This research provides the first quantitative information of metal-mediated sulfido transfer.
- Jiang J, Holm RH
- An expanded set of functional groups in bis(dithiolene)tungsten(IV,VI) complexes related to the active sites of tungstoenzymes, Including WIV-SR and WVI-O(SR).
- Inorg Chem. 2004; 43: 1302-10
- Display abstract
The active sites of tungstoenzymes have the formulations W(IV,V)L(S(2)pd)(2) and W(VI)LL'(S(2)pd)(2), in which two pyranopterindithiolene cofactor ligands (S(2)pd) are chelated to a tungsten atom. Ligands L and/or L' are not fully defined in any wild-type enzyme. The feasibility of various coordination fragments (functional groups) in potential bis(dithiolene)tungsten site analogues has been examined in previous work by exploratory synthesis. This investigation expands the range of accessible functional groups. The synthetic scheme originates with [W(CO)(2)(S(2)C(2)Me(2))(2)], whose carbonyl groups are labile to substitution. Complexes [W(IV,VI)LL'(S(2)C(2)Me(2))(2)](1-) are described in terms of their functional groups W(IV,VI)LL'. Reaction of the dicarbonyl with formate in acetonitrile/THF affords W(IV)(CO)(eta(1)-HCO(2)) (4) and in Me(2)SO W(VI)O(eta(1)-HCO(2)) (7) by an oxo transfer reaction. Carboxylates yield six-coordinate W(IV)(eta(2)-O(2)CR) (1-3, R = Ph, Me, Bu(t)) with C(2)(v) symmetry. Reaction of 3 (R = Bu(t)) with Me(3)SiSR (R = C(6)H(2)-2,4,6-Pr(i)(3)) gives W(IV)(SR) (5), which undergoes oxo and sulfido atom transfer to form W(VI)O(SR) (8) and W(VI)S(SR) (9), respectively. Attempts to prepare corresponding selenolate complexes, pertinent to the active site of formate dehydrogenase, were unsuccessful, including reactions of W(VI)OCl (10) with RSe(-). Structure proofs of 2-10 were obtained by X-ray structure determinations. Some 26 functional group types in bis(dithiolene)W(IV,V,VI) molecules have now been achieved by synthesis. It remains to be seen which are incorporated in an enzyme site. A number of them (e.g., 5) are directly analogous to molybdoenzyme sites, and may possess corresponding reactivity with biological substrates, as do W(IV)(OR)/W(VI)O(OR) (prepared earlier) in the reduction of N- and S-oxides by atom transfer.
- Weinberg MV, Jenney FE Jr, Cui X, Adams MW
- Rubrerythrin from the hyperthermophilic archaeon Pyrococcus furiosus is a rubredoxin-dependent, iron-containing peroxidase.
- J Bacteriol. 2004; 186: 7888-95
- Display abstract
Rubrerythrin was purified by multistep chromatography under anaerobic, reducing conditions from the hyperthermophilic archaeon Pyrococcus furiosus. It is a homodimer with a molecular mass of 39.2 kDa and contains 2.9 +/- 0.2 iron atoms per subunit. The purified protein had peroxidase activity at 85 degrees C using hydrogen peroxide with reduced P. furiosus rubredoxin as the electron donor. The specific activity was 36 micromol of rubredoxin oxidized/min/mg with apparent K(m) values of 35 and 70 microM for hydrogen peroxide and rubredoxin, respectively. When rubrerythrin was combined with rubredoxin and P. furiosus NADH:rubredoxin oxidoreductase, the complete system used NADH as the electron donor to reduce hydrogen peroxide with a specific activity of 7.0 micromol of H(2)O(2) reduced/min/mg of rubrerythrin at 85 degrees C. Strangely, as-purified (reduced) rubrerythrin precipitated when oxidized by either hydrogen peroxide, air, or ferricyanide. The gene (PF1283) encoding rubrerythrin was expressed in Escherichia coli grown in medium with various metal contents. The purified recombinant proteins each contained approximately three metal atoms/subunit, ranging from 0.4 Fe plus 2.2 Zn to 1.9 Fe plus 1.2 Zn, where the metal content of the protein depended on the metal content of the E. coli growth medium. The peroxidase activities of the recombinant forms were proportional to the iron content. P. furiosus rubrerythrin is the first to be characterized from a hyperthermophile or from an archaeon, and the results are the first demonstration that this protein functions in an NADH-dependent, hydrogen peroxide:rubredoxin oxidoreductase system. Rubrerythrin is proposed to play a role in the recently defined anaerobic detoxification pathway for reactive oxygen species.
- Sakuraba H, Goda S, Ohshima T
- Unique sugar metabolism and novel enzymes of hyperthermophilic archaea.
- Chem Rec. 2004; 3: 281-7
- Display abstract
Hyperthermophiles are a group of microorganisms that have their optimum growth temperature above 80 degrees C. More than 60 species of the hyperthermophiles have been isolated from marine and continental volcanic environments. Most hyperthermophiles belong to Archaea, the third domain of life, and are considered to be the most ancient of all extant life forms. Recent studies have revealed the presence of unusual sugar metabolic processes in hyperthermophilic archaea, for example, a modified Embden-Meyerhof pathway, that has so far not been observed in bacteria and eucarya. Several novel enzymes, such as ADP-dependent glucokinase, ADP-dependent phosphofructokinase, glyceraldehyde-3-phosphate ferredoxin oxidoreductase, phosphoenolpyruvate synthase, pyruvate : ferredoxin oxidoreductase, and ADP-forming acetyl-CoA synthetase, have been found to be involved in a modified Embden-Meyerhof pathway of the hyperthermophilic archaeon Pyrococcus furiosus. In addition, a unique mode of ATP regeneration has been postulated to exist in the pathway of P. furiosus. The metabolic design observed in this microorganism might reflect the situation at an early stage of evolution.
- Kuper J, Llamas A, Hecht HJ, Mendel RR, Schwarz G
- Structure of the molybdopterin-bound Cnx1G domain links molybdenum and copper metabolism.
- Nature. 2004; 430: 803-6
- Display abstract
The molybdenum cofactor is part of the active site of all molybdenum-dependent enzymes, except nitrogenase. The molybdenum cofactor consists of molybdopterin, a phosphorylated pyranopterin, with an ene-dithiolate coordinating molybdenum. The same pyranopterin-based cofactor is involved in metal coordination of the homologous tungsten-containing enzymes found in archea. The molybdenum cofactor is synthesized by a highly conserved biosynthetic pathway. In plants, the multidomain protein Cnx1 catalyses the insertion of molybdenum into molybdopterin. The Cnx1 G domain (Cnx1G), whose crystal structure has been determined in its apo form, binds molybdopterin with high affinity and participates in the catalysis of molybdenum insertion. Here we present two high-resolution crystal structures of Cnx1G in complex with molybdopterin and with adenylated molybdopterin (molybdopterin-AMP), a mechanistically important intermediate. Molybdopterin-AMP is the reaction product of Cnx1G and is subsequently processed in a magnesium-dependent reaction by the amino-terminal E domain of Cnx1 to yield active molybdenum cofactor. The unexpected identification of copper bound to the molybdopterin dithiolate sulphurs in both structures, coupled with the observed copper inhibition of Cnx1G activity, provides a molecular link between molybdenum and copper metabolism.
- Rauh D, Graentzdoerffer A, Granderath K, Andreesen JR, Pich A
- Tungsten-containing aldehyde oxidoreductase of Eubacterium acidaminophilum.
- Eur J Biochem. 2004; 271: 212-9
- Display abstract
Aldehyde oxidoreductase of Eubacterium acidaminophilum was purified to homogeneity under strict anaerobic conditions using a four-step procedure. The purified enzyme was present as a monomer with an apparent molecular mass of 67 kDa and contained 6.0 +/- 0.1 iron, 1.1 +/- 0.2 tungsten, about 0.6 mol pterin cofactor and zinc, but no molybdenum. The enzyme activity was induced if a molar excess of electron donors, such as serine and/or formate, were supplied in the growth medium compared to readily available electron acceptors such as glycine betaine. Many aldehydes served as good substrates, thus enzyme activity obtained with acetaldehyde, propionaldehyde, butyraldehyde, isovaleraldehyde and benzaldehyde differed by a factor of less than two. Kinetic parameters were determined for all substrates tested. Oligonucleotides deduced from the N-terminal amino acid sequence were used to isolate the encoding aorA gene and adjacent DNA regions. The deduced amino acid sequence of the aldehyde oxidoreductase exhibited high similarities to other tungsten-containing aldehyde oxidoreductases from archaea. Transcription of the aorA gene was monocistronic and started from a sigma 54-dependent promoter. Upstream of aorA, the gene aorR is localized whose product is similar to sigma 54-dependent transcriptional activator proteins and, thus, AorR is probably involved in the regulation of aorA expression.
- Nielsen MS, Harris P, Ooi BL, Christensen HE
- The 1.5 A resolution crystal structure of [Fe3S4]-ferredoxin from the hyperthermophilic archaeon Pyrococcus furiosus.
- Biochemistry. 2004; 43: 5188-94
- Display abstract
The structure of [Fe(3)S(4)]-ferredoxin from the hyperthermophilic archaeon Pyrococcus furiosus has been determined to 1.5 A resolution from a crystal belonging to space group P2(1) with two molecules in the asymmetric unit. The structure has been solved with molecular replacement by use of the ferredoxin from Thermotoga maritima. The fold is similar to that of related monocluster ferredoxins and contains two double-stranded antiparallel beta-sheets and two alpha-helices. The hydrophobic interaction between Trp2 and Tyr46 is confirmed, linking the C-terminus to the longer alpha-helix. The structure contains a double-conformation disulfide bond existing in a left-handed and a right-handed spiral conformation. The crystal packing reveals a beta-sheet interaction, which supports the suggestion that P. furiosus ferredoxin is a functional dimer. The extraordinary thermostability of P. furiosus ferredoxin is further discussed.
- Kaupp M
- Trigonal prismatic or not trigonal prismatic? On the mechanisms of oxygen-atom transfer in molybdopterin-based enzymes.
- Angew Chem Int Ed Engl. 2004; 43: 546-9
- Brondino CD et al.
- Incorporation of either molybdenum or tungsten into formate dehydrogenase from Desulfovibrio alaskensis NCIMB 13491; EPR assignment of the proximal iron-sulfur cluster to the pterin cofactor in formate dehydrogenases from sulfate-reducing bacteria.
- J Biol Inorg Chem. 2004; 9: 145-51
- Display abstract
We report the characterization of the molecular properties and EPR studies of a new formate dehydrogenase (FDH) from the sulfate-reducing organism Desulfovibrio alaskensis NCIMB 13491. FDHs are enzymes that catalyze the two-electron oxidation of formate to carbon dioxide in several aerobic and anaerobic organisms. D. alaskensis FDH is a heterodimeric protein with a molecular weight of 126+/-2 kDa composed of two subunits, alpha=93+/-3 kDa and beta=32+/-2 kDa, which contains 6+/-1 Fe/molecule, 0.4+/-0.1 Mo/molecule, 0.3+/-0.1 W/molecule, and 1.3+/-0.1 guanine monophosphate nucleotides. The UV-vis absorption spectrum of D. alaskensis FDH is typical of an iron-sulfur protein with a broad band around 400 nm. Variable-temperature EPR studies performed on reduced samples of D. alaskensis FDH showed the presence of signals associated with the different paramagnetic centers of D. alaskensis FDH. Three rhombic signals having g-values and relaxation behavior characteristic of [4Fe-4S] clusters were observed in the 5-40 K temperature range. Two EPR signals with all the g-values less than two, which accounted for less than 0.1 spin/protein, typical of mononuclear Mo(V) and W(V), respectively, were observed. The signal associated with the W(V) ion has a larger deviation from the free electron g-value, as expected for tungsten in a d(1) configuration, albeit with an unusual relaxation behavior. The EPR parameters of the Mo(V) signal are within the range of values typically found for the slow-type signal observed in several Mo-containing proteins belonging to the xanthine oxidase family of enzymes. Mo(V) resonances are split at temperatures below 50 K by magnetic coupling with one of the Fe/S clusters. The analysis of the inter-center magnetic interaction allowed us to assign the EPR-distinguishable iron-sulfur clusters with those seen in the crystal structure of a homologous enzyme.
- Hanzelmann P et al.
- Characterization of MOCS1A, an oxygen-sensitive iron-sulfur protein involved in human molybdenum cofactor biosynthesis.
- J Biol Chem. 2004; 279: 34721-32
- Display abstract
The human proteins MOCS1A and MOCS1B catalyze the conversion of a guanosine derivative to precursor Z during molybdenum cofactor biosynthesis. MOCS1A shares homology with S-adenosylmethionine (AdoMet)-dependent radical enzymes, which catalyze the formation of protein and/or substrate radicals by reductive cleavage of AdoMet through a [4Fe-4S] cluster. Sequence analysis of MOCS1A showed two highly conserved cysteine motifs, one near the N terminus and one near the C terminus. MOCS1A was heterologously expressed in Escherichia coli and purified under aerobic and anaerobic conditions. Individual mutations of the conserved cysteines to serine revealed that all are essential for synthesis of precursor Z in vivo. The type and properties of the iron-sulfur (FeS) clusters were investigated using a combination of UV-visible absorption, variable temperature magnetic circular dichroism, resonance Raman, Mossbauer, and EPR spectroscopies coupled with iron and acid-labile sulfide analyses. The results indicated that anaerobically purified MOCS1A is a monomeric protein containing two oxygen-sensitive FeS clusters, each coordinated by only three cysteine residues. A redox-active [4Fe-4S](2+,+) cluster is ligated by an N-terminal CX(3)CX(2)C motif as is the case with all other AdoMet-dependent radical enzymes investigated thus far. A C-terminal CX(2)CX(13)C motif that is unique to MOCS1A and its orthologs primarily ligates a [3Fe-4S](0) cluster. However, MOCS1A could be reconstituted in vitro under anaerobic conditions to yield a form containing two [4Fe-4S](2+) clusters. The N-terminal [4Fe-4S](2+) cluster was rapidly degraded by oxygen via a semistable [2Fe-2S](2+) cluster intermediate, and the C-terminal [4Fe-4S](2+) cluster was rapidly degraded by oxygen to yield a semistable [3Fe-4S](0) cluster intermediate.
- Joshi HK, Enemark JH
- Geometrical control of the active site electronic structure of pyranopterin enzymes by metal-dithiolate folding: aldehyde oxidase.
- J Am Chem Soc. 2004; 126: 11784-5
- Joshi HK, Cooney JJ, Inscore FE, Gruhn NE, Lichtenberger DL, Enemark JH
- Investigation of metal-dithiolate fold angle effects: implications for molybdenum and tungsten enzymes.
- Proc Natl Acad Sci U S A. 2003; 100: 3719-24
- Display abstract
Gas-phase photoelectron spectroscopy and density functional theory have been used to investigate the interactions between the sulfur pi-orbitals of arene dithiolates and high-valent transition metals as minimum molecular models of the active site features of pyranopterin MoW enzymes. The compounds (Tp*)MoO(bdt) (compound 1), Cp(2)Mo(bdt) (compound 2), and Cp(2)Ti(bdt) (compound 3) [where Tp* is hydrotris(3,5-dimethyl-1-pyrazolyl)borate, bdt is 1,2-benzenedithiolate, and Cp is eta(5)- cyclopentadienyl] provide access to three different electronic configurations of the metal, formally d(1), d(2), and d(0), respectively. The gas-phase photoelectron spectra show that ionizations from occupied metal and sulfur based valence orbitals are more clearly observed in compounds 2 and 3 than in compound 1. The observed ionization energies and characters compare very well with those calculated by density functional theory. A "dithiolate-folding-effect" involving an interaction of the metal in-plane and sulfur-pi orbitals is proposed to be a factor in the electron transfer reactions that regenerate the active sites of molybdenum and tungsten enzymes.
- Wahyudi AT, Takeyama H, Okamura Y, Fukuda Y, Matsunaga T
- Characterization of aldehyde ferredoxin oxidoreductase gene defective mutant in Magnetospirillum magneticum AMB-1.
- Biochem Biophys Res Commun. 2003; 303: 223-9
- Display abstract
A non-magnetic mutant of Magnetospirillum magneticum AMB-1, designated as NMA21, was generated by mini-Tn5 transposon mutagenesis to identify genes involved in bacterial magnetic particle (BMP) synthesis. Alignment of the DNA sequences flanking the transposon allowed the isolation of an open reading frame (ORF2) within an operon consisting of five genes. The amino acid sequence of ORF2 showed homology with tungsten-containing aldehyde ferredoxin oxidoreductase (AOR) from Pyrococcus furiosus (48% identity and 64% similarity), which functions for aldehyde oxidation. AOR was found to be expressed under microaerobic conditions and localized in the cytoplasm of AMB-1. Iron uptake and growth of NMA21 were lower than wild type. Transmission electron microscopy (TEM) of NMA21 revealed that no BMPs were completely synthesized, but polyhydroxybutyrate (PHB)-like granules were persistently produced. These results indicate that AOR may contribute to ferric iron reduction during BMP synthesis in M. magneticum AMB-1 under microaerobic respiration.
- Cacciapuoti G, Bertoldo C, Brio A, Zappia V, Porcelli M
- Purification and characterization of 5'-methylthioadenosine phosphorylase from the hyperthermophilic archaeon Pyrococcus furiosus: substrate specificity and primary structure analysis.
- Extremophiles. 2003; 7: 159-68
- Display abstract
5'-Methylthioadenosine phosphorylase (MTAP) was purified to homogeneity from the hyperthermophilic archaeon Pyrococcus furiosus. The protein is a homoexamer of 180 kDa. The enzyme is highly thermoactive, with an optimum temperature of 125 degrees C, and extremely thermostable, retaining 98% residual activity after 5 h at 100 degrees C and showing a half-life of 43 min at 130 degrees C. In the presence of 100 mM phosphate, the apparent T(m) (137 degrees C) increases to 139 degrees C. The enzyme is extremely stable to proteolytic cleavage and after incubation with protein denaturants, detergents, organic solvents, and salts even at high temperature. Thiol groups are not involved in the catalytic process, whereas disulfide bond(s) are present, since incubation with 0.8 M dithiothreitol significantly reduces the thermostability of the enzyme. N-Terminal sequence analysis of the purified enzyme is 100% identical to the predicted amino acid sequence of the gene PF0016 from the partially sequenced P. furiosus genome. The deduced amino acid sequence of the gene revealed a high degree of identity (52%) with human MTAP. Nevertheless, unlike human MTAP, MTAP from P. furiosus is not specific for 5'-methylthioadenosine, since it phosphorolytically cleaves adenosine, inosine, and guanosine. The calculated k(cat)/ K(m) values for 5'-methylthioadenosine and adenosine, about 20-fold higher than for inosine and guanosine, indicate that 6-amino purine nucleosides are preferred substrates of MTAP from P. furiosus. The structural features and the substrate specificity of MTAP from P. furiosus document that it represents a 5'-methylthioadenosine-metabolizing enzyme different from those previously characterized among Archaea, Bacteria, and Eukarya. The functional and structural relationships among MTAP from P. furiosus, human MTAP, and two putative MTAPs from P. furiosus and Sulfolobus solfataricus are discussed here for the first time.
- Prisner T, Lyubenova S, Atabay Y, MacMillan F, Kroger A, Klimmek O
- Multifrequency cw-EPR investigation of the catalytic molybdenum cofactor of polysulfide reductase from Wolinella succinogenes.
- J Biol Inorg Chem. 2003; 8: 419-26
- Display abstract
Electron paramagnetic resonance (EPR) spectra of the molybdenum centre in polysulfide reductase (Psr) from Wolinella succinogenes with unusually high G-tensor values have been observed for the first time. Three different Mo(V) states have been generated (by the addition of the substrate polysulfide and different redox agents) and analysed by their G- and hyperfine tensors using multifrequency (S-, X- and Q-band) cw-EPR spectroscopy. The unusually high G-tensor values are attributed to a large number of sulfur ligands. Four sulfur ligands are assumed to arise from two pterin cofactors; one additional sulfur ligand was identified from mutagenesis studies to be a cysteine residue of the protein backbone. One further sulfur ligand is proposed for two of the Mo(V) states, based on the experimentally observed shift of the g(av) value. This sixth sulfur ligand is postulated to belong to the polysulfide substrate consumed within the catalytic reaction cycle of the enzyme. The influence of the co-protein sulfur transferase on the Mo(V) G-tensor supports this assignment.
- Garattini E, Mendel R, Romao MJ, Wright R, Terao M
- Mammalian molybdo-flavoenzymes, an expanding family of proteins: structure, genetics, regulation, function and pathophysiology.
- Biochem J. 2003; 372: 15-32
- Display abstract
The molybdo-flavoenzymes are structurally related proteins that require a molybdopterin cofactor and FAD for their catalytic activity. In mammals, four enzymes are known: xanthine oxidoreductase, aldehyde oxidase and two recently described mouse proteins known as aldehyde oxidase homologue 1 and aldehyde oxidase homologue 2. The present review article summarizes current knowledge on the structure, enzymology, genetics, regulation and pathophysiology of mammalian molybdo-flavoenzymes. Molybdo-flavoenzymes are structurally complex oxidoreductases with an equally complex mechanism of catalysis. Our knowledge has greatly increased due to the recent crystallization of two xanthine oxidoreductases and the determination of the amino acid sequences of many members of the family. The evolution of molybdo-flavoenzymes can now be traced, given the availability of the structures of the corresponding genes in many organisms. The genes coding for molybdo-flavoenzymes are expressed in a cell-specific fashion and are controlled by endogenous and exogenous stimuli. The recent cloning of the genes involved in the biosynthesis of the molybdenum cofactor has increased our knowledge on the assembly of the apo-forms of molybdo-flavoproteins into the corresponding holo-forms. Xanthine oxidoreductase is the key enzyme in the catabolism of purines, although recent data suggest that the physiological function of this enzyme is more complex than previously assumed. The enzyme has been implicated in such diverse pathological situations as organ ischaemia, inflammation and infection. At present, very little is known about the pathophysiological relevance of aldehyde oxidase, aldehyde oxidase homologue 1 and aldehyde oxidase homologue 2, which do not as yet have an accepted endogenous substrate.
- Sapra R, Bagramyan K, Adams MW
- A simple energy-conserving system: proton reduction coupled to proton translocation.
- Proc Natl Acad Sci U S A. 2003; 100: 7545-50
- Display abstract
Oxidative phosphorylation involves the coupling of ATP synthesis to the proton-motive force that is generated typically by a series of membrane-bound electron transfer complexes, which ultimately reduce an exogenous terminal electron acceptor. This is not the case with Pyrococcus furiosus, an archaeon that grows optimally near 100 degrees C. It has an anaerobic respiratory system that consists of a single enzyme, a membrane-bound hydrogenase. Moreover, it does not require an added electron acceptor as the enzyme reduces protons, the simplest of acceptors, to hydrogen gas by using electrons from the cytoplasmic redox protein ferredoxin. It is demonstrated that the production of hydrogen gas by membrane vesicles of P. furiosus is directly coupled to the synthesis of ATP by means of a proton-motive force that has both electrochemical and pH components. Such a respiratory system enables rationalization in this organism of an unusual glycolytic pathway that was previously thought not to conserve energy. It is now clear that the use of ferredoxin in place of the expected NAD as the electron acceptor for glyceraldehyde 3-phosphate oxidation enables energy to be conserved by hydrogen production. In addition, this simple respiratory mechanism readily explains why the growth yields of P. furiosus are much higher than could be accounted for if ATP synthesis occurred only by substrate-level phosphorylation. The ability of microorganisms such as P. furiosus to couple hydrogen production to energy conservation has important ramifications not only in the evolution of respiratory systems but also in the origin of life itself.
- Sakuraba H, Ohshima T
- Novel energy metabolism in anaerobic hyperthermophilic archaea: a modified Embden-Meyerhof pathway.
- J Biosci Bioeng. 2002; 93: 441-8
- Display abstract
Hyperthermophiles, a group of microorganisms whose optimum growth temperatures are above 80 degrees C, have been isolated mainly from marine and continental volcanic environments. They are viewed as potential sources of extraordinarily stable biomolecules with applications in novel industrial processes. Most hyperthermophiles belong to the domain Archaea, the third domain of life, and are considered to be the most ancient of all extant life forms. Recent studies have revealed unusual energy metabolic processes in hyperthermophilic archaea, e.g. a modified Embden-Meyerhof pathway, that have not been observed so far in organisms belonging to the Bacteria and Eucarya domains. Several novel enzymes--ADP-dependent glucokinase, ADP-dependent phosphofruktokinase, glyceraldehyde-3-phosphate ferredoxin oxidoreductase, phosphoenolpyruvate synthase, pyruvate: ferredoxin oxidoreductase, and ADP-forming acetyl-CoA synthetase--have been found to be involved in the modified Embden-Meyerhof pathway of the hyperthermophilic archaeon Pyrococcus furiosus. In addition, a novel regulation site for energy metabolism and a unique mode of ATP regeneration have been postulated to exist in the pathway of P. furiosus. The metabolic design observed in this microorganism might reflect the situation at an early stage of evolution. This review focuses mainly on the unique energy metabolism and related enzymes of P. furiosus that have recently been described.
- Hille R
- Molybdenum and tungsten in biology.
- Trends Biochem Sci. 2002; 27: 360-7
- Display abstract
Molybdenum is the only second-row transition metal that is required by most living organisms, and the few species that do not require molybdenum use tungsten, which lies immediately below molybdenum in the periodic table. Because of their unique chemical versatility and unusually high bioavailability these two transition metals have been incorporated into the active sites of enzymes over the course of evolution. Enzymes that contain molybdenum or tungsten continue to be discovered and several crystal structures have become available recently. This new structural information has been complemented by spectroscopic and kinetic methods, as well as computational approaches. Together, these studies provide an increasingly detailed view of the reaction mechanisms and the correlation between the electronic structure of the active site and catalytic function, one of the fundamental goals in metallobiochemistry.
- Roy R, Adams MW
- Characterization of a fourth tungsten-containing enzyme from the hyperthermophilic archaeon Pyrococcus furiosus.
- J Bacteriol. 2002; 184: 6952-6
- Display abstract
Pyrococcus furiosus grows optimally near 100 degrees C using peptides and carbohydrates as carbon sources, and it reduces elemental sulfur (S(0)), if present, to H(2)S. Tungsten (W), an element rarely used in biology, is required for optimal growth, and three different tungsten-containing enzymes have been previously purified from this organism. They all oxidize aldehydes of various types and are thought to play primary roles in the catabolism of sugars or amino acids. Here, the purification of a fourth tungsten-containing enzyme, termed WOR 4, from cell extracts of P. furiosus grown with S(0) is described. This was achieved by monitoring through multiple chromatography steps the W that is not associated with the three characterized tungstoenzymes. The N-terminal sequence of WOR 4 and the approximate molecular weight of its subunit determined electrophoretically (69,000) correspond to the product of an ORF (PF1961, wor4) present in the complete genome sequence of P. furiosus. WOR 4 is a homodimer and contains approximately one W, three Fe, three or four acid-labile sulfide, and one Ca atom per subunit. The visible and electron paramagnetic resonance spectra of the oxidized and reduced enzyme indicate the presence of an unusual iron-sulfur chromophore. WOR 4 does not oxidize aliphatic or aromatic aldehydes or hydroxy acids, nor does it reduce keto acids. Consistent with prior microarray data, the protein could not be purified from P. furiosus cells grown in the absence of S(0), suggesting that it may have a role in S(0) metabolism.
- Lee MK, Gonzalez JM, Robb FT
- Extremely thermostable glutamate dehydrogenase (GDH) from the freshwater archaeon Thermococcus waiotapuensis: cloning and comparison with two marine hyperthermophilic GDHs.
- Extremophiles. 2002; 6: 151-9
- Display abstract
Glutamate dehydrogenases (GDHs) from fresh-water and marine hyperthermophilic Archaea were compared with respect to their responses to different salt concentrations. A gene encoding GDH from the terrestrial hyperthermophilic archaeon Thermococcus waiotapuensis (Twaio) was cloned, sequenced, and expressed at a high level in Escherichia coli. The deduced amino acid sequence, which consists of 418 amino acid residues, revealed a high degree of similarity with GDHs from related marine strains such as Thermococcus litoralis (Tl) and Pyrococcus furiosus (Pfu). Recombinant Twaio GDH was purified 27-fold to homogeneity. The enzyme is hexameric with a molecular weight of 259,000. The effects of several salts (KCl, CaCl, MgSO4), temperature, and pH on enzyme activity were determined and compared in three hyperthermophilic GDHs, including T. waiotapuensis, and GDHs from two marine species, T. litoralis and P. furiosus. Kinetic studies suggested a biosynthetic role for the nicotinamide adenine dinucleotide phosphate- (NADP-) specific Twaio GDH in the cell. Interestingly, Twaio GDH revealed no salt responses, whereas the two marine GDHs showed substantial enhancement of activity as well as thermostability at increasing salt concentrations. Because electrostatic interactions between charged amino acid residues are thought to be a key feature of structural integrity and thermostability in hyperthermophilic GDHs, salt availability and its effects on marine enzymes could partially explain a higher thermal stability in marine species than in phyletically related fresh-water species.
- McDevitt CA, Hugenholtz P, Hanson GR, McEwan AG
- Molecular analysis of dimethyl sulphide dehydrogenase from Rhodovulum sulfidophilum: its place in the dimethyl sulphoxide reductase family of microbial molybdopterin-containing enzymes.
- Mol Microbiol. 2002; 44: 1575-87
- Display abstract
Dimethyl sulphide dehydrogenase catalyses the oxidation of dimethyl sulphide to dimethyl sulphoxide (DMSO) during photoautotrophic growth of Rhodovulum sulfidophilum. Dimethyl sulphide dehydrogenase was shown to contain bis(molybdopterin guanine dinucleotide)Mo, the form of the pterin molybdenum cofactor unique to enzymes of the DMSO reductase family. Sequence analysis of the ddh gene cluster showed that the ddhA gene encodes a polypeptide with highest sequence similarity to the molybdopterin-containing subunits of selenate reductase, ethylbenzene dehydrogenase. These polypeptides form a distinct clade within the DMSO reductase family. Further sequence analysis of the ddh gene cluster identified three genes, ddhB, ddhD and ddhC. DdhB showed sequence homology to NarH, suggesting that it contains multiple iron-sulphur clusters. Analysis of the N-terminal signal sequence of DdhA suggests that it is secreted via the Tat secretory system in complex with DdhB, whereas DdhC is probably secreted via a Sec-dependent mechanism. Analysis of a ddhA mutant showed that dimethyl sulphide dehydrogenase was essential for photolithotrophic growth of Rv. sulfidophilum on dimethyl sulphide but not for chemo-trophic growth on the same substrate. Mutational analysis showed that cytochrome c2 mediated photosynthetic electron transfer from dimethyl sulphide dehydrogenase to the photochemical reaction centre, although this cytochrome was not essential for photoheterotrophic growth of the bacterium.
- Roy R, Adams MW
- Tungsten-dependent aldehyde oxidoreductase: a new family of enzymes containing the pterin cofactor.
- Met Ions Biol Syst. 2002; 39: 673-97
- Mendel RR, Hansch R
- Molybdoenzymes and molybdenum cofactor in plants.
- J Exp Bot. 2002; 53: 1689-98
- Display abstract
The transition element molybdenum (Mo) is essential for (nearly) all organisms and occurs in more than 40 enzymes catalysing diverse redox reactions, however, only four of them have been found in plants. (1) Nitrate reductase catalyses the key step in inorganic nitrogen assimilation, (2) aldehyde oxidase(s) have been shown to catalyse the last step in the biosynthesis of the phytohormone abscisic acid, (3) xanthine dehydrogenase is involved in purine catabolism and stress reactions, and (4) sulphite oxidase is probably involved in detoxifying excess sulphite. Among Mo-enzymes, the alignment of amino acid sequences permits domains that are well conserved to be defined. With the exception of bacterial nitrogenase, Mo-enzymes share a similar pterin compound at their catalytic sites, the molybdenum cofactor. Mo itself seems to be biologically inactive unless it is complexed by the cofactor. This molybdenum cofactor combines with diverse apoproteins where it is responsible for the correct anchoring and positioning of the Mo-centre within the holo-enzyme so that the Mo-centre can interact with other components of the enzyme's electron transport chain. A model for the three-step biosynthesis of Moco involving the complex interaction of six proteins will be described. A putative Moco-storage protein distributing Moco to the apoproteins of Mo-enzymes will be discussed. After insertion, xanthine dehydrogenase and aldehyde oxidase, but not nitrate reductase and sulphite oxidase, require the addition of a terminal sulphur ligand to their Mo-site, which is catalysed by the sulphur transferase ABA3.
- Tanaka N, Kusakabe Y, Ito K, Yoshimoto T, Nakamura KT
- Crystal structure of formaldehyde dehydrogenase from Pseudomonas putida: the structural origin of the tightly bound cofactor in nicotinoprotein dehydrogenases.
- J Mol Biol. 2002; 324: 519-33
- Display abstract
Formaldehyde dehydrogenase from Pseudomonas putida (PFDH) is a member of the zinc-containing medium-chain alcohol dehydrogenase family. The pyridine nucleotide NAD(H) in PFDH, which is distinct from the coenzyme (as cosubstrate) in typical alcohol dehydrogenases (ADHs), is tightly but not covalently bound to the protein and acts as a cofactor. PFDH can catalyze aldehyde dismutations without an external addition of NAD(H). The structural basis of the tightly bound cofactor of PFDH is unknown. The crystal structure of PFDH has been solved by the multiwavelength anomalous diffraction method using intrinsic zinc ions and has been refined at a 1.65 A resolution. The 170-kDa homotetrameric PFDH molecule shows 222 point group symmetry. Although the secondary structure arrangement and the binding mode of catalytic and structural zinc ions in PFDH are similar to those of typical ADHs, a number of loop structures that differ between PFDH and ADHs in their lengths and conformations are observed. A comparison of the present structure of PFDH with that of horse liver ADH, a typical example of an ADH, reveals that a long insertion loop of PFDH shields the adenine part of the bound NAD(+) molecule from the solvent, and a tight hydrogen bond network exists between the insertion loop and the adenine part of the cofactor, which is unique to PFDH. This insertion loop is conserved completely among the aldehyde-dismutating formaldehyde dehydrogenases, whereas it is replaced by a short turn among typical ADHs. Thus, the insertion loop specifically found among the aldehyde-dismutating formaldehyde dehydrogenases is responsible for the tight cofactor binding of these enzymes and explains why PFDH can effectively catalyze alternate oxidation and reduction of aldehydes without the release of cofactor molecule from the enzyme.
- Dobbek H, Gremer L, Kiefersauer R, Huber R, Meyer O
- Catalysis at a dinuclear [CuSMo(==O)OH] cluster in a CO dehydrogenase resolved at 1.1-A resolution.
- Proc Natl Acad Sci U S A. 2002; 99: 15971-6
- Display abstract
The CO dehydrogenase of the eubacterium Oligotropha carboxidovorans is a 277-kDa Mo- and Cu-containing iron-sulfur flavoprotein. Here, the enzyme's active site in the oxidized or reduced state, after inactivation with potassium cyanide or with n-butylisocyanide bound to the active site, has been reinvestigated by multiple wavelength anomalous dispersion measurements at atomic resolution, electron spin resonance spectroscopy, and chemical analyses. We present evidence for a dinuclear heterometal [CuSMoO)OH] cluster in the active site of the oxidized or reduced enzyme, which is prone to cyanolysis. The cluster is coordinated through interactions of the Mo with the dithiolate pyran ring of molybdopterin cytosine dinucleotide and of the Cu with the Sgamma of Cys-388, which is part of the active-site loop VAYRC(388)SFR. The previously reported active-site structure [Dobbek, H., Gremer, L., Meyer, O. & Huber, R. (1999) Proc. Natl. Acad. Sci. USA 96, 8884-8889] of an Mo with three oxygen ligands and an SeH-group bound to the Sgamma atom of Cys-388 could not be confirmed. The structure of CO dehydrogenase with the inhibitor n-butylisocyanide bound has led to a model for the catalytic mechanism of CO oxidation which involves a thiocarbonate-like intermediate state. The dinuclear [CuSMo(O)OH] cluster of CO dehydrogenase establishes a previously uncharacterized class of dinuclear molybdoenzymes containing the pterin cofactor.
- Schindelin H, Kisker C, Rajagopalan KV
- Molybdopterin from molybdenum and tungsten enzymes.
- Adv Protein Chem. 2001; 58: 47-94
- Lim BS, Holm RH
- Bis(dithiolene)molybdenum analogues relevant to the DMSO reductase enzyme family: synthesis, structures, and oxygen atom transfer reactions and kinetics.
- J Am Chem Soc. 2001; 123: 1920-30
- Display abstract
A series of dithiolene complexes of the general type [Mo(IV)(QR')(S(2)C(2)Me(2))(2)](1)(-) has been prepared and structurally characterized as possible structural and reactivity analogues of reduced sites of the enzymes DMSOR and TMAOR (QR' = PhO(-), 2-AdO(-), Pr(i)()O(-)), dissimilatory nitrate reductase (QR' = 2-AdS(-)), and formate dehydrogenase (QR' = 2-AdSe(-)). The complexes are square pyramidal with the molybdenum atom positioned 0.74-0.80 A above the S(4) mean plane toward axial ligand QR'. In part on the basis of a recent clarification of the active site of oxidized Rhodobacter sphaeroides DMSOR (Li, H.-K.; Temple, C.; Rajagopalan, K. V.; Schindelin, H. J. Am. Chem. Soc. 2000, 122, 7673), we have adopted the minimal reaction paradigm Mo(IV) + XO right arrow over left arrow Mo(VI)O + X involving desoxo Mo(IV), monooxo Mo(VI), and substrate/product XO/X for direct oxygen atom transfer of DMSOR and TMAOR enzymes. The [Mo(OR')(S(2)C(2)Me(2))(2)](1)(-) species carry dithiolene and anionic oxygen ligands intended to simulate cofactor ligand and serinate binding in DMSOR and TMAOR catalytic sites. In systems with N-oxide and S-oxide substrates, the observed overall reaction sequence is [Mo(IV)(OR')(S(2)C(2)Me(2))(2)](1)(-) + XO --> [Mo(VI)O(OR')(S(2)C(2)Me(2))(2)](1)(-) --> [Mo(V)O(S(2)C(2)Me(2))(2)](1)(-). Direct oxo transfer in the first step has been proven by isotope labeling. The reactivity of [Mo(OPh)(S(2)C(2)Me(2))(2)](1)(-) (1) has been the most extensively studied. In second-order reactions, 1 reduces DMSO and (CH(2))(4)SO (k(2) approximately 10(-)(6), 10(-)(4) M(-)(1) s(-)(1); DeltaS(double dagger) = -36, -39 eu) and Me(3)NO (k(2) = 200 M(-)(1) s(-)(1); DeltaS(double dagger) = -21 eu) in acetonitrile at 298 K. Activation entropies indicate an associative transition state, which from relative rates and substrate properties is inferred to be concerted with X-O bond weakening and Mo-O bond making. The Mo(VI)O product in the first step, such as [Mo(VI)O(OR')(S(2)C(2)Me(2))(2)](1)(-), is an intermediate in the overall reaction sequence, inasmuch as it is too unstable to isolate and decays by an internal redox process to a Mo(V)O product, liberating an equimolar quantity of phenol. This research affords the first analogue reaction systems of biological N-oxide and S-oxide substrates that are based on desoxo Mo(IV) complexes with biologically relevant coordination. Oxo-transfer reactions in analogue systems are substantially slower than enzyme systems based on a k(cat)/K(M) criterion. An interpretation of this behavior requires more information on the rate-limiting step(s) in enzyme catalytic cycles. (2-Ad = 2-adamantyl, DMSOR = dimethyl sulfoxide reductase, TMAOR = trimethylamine N-oxide reductase)
- Hansen T, Oehlmann M, Schonheit P
- Novel type of glucose-6-phosphate isomerase in the hyperthermophilic archaeon Pyrococcus furiosus.
- J Bacteriol. 2001; 183: 3428-35
- Display abstract
Glucose-6-phosphate isomerase (phosphoglucose isomerase [PGI]) (EC 5.3.1.9) from the hyperthermophilic archaeon Pyrococcus furiosus was purified 500-fold to homogeneity. The enzyme had an apparent molecular mass of 43 kDa and was composed of a single type of subunit of 23 kDa indicating a homodimeric (alpha(2)) structure. Kinetic constants of the enzyme were determined at the optimal pH 7 and at 80 degrees C. Rate dependence on both substrates followed Michaelis-Menten kinetics. The apparent K(m) values for glucose-6-phosphate and fructose-6-phosphate were 8.7 and 1.0 mM, respectively, and the corresponding apparent V(max) values were 800 and 130 U/mg. The enzyme had a temperature optimum of 96 degrees C and showed a significant thermostability up to 100 degrees C, which is in accordance with its physiological function under hyperthermophilic conditions. Based on the N-terminal amino acid sequence of the subunit, a single open reading frame (ORF; Pf_209264) was identified in the genome of P. furiosus. The ORF was characterized by functional overexpression in Escherichia coli as a gene, pgi, encoding glucose-6-phosphate isomerase. The recombinant PGI was purified and showed molecular and kinetic properties almost identical to those of the native PGI purified from P. furiosus. The deduced amino acid sequence of P. furiosus PGI did not reveal significant similarity to the conserved PGI superfamily of eubacteria and eucarya. This is the first description of an archaeal PGI, which represents a novel type of PGI.
- Rebelo JM, Dias JM, Huber R, Moura JJ, Romao MJ
- Structure refinement of the aldehyde oxidoreductase from Desulfovibrio gigas (MOP) at 1.28 A.
- J Biol Inorg Chem. 2001; 6: 791-800
- Display abstract
The sulfate-reducing bacterium aldehyde oxidoreductase from Desulfovibrio gigas (MOP) is a member of the xanthine oxidase family of enzymes. It has 907 residues on a single polypeptide chain, a molybdopterin cytosine dinucleotide (MCD) cofactor and two [2Fe-2S] iron-sulfur clusters. Synchrotron data to almost atomic resolution were collected for improved cryo-cooled crystals of this enzyme in the oxidized form. The cell constants of a=b=141.78 A and c=160.87 A are about 2% shorter than those of room temperature data, yielding 233,755 unique reflections in space group P6(1)22, at 1.28 A resolution. Throughout the entire refinement the full gradient least-squares method was used, leading to a final R factor of 14.5 and Rfree factor of 19.3 (4sigma cut-off) with "riding" H-atoms at their calculated positions. The model contains 8146 non-hydrogen atoms described by anisotropic displacement parameters with an observations/parameters ratio of 4.4. It includes alternate conformations for 17 amino acid residues. At 1.28 A resolution, three Cl- and two Mg2+ ions from the crystallization solution were clearly identified. With the exception of one Cl- which is buried and 8 A distant from the Mo atom, the other ions are close to the molecular surface and may contribute to crystal packing. The overall structure has not changed in comparison to the lower resolution model apart from local corrections that included some loop adjustments and alternate side-chain conformations. Based on the estimated errors of bond distances obtained by blocked least-squares matrix inversion, a more detailed analysis of the three redox centres was possible. For the MCD cofactor, the resulting geometric parameters confirmed its reduction state as a tetrahydropterin. At the Mo centre, estimated corrections calculated for the Fourier ripples artefact are very small when compared to the experimental associated errors, supporting the suggestion that the fifth ligand is a water molecule rather than a hydroxide. Concerning the two iron-sulfur centres, asymmetry in the Fe-S distances as well as differences in the pattern of NH.S hydrogen-bonding interactions was observed, which influences the electron distribution upon reduction and causes non-equivalence of the individual Fe atoms in each cluster.
- Johnson KE, Rajagopalan KV
- An active site tyrosine influences the ability of the dimethyl sulfoxide reductase family of molybdopterin enzymes to reduce S-oxides.
- J Biol Chem. 2001; 276: 13178-85
- Display abstract
Dimethyl sulfoxide reductase (DMSOR), trimethylamine-N-oxide reductase (TMAOR), and biotin sulfoxide reductase (BSOR) are members of a class of bacterial oxotransferases that contain the bis(molybdopterin guanine dinucleotide)molybdenum cofactor. The presence of a Tyr residue in the active site of DMSOR and BSOR that is missing in TMAOR has been implicated in the inability of TMAOR, unlike DMSOR and BSOR, to utilize S-oxides. To test this hypothesis, Escherichia coli TMAOR was cloned and expressed at high levels, and site-directed mutagenesis was utilized to generate the Tyr-114 --> Ala and Phe variants of Rhodobacter sphaeroides DMSOR and insert a Tyr residue into the equivalent position in TMAOR. Although all of the mutants turn over in a manner similar to their respective wild-type enzymes, mutation of Tyr-114 in DMSOR results in a decreased specificity for S-oxides and an increased specificity for trimethylamine-N-oxide (Me(3)NO), with a greater change observed for DMSOR-Y114A. Insertion of a Tyr into TMAOR results in a decreased preference for Me(3)NO relative to dimethyl sulfoxide. Kinetic analysis and UV-visible absorption spectra indicate that the ability of DMSOR to be reduced by dimethyl sulfide is lost upon mutation of Tyr-114 and that TMAOR does not exhibit this activity even in the Tyr insertion mutant.
- Story SV, Grunden AM, Adams MW
- Characterization of an aminoacylase from the hyperthermophilic archaeon Pyrococcus furiosus.
- J Bacteriol. 2001; 183: 4259-68
- Display abstract
Aminoacylase was identified in cell extracts of the hyperthermophilic archaeon Pyrococcus furiosus by its ability to hydrolyze N-acetyl-L-methionine and was purified by multistep chromatography. The enzyme is a homotetramer (42.06 kDa per subunit) and, as purified, contains 1.0 +/- 0.48 g-atoms of zinc per subunit. Treatment of the purified enzyme with EDTA resulted in complete loss of activity. This was restored to 86% of the original value (200 U/mg) by treatment with ZnCl(2) (and to 74% by the addition of CoCl(2)). After reconstitution with ZnCl(2), the enzyme contained 2.85 +/- 0.48 g-atoms of zinc per subunit. Aminoacylase showed broad substrate specificity and hydrolyzed nonpolar N-acylated L amino acids (Met, Ala, Val, and Leu), as well as N-formyl-L-methionine. The high K(m) values for these compounds indicate that the enzyme plays a role in the metabolism of protein growth substrates rather than in the degradation of cellular proteins. Maximal aminoacylase activity with N-acetyl-L-methionine as the substrate occurred at pH 6.5 and a temperature of 100 degrees C. The N-terminal amino acid sequence of the purified aminoacylase was used to identify, in the P. furiosus genome database, a gene that encodes 383 amino acids. The gene was cloned and expressed in Escherichia coli by using two approaches. One involved the T7 lac promoter system, in which the recombinant protein was expressed as inclusion bodies. The second approach used the Trx fusion system, and this produced soluble but inactive recombinant protein. Renaturation and reconstitution experiments with Zn(2+) ions failed to produce catalytically active protein. A survey of databases showed that, in general, organisms that contain a homolog of the P. furiosus aminoacylase (> or = 50% sequence identity) utilize peptide growth substrates, whereas those that do not contain the enzyme are not known to be proteolytic, suggesting a role for the enzyme in primary catabolism.
- Verhees CH, Huynen MA, Ward DE, Schiltz E, de Vos WM, van der Oost J
- The phosphoglucose isomerase from the hyperthermophilic archaeon Pyrococcus furiosus is a unique glycolytic enzyme that belongs to the cupin superfamily.
- J Biol Chem. 2001; 276: 40926-32
- Display abstract
Pyrococcus furiosus uses a variant of the Embden-Meyerhof pathway during growth on sugars. All but one of the genes that encode the glycolytic enzymes of P. furiosus have previously been identified, either by homology searching of its genome or by reversed genetics. We here report the isolation of the missing link of the pyrococcal glycolysis, the phosphoglucose isomerase (PGI), which was purified to homogeneity from P. furiosus and biochemically characterized. The P. furiosus PGI, a dimer of identical 23.5-kDa subunits, catalyzes the reversible isomerization of glucose 6-phosphate to fructose 6-phosphate, with K(m) values of 1.99 and 0.63 mm, respectively. An optimum pH of 7.0 has been determined in both directions, and at its optimum temperature of 90 degrees C the enzyme has a half-life of 2.4 h. The N-terminal sequence was used for the identification of the pgiA gene in the P. furiosus genome. The pgiA transcription start site has been determined, and a monocistronic messenger was detected in P. furiosus during growth on maltose and pyruvate. The pgiA gene was functionally expressed in Escherichia coli BL21(DE3). The deduced amino acid sequence of this first archaeal PGI revealed that it is not related to its bacterial and eukaryal counterparts. In contrast, this archaeal PGI shares similarity with the cupin superfamily that consists of a variety of proteins that are generally involved in sugar metabolism in both prokaryotes and eukaryotes. As for the P. furiosus PGI, distinct phylogenetic origins have previously been reported for other enzymes from the pyrococcal glycolytic pathway. Apparently, convergent evolution by recruitment of several unique enzymes has resulted in the unique Pyrococcus glycolysis.
- Sung KM, Holm RH
- Oxo transfer reactions mediated by bis(dithiolene)tungsten analogues of the active sites of molybdoenzymes in the DMSO reductase family: comparative reactivity of tungsten and molybdenum.
- J Am Chem Soc. 2001; 123: 1931-43
- Display abstract
The discovery of tungsten enzymes and molybdenum/tungsten isoenzymes, in which the mononuclear catalytic sites contain a metal chelated by one or two pterin-dithiolene cofactor ligands, has lent new significance to tungsten-dithiolene chemistry. Reaction of [W(CO)(2)(S(2)C(2)Me(2))(2)] with RO(-) affords a series of square pyramidal desoxo complexes [W(IV)(OR')(S(2)C(2)Me(2))(2)](1)(-), including R' = Ph (1) and Pr(i)() (3). Reaction of 1 and 3 with Me(3)NO gives the cis-octahedral complexes [W(VI)O(OR')(S(2)C(2)Me(2))(2)](1)(-), including R' = Ph (6) and Pr(i)() (8). These W(IV,VI) complexes are considered unconstrained versions of protein-bound sites of DMSOR and TMAOR (DMSOR = dimethylsulfoxide reductase, TMAOR = trimethylamine N-oxide reductase) members of the title enzyme family. The structure of 6 and the catalytic center of one DMSO reductase isoenzyme have similar overall stereochemistry and comparable bond lengths. The minimal oxo transfer reaction paradigm thought to apply to enzymes, W(IV) + XO --> W(VI)O + X, has been investigated. Direct oxo transfer was demonstrated by isotope transfer from Ph(2)Se(18)O. Complex 1 reacts cleanly and completely with various substrates XO to afford 6 and product X in second-order reactions with associative transition states. The substrate reactivity order with 1 is Me(3)NO > Ph(3)AsO > pyO (pyridine N-oxide) > R(2)SO >> Ph(3)PO. For reaction of 3 with Me(3)NO, k(2) = 0.93 M(-)(1) s(-)(1), and for 1 with Me(2)SO, k(2) = 3.9 x 10(-)(5) M(-)(1) s(-)(1); other rate constants and activation parameters are reported. These results demonstrate that bis(dithiolene)W(IV) complexes are competent to reduce both N-oxides and S-oxides; DMSORs reduce both substrate types, but TMAORs are reported to reduce only N-oxides. Comparison of k(cat)/K(M) data for isoenzymes and k(2) values for isostructural analogue complexes reveals that catalytic and stoichiometric oxo transfer, respectively, from substrate to metal is faster with tungsten and from metal to substrate is faster with molybdenum. These results constitute a kinetic metal effect in direct oxo transfer reactions for analogue complexes and for isoenzymes provided the catalytic sites are isostructural. The nature of the transition state in oxo transfer reactions of analogues is tentatively considered. This research presents the first kinetics study of substrate reduction via oxo transfer mediated by bis(dithiolene)tungsten complexes.
- Eilers T et al.
- Identification and biochemical characterization of Arabidopsis thaliana sulfite oxidase. A new player in plant sulfur metabolism.
- J Biol Chem. 2001; 276: 46989-94
- Display abstract
In mammals and birds, sulfite oxidase (SO) is a homodimeric molybdenum enzyme consisting of an N-terminal heme domain and a C-terminal molybdenum domain (EC ). In plants, the existence of SO has not yet been demonstrated, while sulfite reductase as part of sulfur assimilation is well characterized. Here we report the cloning of a plant sulfite oxidase gene from Arabidopsis thaliana and the biochemical characterization of the encoded protein (At-SO). At-SO is a molybdenum enzyme with molybdopterin as an organic component of the molybdenum cofactor. In contrast to homologous animal enzymes, At-SO lacks the heme domain, which is evident both from the amino acid sequence and from its enzymological and spectral properties. Thus, among eukaryotes, At-SO is the only molybdenum enzyme yet described possessing no redox-active centers other than the molybdenum. UV-visible and EPR spectra as well as apparent K(m) values are presented and compared with the hepatic enzyme. Subcellular analysis of crude cell extracts showed that SO was mostly found in the peroxisomal fraction. In molybdenum cofactor mutants, the activity of SO was strongly reduced. Using antibodies directed against At-SO, we show that a cross-reacting protein of similar size occurs in a wide range of plant species, including both herbacious and woody plants.
- Hagedoorn PL, van't Slot P, van Leeuwen HP, Hagen WR
- Electroanalytical determination of tungsten and molybdenum in proteins.
- Anal Biochem. 2001; 297: 71-8
- Display abstract
Recent crystal structure determinations accelerated the progress in the biochemistry of tungsten-containing enzymes. In order to characterize these enzymes, a sensitive determination of this metal in protein-containing samples is necessary. An electroanalytical tungsten determination has successfully been adapted to determine the tungsten and molybdenum content in enzymes. The tungsten and molybdenum content can be measured simultaneously from 1 to 10 microg of purified protein with little or no sample handling. More crude protein samples require precipitation of interfering surface active material with 10% perchloric acid. This method affords the isolation of novel molybdenum- and tungsten-containing proteins via molybdenum and tungsten monitoring of column fractions, without using radioactive isotopes. A screening of soluble proteins from Pyrococcus furiosus for tungsten, using anion-exchange column chromatography to separate the proteins, has been performed. The three known tungsten-containing enzymes from P. furiosus were recovered with this screening.
- Boll M et al.
- Redox centers of 4-hydroxybenzoyl-CoA reductase, a member of the xanthine oxidase family of molybdenum-containing enzymes.
- J Biol Chem. 2001; 276: 47853-62
- Display abstract
4-Hydroxybenzoyl-CoA reductase (4-HBCR) is a key enzyme in the anaerobic metabolism of phenolic compounds. It catalyzes the reductive removal of the hydroxyl group from the aromatic ring yielding benzoyl-CoA and water. The subunit architecture, amino acid sequence, and the cofactor/metal content indicate that it belongs to the xanthine oxidase (XO) family of molybdenum cofactor-containing enzymes. 4-HBCR is an unusual XO family member as it catalyzes the irreversible reduction of a CoA-thioester substrate. A radical mechanism has been proposed for the enzymatic removal of phenolic hydroxyl groups. In this work we studied the spectroscopic and electrochemical properties of 4-HBCR by EPR and Mossbauer spectroscopy and identified the pterin cofactor as molybdopterin mononucleotide. In addition to two different [2Fe-2S] clusters, one FAD and one molybdenum species per monomer, we also identified a [4Fe-4S] cluster/monomer, which is unique among members of the XO family. The reduced [4Fe-4S] cluster interacted magnetically with the Mo(V) species, suggesting that the centers are in close proximity, (<15 A apart). Additionally, reduction of the [4Fe-4S] cluster resulted in a loss of the EPR signals of the [2Fe-2S] clusters probably because of magnetic interactions between the Fe-S clusters as evidenced in power saturation studies. The Mo(V) EPR signals of 4-HBCR were typical for XO family members. Under steady-state conditions of substrate reduction, in the presence of excess dithionite, the [4Fe-4S] clusters were in the fully oxidized state while the [2Fe-2S] clusters remained reduced. The redox potentials of the redox cofactors were determined to be: [2Fe-2S](+1/+2) I, -205 mV; [2Fe-2S] (+1/+2) II, -255 mV; FAD/FADH( small middle dot)/FADH, -250 mV/-470 mV; [4Fe-4S](+1/+2), -465 mV and Mo(VI)/(V)/(VI), -380 mV/-500 mV. A catalytic cycle is proposed that takes into account the common properties of molybdenum cofactor enzymes and the special one-electron chemistry of dehydroxylation of phenolic compounds.
- Adams MW et al.
- Key role for sulfur in peptide metabolism and in regulation of three hydrogenases in the hyperthermophilic archaeon Pyrococcus furiosus.
- J Bacteriol. 2001; 183: 716-24
- Display abstract
The hyperthermophilic archaeon Pyrococcus furiosus grows optimally at 100 degrees C by the fermentation of peptides and carbohydrates. Growth of the organism was examined in media containing either maltose, peptides (hydrolyzed casein), or both as the carbon source(s), each with and without elemental sulfur (S(0)). Growth rates were highest on media containing peptides and S(0), with or without maltose. Growth did not occur on the peptide medium without S(0). S(0) had no effect on growth rates in the maltose medium in the absence of peptides. Phenylacetate production rates (from phenylalanine fermentation) from cells grown in the peptide medium containing S(0) with or without maltose were the same, suggesting that S(0) is required for peptide utilization. The activities of 14 of 21 enzymes involved in or related to the fermentation pathways of P. furiosus were shown to be regulated under the five different growth conditions studied. The presence of S(0) in the growth media resulted in decreases in specific activities of two cytoplasmic hydrogenases (I and II) and of a membrane-bound hydrogenase, each by an order of magnitude. The primary S(0)-reducing enzyme in this organism and the mechanism of the S(0) dependence of peptide metabolism are not known. This study provides the first evidence for a highly regulated fermentation-based metabolism in P. furiosus and a significant regulatory role for elemental sulfur or its metabolites.
- Imai T et al.
- Characterization and cloning of an extremely thermostable, Pyrococcus furiosus-type 4Fe ferredoxin from Thermococcus profundus.
- J Biochem (Tokyo). 2001; 130: 649-55
- Display abstract
An extremely thermostable [4Fe-4S] ferredoxin was isolated under anaerobic conditions from a hyperthermophilic archaeon Thermococcus profundus, and the ferredoxin gene was cloned and sequenced. The nucleotide sequence of the ferredoxin gene shows the ferredoxin to comprise 62 amino acid residues with a sequence similar to those of many bacterial and archaeal 4Fe (3Fe) ferredoxins. The unusual Fe-S cluster type, which was identified in the resonance Raman and EPR spectra, has three cysteines and one aspartate as the cluster ligands, as in the Pyrococcus furiosus 4Fe ferredoxin. Under aerobic conditions, a ferredoxin was purified that contains a [3Fe-4S] cluster as the major Fe-S cluster and a small amount of the [4Fe-4S] cluster. Its N-terminal amino acid sequence is the same as that of the anaerobically-purified ferredoxin up to the 26th residue. These results indicate that the 4Fe ferredoxin was degraded to 3Fe ferredoxin during aerobic purification. The aerobically-purified ferredoxin was reversibly converted back to the [4Fe-4S] ferredoxin by the addition of ferrous ions under reducing conditions. The anaerobically-purified [4Fe-4S] ferredoxin is quite stable; little degradtion was observed over 20 h at 100 degrees C, while the half-life of the aerobically-purified ferredoxin is 10 h at 100 degrees C. Both the anaerobically- and aerobically-purified ferredoxins were found to function as electron acceptors for the pyruvate-ferredoxin oxidoreductase purified from the same archaeon.
- Wuebbens MM, Liu MT, Rajagopalan K, Schindelin H
- Insights into molybdenum cofactor deficiency provided by the crystal structure of the molybdenum cofactor biosynthesis protein MoaC.
- Structure. 2000; 8: 709-18
- Display abstract
BACKGROUND: The molybdenum cofactor (Moco) is an essential component of a large family of enzymes involved in important transformations in carbon, nitrogen and sulfur metabolism. The Moco biosynthetic pathway is evolutionarily conserved and found in archaea, eubacteria and eukaryotes. In humans, genetic deficiencies of enzymes involved in this pathway trigger an autosomal recessive and usually deadly disease with severe neurological symptoms. The MoaC protein, together with the MoaA protein, is involved in the first step of Moco biosynthesis. RESULTS: MoaC from Escherichia coli has been expressed and purified to homogeneity and its crystal structure determined at 2 A resolution. The enzyme is organized into a tightly packed hexamer with 32 symmetry. The monomer consists of an antiparallel, four-stranded beta sheet packed against two long alpha helices, and its fold belongs to the ferredoxin-like family. Analysis of structural and biochemical data strongly suggests that the active site is located at the interface of two monomers in a pocket that contains several strictly conserved residues. CONCLUSIONS: Asp128 in the putative active site appears to be important for catalysis as its replacement with alanine almost completely abolishes protein activity. The structure of the Asp128-->Ala variant reveals substantial conformational changes in an adjacent loop. In the human MoaC ortholog, substitution of Thr182 with proline causes Moco deficiency, and the corresponding substitution in MoaC severely compromises activity. This residue is located near the N-terminal end of helix alpha4 at an interface between two monomers. The MoaC structure provides a framework for the analysis of additional dysfunctional mutations in the corresponding human gene.
- Hanzelmann P, Dobbek H, Gremer L, Huber R, Meyer O
- The effect of intracellular molybdenum in Hydrogenophaga pseudoflava on the crystallographic structure of the seleno-molybdo-iron-sulfur flavoenzyme carbon monoxide dehydrogenase.
- J Mol Biol. 2000; 301: 1221-35
- Display abstract
Crystal structures of carbon monoxide dehydrogenase (CODH), a seleno-molybdo-iron-sulfur flavoprotein from the aerobic carbon monoxide utilizing carboxidotrophic eubacterium Hydrogenophaga pseudoflava, have been determined from the enzyme synthesized at high (Mo(plus) CODH) and low intracellular molybdenum content (Mo(minus) CODH) at 2.25 A and 2.35 A resolution, respectively. The structures were solved by Patterson search methods utilizing the enzyme from Oligotropha carboxidovorans as the initial model. The CODHs from both sources are structurally very much conserved and show the same overall fold, architecture and arrangements of the molybdopterin-cytosine dinucleotide-type of molybdenum cofactor, the type I and type II [2Fe-2S] clusters and the flavin-adenine dinucleotide. Unlike the CODH from O. carboxidovorans, the enzyme from H. pseudoflava reveals a unique post-translationally modified C(gamma)-hydroxy-Arg384 residue which precedes the catalytically essential S-selanyl-Cys385 in the active-site loop. In addition, the Trp193 which shields the isoalloxazine ring of the flavin-adenine dinucleotide in the M subunit of the H. pseudoflava CODH is a Tyr193 in the O. carboxidovorans CODH. The hydrogen bonding interaction pattern of the molybdenum cofactor involves 27 hydrogen bonds with the surrounding protein. Of these, eight are with the cytosine moiety, eight with the pyrophosphate, six with the pyranopterin, and five with the ligands of the Mo ion. The structure of the catalytically inactive Mo(minus) CODH indicates that an intracellular Mo-deficiency affects exclusively the active site of the enzyme as an incomplete non-functional molybdenum cofactor was synthesized. The 5'-CDP residue was present in Mo(minus) CODH, whereas the Mo-pyranopterin moiety was absent. In Mo(plus) CODH the selenium faces the Mo ion and flips away from the Mo site in Mo(minus) CODH. The different side-chain conformations of the active-site residues S-selanyl-Cys385 and Glu757 in Mo(plus) and Mo(minus) CODH indicate a side-chain flexibility and a function of the Mo ion in the proper orientation of both residues.
- Anderson LA, McNairn E, Lubke T, Pau RN, Boxer DH
- ModE-dependent molybdate regulation of the molybdenum cofactor operon moa in Escherichia coli.
- J Bacteriol. 2000; 182: 7035-43
- Display abstract
The expression of the moa locus, which encodes enzymes required for molybdopterin biosynthesis, is enhanced under anaerobiosis but repressed when the bacterium is able to synthesize active molybdenum cofactor. In addition, moa expression exhibits a strong requirement for molybdate. The molybdate enhancement of moa transcription is fully dependent upon the molybdate-binding protein, ModE, which also mediates molybdate repression of the mod operon encoding the high-affinity molybdate uptake system. Due to the repression of moa in molybdenum cofactor-sufficient strains, the positive molybdate regulation of moa is revealed only in strains unable to make the active cofactor. Transcription of moa is controlled at two sigma-70-type promoters immediately upstream of the moaA gene. Deletion mutations covering the region upstream of moaA have allowed each of the promoters to be studied in isolation. The distal promoter is the site of the anaerobic enhancement which is Fnr-dependent. The molybdate induction of moa is exerted at the proximal promoter. Molybdate-ModE binds adjacent to the -35 region of this promoter, acting as a direct positive regulator of moa. The molybdenum cofactor repression also appears to act at the proximal transcriptional start site, but the mechanism remains to be established. Tungstate in the growth medium affects moa expression in two ways. Firstly, it can act as a functional molybdate analogue for the ModE-mediated regulation. Secondly, tungstate brings about the loss of the molybdenum cofactor repression of moa. It is proposed that the tungsten derivative of the molybdenum cofactor, which is known to be formed under such conditions, is ineffective in bringing about repression of moa. The complex control of moa is discussed in relation to the synthesis of molybdoenzymes in the bacterium.
- Hagen WR et al.
- Novel structure and redox chemistry of the prosthetic groups of the iron-sulfur flavoprotein sulfide dehydrogenase from Pyrococcus furiosus; evidence for a [2Fe-2S] cluster with Asp(Cys)3 ligands.
- J Biol Inorg Chem. 2000; 5: 527-34
- Display abstract
The consecutive structural genes for the iron-sulfur flavoenzyme sulfide dehydrogenase, sudB and sudA, have been identified in the genome of Pyrococcus furiosus. The translated sequences encode a heterodimeric protein with an alpha-subunit, SudA, of 52598 Da and a beta-subunit, SudB, of 30686 Da. The alpha-subunit carries a FAD, a putative nucleotide binding site for NADPH, and a [2Fe-2S]2+,+ prosthetic group. The latter exhibit EPR g-values, 2.035, 1.908, 1.786, and reduction potential, Em,8 = +80 mV, reminiscent of Rieske-type clusters; however, comparative sequence analysis indicates that this cluster is coordinated by a novel motif of one Asp and three Cys ligands. The motif is not only found in the genome of hyperthermophilic archaea and hyperthermophilic bacteria, but also in that of mesophilic Treponema pallidum. The beta-subunit of sulfide dehydrogenase contains another FAD, another putative binding site for NADPH, a [3Fe-4S]+,0 cluster, and a [4Fe-4S]2+,+ cluster. The 3Fe cluster has an unusually high reduction potential, Em,8 = +230 mV. The reduced 4Fe cluster exhibits a complex EPR signal, presumably resulting from magnetic interaction of its S = 1/2 spin with the S=2 spin of the reduced 3Fe cluster. The 4Fe cluster can be reduced with deazaflavin/EDTA/light but not with sodium dithionite; however, it is readily reduced with NADPH. SudA is highly homologous to KOD1-GO-GAT (or KOD1-GltA), a single-gene encoded protein in Pyrococcus kodakaraensis, which has been putatively identified as hyperthermophilic glutamate synthase. However, P. furiosus sulfide dehydrogenase does not have glutamate synthase activity. SudB is highly homologous to HydG, the gamma-subunit of P. furiosus NiFe hydrogenase. The latter enzyme also has sulfide dehydrogenase activity. The P. furiosus genome contains a second set of consecutive genes, sudY and sudX, with very high homology to the sudB and sudA genes, and possibly encoding a sulfide dehydrogenase isoenzyme. Each subunit of sulfide dehydrogenase is a primary structural paradigm for a different class of iron-sulfur flavoproteins.
- Lim BS, Donahue JP, Holm RH
- Synthesis and structures of bis(dithiolene)molybdenum complexes related to the active sites of the DMSO reductase enzyme family.
- Inorg Chem. 2000; 39: 263-73
- Display abstract
Structural analogues of the reduced (Mo(IV)) sites of members of the DMSO reductase family of molybdoenzymes are sought. These sites usually contain two pterin-dithiolene cofactor ligands and one protein-based ligand. Reaction of [Mo(MeCN)3(CO)3] and [Ni(S2C2R2)2] affords the trigonal prismatic complexes [Mo(CO)2(S2C2R2)2] (R = Me (1), Ph (2)), which by carbonyl substitution serve as useful precursors to a variety of bis(dithiolene)molybdenum-(IV,V) complexes. Reaction of 1 with Et4NOH yields [MoO(S2C2Me2)2]2- (3), which is readily oxidized to [MoO(S2C2Me2)2]1- (4). The hindered arene oxide ligands ArO- afford the square pyramidal complexes [Mo(OAr)(S2C2R2)2]1- (5, 6). The ligands PhQ- affordthe trigonal prismatic monocarbonyls [Mo(CO)(QPh)(S2C2Me2)2]1- (Q = S (8), Se (12)) while the bulky ligand ArS- forms square pyramidal [Mo(SAr)(S2C2R2)2]- (9, 10). In contrast, reactions with ArSe- result in [Mo(CO)(SeAr)(S2C2R2)2]1-(14, 15), which have not been successfully decarbonylated. Other compounds prepared by substitution reactions of 1 and 2 include the bridged dimers [Mo2(mu-Q)2(S2C2Me2)4]2- (Q = S (7), Se (11)) and [Mo2(mu-SePh)2(S2C2Ph2)4]2- (13). The complexes 1, 3-5, 7-10, 12-14, [Mo(S2C2Me2)3] (16), and [Mo(S2C2Me2)3]1- (17) were characterized by X-ray structure determinations. Certain complexes approach the binding arrangements in at least one DMSO reductase (5/6) and its Ser/Cys mutant, and in dissimilatory nitrate reductases (9/10). This investigation provides the initial demonstration of the new types of bis(dithiolene)molybdenum(IV) complexes available through [Mo(CO)2(S2C2R2)2] precursors, some of which will be utilized in reactivity studies. (Ar = 2,6-diisopropylphenyl or 2,4,6-triisopropylphenyl.)
- Stevenson CE, Sargent F, Buchanan G, Palmer T, Lawson DM
- Crystal structure of the molybdenum cofactor biosynthesis protein MobA from Escherichia coli at near-atomic resolution.
- Structure. 2000; 8: 1115-25
- Display abstract
BACKGROUND: All mononuclear molybdoenzymes bind molybdenum in a complex with an organic cofactor termed molybdopterin (MPT). In many bacteria, including Escherichia coli, molybdopterin can be further modified by attachment of a GMP group to the terminal phosphate of molybdopterin to form molybdopterin guanine dinucleotide (MGD). This modification reaction is required for the functioning of many bacterial molybdoenzymes, including the nitrate reductases, dimethylsulfoxide (DMSO) and trimethylamine-N-oxide (TMAO) reductases, and formate dehydrogenases. The GMP attachment step is catalyzed by the cellular enzyme MobA. RESULTS: The crystal structure of the 21.6 kDa E. coli MobA has been determined by MAD phasing with selenomethionine-substituted protein and subsequently refined at 1. 35 A resolution against native data. The structure consists of a central, predominantly parallel beta sheet sandwiched between two layers of alpha helices and resembles the dinucleotide binding Rossmann fold. One face of the molecule bears a wide depression that is lined by a number of strictly conserved residues, and this feature suggests that this is where substrate binding and catalysis take place. CONCLUSIONS: Through comparisons with a number of structural homologs, we have assigned plausible functions to several of the residues that line the substrate binding pocket. The enzymatic mechanism probably proceeds via a nucleophilic attack by MPT on the GMP donor, most likely GTP, to produce MGD and pyrophosphate. By analogy with related enzymes, this process is likely to require magnesium ions.
- Charron C et al.
- The crystal structure of d-glyceraldehyde-3-phosphate dehydrogenase from the hyperthermophilic archaeon Methanothermus fervidus in the presence of NADP(+) at 2.1 A resolution.
- J Mol Biol. 2000; 297: 481-500
- Display abstract
The crystal structure of the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) from the archaeon Methanothermus fervidus has been solved in the holo form at 2.1 A resolution by molecular replacement. Unlike bacterial and eukaryotic homologous enzymes which are strictly NAD(+)-dependent, GAPDH from this organism exhibits a dual-cofactor specificity, with a marked preference for NADP(+) over NAD(+). The present structure is the first archaeal GAPDH crystallized with NADP(+). GAPDH from M. fervidus adopts a homotetrameric quaternary structure which is topologically similar to that observed for its bacterial and eukaryotic counterparts. Within the cofactor-binding site, the positively charged side-chain of Lys33 decisively contributes to NADP(+) recognition through a tight electrostatic interaction with the adenosine 2'-phosphate group. Like other GAPDHs, GAPDH from archaeal sources binds the nicotinamide moiety of NADP(+) in a syn conformation with respect to the adjacent ribose and so belongs to the B-stereospecific class of oxidoreductases. Stabilization of the syn conformation is principally achieved through hydrogen bonding of the carboxamide group with the side-chain of Asp171, a structural feature clearly different from what is observed in all presently known GAPDHs from bacteria and eukaryotes. Within the catalytic site, the reported crystal structure definitively confirms the essential role previously assigned to Cys140 by site-directed mutagenesis studies. In conjunction with new mutation results reported in this paper, inspection of the crystal structure gives reliable evidence for the direct implication of the side-chain of His219 in the catalytic mechanism. M. fervidus grows optimally at 84 degrees C with a maximal growth temperature of 97 degrees C. The paper includes a detailed comparison of the present structure with four other homologous enzymes extracted from mesophilic as well as thermophilic organisms. Among the various phenomena related to protein thermostabilization, reinforcement of electrostatic and hydrophobic interactions as well as a more efficient molecular packing appear to be essentially promoted by the occurrence of two additional alpha-helices in the archaeal GAPDHs. The first one, named alpha4, is located in the catalytic domain and participates in the enzyme architecture at the quaternary structural level. The second one, named alphaJ, occurs at the C terminus and contributes to the molecular packing within each monomer by filling a peripherical pocket in the tetrameric assembly.
- Bray RC, Adams B, Smith AT, Bennett B, Bailey S
- Reversible dissociation of thiolate ligands from molybdenum in an enzyme of the dimethyl sulfoxide reductase family.
- Biochemistry. 2000; 39: 11258-69
- Display abstract
Much is unknown concerning the role of thiolate ligands of molybdenum in molybdopterin enzymes. It has been suggested that thiolate dissociation from molybdenum is part of the catalytic mechanism of bis-molybdopterin enzymes of the dimethyl sulfoxide reductase (DMSOR) family. For DMSOR from Rhodobacter capsulatus, thiolate dissociation has therefore been investigated crystallographically, by UV/visible spectroscopy, and by enzyme assays. When crystallized from sodium citrate, all four thiolates of DMSOR are within bonding distance of Mo, but after extended exposure to Na(+)-Hepes, a pair of thiolates dissociates, a mixture of structures being indicated after shorter exposures to this buffer. DMSOR is stable in sodium citrate and other buffers but unstable aerobically although not anaerobically in Na(+)-Hepes. Aerobically in Na(+)-Hepes, a first-order reaction (k = 0.032 hr(-)(1) at 37 degrees C) leads to loss of activity in the backward but not the forward (dimethyl sulfoxide reduction) assay and loss of absorption at lambda > approximately 450 nm. This reaction can be reversed by a cycle of reduction and reoxidation ("redox-cycling"). Slower irreversible loss of activity in the forward assay and cofactor dissociation follow. Spectral analogy with a mono-molybdopterin enzyme supports the conclusion that in the Hepes-modified DMSOR form, only two cofactor dithiolene sulfur atoms are coordinated to molybdenum. Loss of activity provides the first clear evidence that sulfur ligand dissociation is an artifact, not part of the catalytic cycle. Clearly, structural data on DMSOR samples extensively exposed to Hepes is not directly relevant to the native enzyme. The nature of the oxygen ligands detected crystallographically is discussed, as is the specificity of Hepes and the mechanism whereby its effects are achieved. DMSOR forms complexes with Na(+)-Hepes and other buffer ions. For DMSOR crystallized from Hepes, electron density in the substrate binding channel suggests that buffers bind in this site. Like the as-prepared enzyme, the modified form (DMSOR(mod)D), known to arise on extended aerobic exposure to dimethyl sulfide, is susceptible to a further degradative reaction, although this is not buffer-dependent. It involves loss of absorption at lambda > approximately 450 nm and, presumably, dissociation of thiolate ligands. Evidence is presented that, as a result of O(2) damage, DMSOR samples not submitted to redox-cycling may be contaminated with DMSOR(mod)D and with material absorbing in the region of 400 nm, analogous to the Hepes-modified enzyme. Since the latter lacks absorption at lambda > approximately 450 nm, its presence may escape detection.
- Rebelo J et al.
- Gene sequence and crystal structure of the aldehyde oxidoreductase from Desulfovibrio desulfuricans ATCC 27774.
- J Mol Biol. 2000; 297: 135-46
- Display abstract
The aldehyde oxidoreductase (MOD) isolated from the sulfate reducer Desulfovibrio desulfuricans (ATCC 27774) is a member of the xanthine oxidase family of molybdenum-containing enzymes. It has substrate specificity similar to that of the homologous enzyme from Desulfovibrio gigas (MOP) and the primary sequences from both enzymes show 68 % identity. The enzyme was crystallized in space group P6(1)22, with unit cell dimensions of a=b=156.4 A and c=177.1 A, and diffraction data were obtained to beyond 2.8 A. The crystal structure was solved by Patterson search techniques using the coordinates of the D. gigas enzyme. The overall fold of the D. desulfuricans enzyme is very similar to MOP and the few differences are mapped to exposed regions of the molecule. This is reflected in the electrostatic potential surfaces of both homologous enzymes, one exception being the surface potential in a region identifiable as the putative docking site of the physiological electron acceptor. Other essential features of the MOP structure, such as residues of the active-site cavity, are basically conserved in MOD. Two mutations are located in the pocket bearing a chain of catalytically relevant water molecules.As deduced from this work, both these enzymes are very closely related in terms of their sequences as well as 3D structures. The comparison allowed confirmation and establishment of features that are essential for their function; namely, conserved residues in the active-site, catalytically relevant water molecules and recognition of the physiological electron acceptor docking site.
- Stewart LJ, Bailey S, Bennett B, Charnock JM, Garner CD, McAlpine AS
- Dimethylsulfoxide reductase: an enzyme capable of catalysis with either molybdenum or tungsten at the active site.
- J Mol Biol. 2000; 299: 593-600
- Display abstract
DMSO reductase (DMSOR) from Rhodobacter capsulatus, well-characterised as a molybdoenzyme, will bind tungsten. Protein crystallography has shown that tungsten in W-DMSOR is ligated by the dithiolene group of the two pyranopterins, the oxygen atom of Ser147 plus another oxygen atom, and is located in a very similar site to that of molybdenum in Mo-DMSOR. These conclusions are consistent with W L(III)-edge X-ray absorption, EPR and UV/visible spectroscopic data. W-DMSOR is significantly more active than Mo-DMSOR in catalysing the reduction of DMSO but, in contrast to the latter, shows no significant ability to catalyse the oxidation of DMS.
- Amrani L, Primus J, Glatigny A, Arcangeli L, Scazzocchio C, Finnerty V
- Comparison of the sequences of the Aspergillus nidulans hxB and Drosophila melanogaster ma-l genes with nifS from Azotobacter vinelandii suggests a mechanism for the insertion of the terminal sulphur atom in the molybdopterin cofactor.
- Mol Microbiol. 2000; 38: 114-25
- Display abstract
The molybdopterin cofactor (MoCF) is required for the activity of a variety of oxidoreductases. The xanthine oxidase class of molybdoenzymes requires the MoCF to have a terminal, cyanolysable sulphur ligand. In the sulphite oxidase/nitrate reductase class, an oxygen is present in the same position. Mutations in both the ma-l gene of Drosophila melanogaster and the hxB gene of Aspergillus nidulans result in loss of activities of all molybdoenzymes that necessitate a cyanolysable sulphur in the active centre. The ma-l and hxB genes encode highly similar proteins containing domains common to pyridoxal phosphate-dependent cysteine transulphurases, including the cofactor binding site and a conserved cysteine, which is the putative sulphur donor. Key similarities were found with NifS, the enzyme involved in the generation of the iron-sulphur centres in nitrogenase. These similarities suggest an analogous mechanism for the generation of the terminal molybdenum-bound sulphur ligand. We have identified putative homologues of these genes in a variety of organisms, including humans. The human homologue is located in chromosome 18.q12.
- Thapper A, Lorber C, Fryxelius J, Behrens A, Nordlander E
- Synthesis and reactivity studies of model complexes for molybdopterin-dependent enzymes.
- J Inorg Biochem. 2000; 79: 67-74
- Display abstract
The molybdenum cofactor (Moco)-containing enzymes are divided into three classes that are named after prototypical members of each family, viz. sulfite oxidase, DMSO reductase and xanthine oxidase. Functional or structural models have been prepared for these three prototypical enzymes: (i) The complex [MoO2(mnt)2]2- (mnt2- = 1,2-dicyanoethylenedithiolate) has been found to be able to oxidize hydrogen sulfite to HSO4- and is thus a functional model of sulfite oxidase. Kinetic and computational studies indicate that the reaction proceeds via attack of the substrate at one of the oxo ligands of the complex, rather than at the metal. (ii) The coordination geometries of the mono-oxo [Mo(VI)(O-Ser)(S2)2] entity (S2 = dithiolene moiety of molybdopterin) found in the crystal structure of R. sphaeroides DMSO reductase and the corresponding des-oxo Mo(IV) unit have been reproduced in the complexes [M(VI)O(OSiR3)(bdt)2] and [M(VI)O(OSiR3)(bdt)2] (M = Mo,W; bdt = benzene dithiolate). (iii) A facile route has been developed for the preparation of complexes containing a cis-Mo(VI)OS molybdenum oxo, sulfido moiety similar to that detected in the oxidized form of xanthine oxidase.
- Sapra R, Verhagen MF, Adams MW
- Purification and characterization of a membrane-bound hydrogenase from the hyperthermophilic archaeon Pyrococcus furiosus.
- J Bacteriol. 2000; 182: 3423-8
- Display abstract
Highly washed membrane preparations from cells of the hyperthermophilic archaeon Pyrococcus furiosus contain high hydrogenase activity (9.4 micromol of H(2) evolved/mg at 80 degrees C) using reduced methyl viologen as the electron donor. The enzyme was solubilized with n-dodecyl-beta-D-maltoside and purified by multistep chromatography in the presence of Triton X-100. The purified preparation contained two major proteins (alpha and beta) in an approximate 1:1 ratio with a minimum molecular mass near 65 kDa and contained approximately 1 Ni and 4 Fe atoms/mol. The reduced enzyme gave rise to an electron paramagnetic resonance signal typical of the so-called Ni-C center of mesophilic NiFe-hydrogenases. Neither highly washed membranes nor the purified enzyme used NAD(P)(H) or P. furiosus ferredoxin as an electron carrier, nor did either catalyze the reduction of elemental sulfur with H(2) as the electron donor. Using N-terminal amino acid sequence information, the genes proposed to encode the alpha and beta subunits were located in the genome database within a putative 14-gene operon (termed mbh). The deduced sequences of the two subunits (Mbh 11 and 12) were distinctly different from those of the four subunits that comprise each of the two cytoplasmic NiFe-hydrogenases of P. furiosus and show that the alpha subunit contains the NiFe-catalytic site. Six of the open reading frames (ORFs) in the operon, including those encoding the alpha and beta subunits, show high sequence similarity (>30% identity) with proteins associated with the membrane-bound NiFe-hydrogenase complexes from Methanosarcina barkeri, Escherichia coli, and Rhodospirillum rubrum. The remaining eight ORFs encode small (<19-kDa) hypothetical proteins. These data suggest that P. furiosus, which was thought to be solely a fermentative organism, may contain a previously unrecognized respiratory system in which H(2) metabolism is coupled to energy conservation.
- Ramon-Maiques S, Marina A, Uriarte M, Fita I, Rubio V
- The 1.5 A resolution crystal structure of the carbamate kinase-like carbamoyl phosphate synthetase from the hyperthermophilic Archaeon pyrococcus furiosus, bound to ADP, confirms that this thermostable enzyme is a carbamate kinase, and provides insight into substrate binding and stability in carbamate kinases.
- J Mol Biol. 2000; 299: 463-76
- Display abstract
Carbamoyl phosphate (CP), an essential precursor of arginine and the pyrimidine bases, is synthesized by CP synthetase (CPS) in three steps. The last step, the phosphorylation of carbamate, is also catalyzed by carbamate kinase (CK), an enzyme used by microorganisms to produce ATP from ADP and CP. Although the recently determined structures of CPS and CK show no obvious mutual similarities, a CK-like CPS reported in hyperthermophilic archaea was postulated to be a missing link in the evolution of CP biosynthesis. The 1.5 A resolution structure of this enzyme from Pyrococcus furiosus shows both a subunit topology and a homodimeric molecular organization, with a 16-stranded open beta-sheet core surrounded by alpha-helices, similar to those in CK. However, the pyrococcal enzyme exhibits many solvent-accessible ion-pairs, an extensive, strongly hydrophobic, intersubunit surface, and presents a bound ADP molecule, which does not dissociate at 22 degrees C from the enzyme. The ADP nucleotide is sequestered in a ridge formed over the C-edge of the core sheet, at the bottom of a large cavity, with the purine ring enclosed in a pocket specific for adenine. Overall, the enzyme structure is ill-suited for catalyzing the characteristic three-step reaction of CPS and supports the view that the CK-like CPS is in fact a highly thermostable and very slow (at 37 degrees C) CK that, in the extreme environment of P. furiosus, may have the new function of making, rather than using, CP. The thermostability of the enzyme may result from the extension of the hydrophobic intersubunit contacts and from the large number of exposed ion-pairs, some of which form ion-pair networks across several secondary structure elements in each enzyme subunit. The structure provides the first information on substrate binding and catalysis in CKs, and suggests that the slow rate at 37 degrees C is possibly a consequence of slow product dissociation.
- Ward DE, Kengen SW, van Der Oost J, de Vos WM
- Purification and characterization of the alanine aminotransferase from the hyperthermophilic Archaeon pyrococcus furiosus and its role in alanine production.
- J Bacteriol. 2000; 182: 2559-66
- Display abstract
Alanine aminotransferase (AlaAT) was purified from cell extracts of the hyperthermophilic archaeon Pyrococcus furiosus by multistep chromatography. The enzyme has an apparent molecular mass of 93.5 kDa, as estimated by gel filtration, and consists of two identical subunits of 46 kDa, as deduced by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and the gene sequence. The AlaAT displayed a broader substrate specificity than AlaATs from eukaryal sources and exhibited significant activity with alanine, glutamate, and aspartate with either 2-oxoglutarate or pyruvate as the amino acceptor. Optimal activity was found in the pH range of 6. 5 to 7.8 and at a temperature of over 95 degrees C. The N-terminal amino acid sequence of the purified AlaAT was determined and enabled the identification of the gene encoding AlaAT (aat) in the P. furiosus genome database. The gene was expressed in Escherichia coli, and the recombinant enzyme was purified. The pH and temperature dependence, molecular mass, and kinetic parameters of the recombinant were indistinguishable from those of the native enzyme from P. furiosus. The k(cat)/K(m) values for alanine and pyruvate formation were 41 and 33 s(-1) mM(-1), respectively, suggesting that the enzyme is not biased toward either the formation of pyruvate, or alanine. Northern analysis identified a single 1.2-kb transcript for the aat gene. In addition, both the aat and gdh (encoding the glutamate dehydrogenase) transcripts appear to be coregulated at the transcriptional level, because the expression of both genes was induced when the cells were grown on pyruvate. The coordinated control found for the aat and gdh genes is in good agreement with these enzymes acting in a concerted manner to form an electron sink in P. furiosus.
- Kuper J, Palmer T, Mendel RR, Schwarz G
- Mutations in the molybdenum cofactor biosynthetic protein Cnx1G from Arabidopsis thaliana define functions for molybdopterin binding, molybdenum insertion, and molybdenum cofactor stabilization.
- Proc Natl Acad Sci U S A. 2000; 97: 6475-80
- Display abstract
The molybdenum cofactor (Moco), a highly conserved pterin compound coordinating molybdenum (Mo), is required for the enzymatic activities of molybdoenzymes. In all organisms studied so far Moco is synthesized by a unique and evolutionary old multistep pathway that requires the activities of at least six gene products. In eukaryotes, the last step of Moco synthesis, i.e., transfer and insertion of Mo into molybdopterin (MPT), is catalyzed by the two-domain proteins Cnx1 in plants and gephyrin in mammals. Both domains (E and G) of these proteins are able to bind MPT in vitro. Here, we show the identification and mutational dissection of functionally important regions within the Cnx1 G domain that are essential for MPT binding, the conversion of MPT to Moco, and Moco stabilization. By functional screening for mutants in the Cnx1 G domain that are no longer able to complement Escherichia coli mogA mutants, we found two classes of mutations in highly conserved amino acid residues. (i) The first class affects in vitro binding of MPT to the protein and the stabilization of Moco, the product of the G domain. (ii) The second class is represented by two independent mutations in the aspartate 515 position that is not affected in MPT binding and Moco stabilization; rather the conversion of MPT to Moco by using bound MPT and a yet unknown form of Mo is completely abolished. The results presented here provide biochemical evidence for a purified Cnx1 G domain catalyzing the insertion of Mo into MPT.
- Nishino T, Okamoto K
- The role of the [2Fe-2s] cluster centers in xanthine oxidoreductase.
- J Inorg Biochem. 2000; 82: 43-9
- Display abstract
Xanthine oxidoreductases (XOR), xanthine dehydrogenase (XDH, EC1.1.1.204) and xanthine oxidase (XO, EC1.2.3.2), are the best-studied molybdenum-containing iron-sulfur flavoproteins. The mammalian enzymes exist originally as the dehydrogenase form (XDH) but can be converted to the oxidase form (XO) either reversibly by oxidation of sulfhydryl residues of the protein molecule or irreversibly by proteolysis. The active form of the enzyme is a homodimer of molecular mass 290 kDa. Each subunit contains one molybdopterin group, two non-identical [2Fe-2S] centers, and one flavin adenine dinucleotide (FAD) cofactor. This review focuses mainly on the role of the two iron-sulfur centers in catalysis, as recently elucidated by means of X-ray crystal structure and site-directed mutagenesis studies. The arrangements of cofactors indicate that the two iron-sulfur centers provide an electron transfer pathway from molybdenum to FAD. However, kinetic and thermodynamic studies suggest that these two iron-sulfur centers have roles not only in the pathway of electron flow, but also as an electron sink to provide electrons to the FAD center so that the reactivity of FAD with the electron acceptor substrate might be thermodynamically controlled by way of one-electron-reduced or fully reduced state.
- Dhawan IK, Roy R, Koehler BP, Mukund S, Adams MW, Johnson MK
- Spectroscopic studies of the tungsten-containing formaldehyde ferredoxin oxidoreductase from the hyperthermophilic archaeon Thermococcus litoralis.
- J Biol Inorg Chem. 2000; 5: 313-27
- Display abstract
The electronic and redox properties of the iron-sulfur cluster and tungsten center in the as-isolated and sulfide-activated forms of formaldehyde ferredoxin oxidoreductase (FOR) from Thermococcus litoralis (Tl) have been investigated by using the combination of EPR and variable-temperature magnetic circular dichroism (VTMCD) spectroscopies. The results reveal a [Fe4S4]2+,+ cluster (Em=-368mV) that undergoes redox cycling between an oxidized form with an S=0 ground state and a reduced form that exists as a pH- and medium-dependent mixture of S=3/2 (g=5.4; E/D=0.33) and S=1/2 (g=2.03, 1.93, 1.86) ground states, with the former dominating in the presence of 50% (v/v) glycerol. Three distinct types of W(V) EPR signals have been observed during dye-mediated redox titration of as-isolated Tl FOR. The initial resonance observed upon oxidation, termed the "low-potential" W(V) species (g=1.977, 1.898, 1.843), corresponds to approximately 25-30% of the total W and undergoes redox cycling between W(IV)/ W(V) and W(V)/W(VI) states at physiologically relevant potentials (Em= -335 and -280 mV, respectively). At higher potentials a minor "mid-potential" W(V) species, g= 1.983, 1.956, 1.932, accounting for less than 5 % of the total W, appears with a midpoint potential of -34 mV and persists up to at least + 300 mV. At potentials above 0 mV, a major "high-potential" W(V) signal, g= 1.981, 1.956, 1.883, accounting for 30-40% of the total W, appears at a midpoint potential of +184 mV. As-isolated samples of Tl FOR were found to undergo an approximately 8-fold enhancement in activity on incubation with excess Na2S under reducing conditions and the sulfide-activated Tl FOR was partially inactivated by cyanide. The spectroscopic and redox properties of the sulfide-activated Tl FOR are quite distinct from those of the as-isolated enzyme, with loss of the low-potential species and changes in both the mid-potential W(V) species (g= 1.981, 1.950, 1.931; Em = -265 mV) and high-potential W(V) species (g=1.981, 1.952, 1.895; Em = +65 mV). Taken together, the W(V) species in sulfide-activated samples of Tl FOR maximally account for only 15% of the total W. Both types of high-potential W(V) species were lost upon incubation with cyanide and the sulfide-activated high-potential species is converted into the as-isolated high-potential species upon exposure to air. Structural models are proposed for each of the observed W(V) species and both types of mid-potential and high-potential species are proposed to be artifacts of ligand-based oxidation of W(VI) species. A W(VI) species with terminal sulfido or thiol ligands is proposed to be responsible for the catalytic activity in sulfide-activated samples of Tl FOR.
- Ma K, Weiss R, Adams MW
- Characterization of hydrogenase II from the hyperthermophilic archaeon Pyrococcus furiosus and assessment of its role in sulfur reduction.
- J Bacteriol. 2000; 182: 1864-71
- Display abstract
The fermentative hyperthermophile Pyrococcus furiosus contains an NADPH-utilizing, heterotetrameric (alphabetagammadelta), cytoplasmic hydrogenase (hydrogenase I) that catalyzes both H(2) production and the reduction of elemental sulfur to H(2)S. Herein is described the purification of a second enzyme of this type, hydrogenase II, from the same organism. Hydrogenase II has an M(r) of 320,000 +/- 20,000 and contains four different subunits with M(r)s of 52,000 (alpha), 39,000 (beta), 30,000 (gamma), and 24,000 (delta). The heterotetramer contained Ni (0.9 +/- 0.1 atom/mol), Fe (21 +/- 1.6 atoms/mol), and flavin adenine dinucleotide (FAD) (0.83 +/- 0.1 mol/mol). NADPH and NADH were equally efficient as electron donors for H(2) production with K(m) values near 70 microM and k(cat)/K(m) values near 350 min(-1) mM(-1). In contrast to hydrogenase I, hydrogenase II catalyzed the H(2)-dependent reduction of NAD (K(m), 128 microM; k(cat)/K(m), 770 min(-1) mM(-1)). Ferredoxin from P. furiosus was not an efficient electron carrier for either enzyme. Both H(2) and NADPH served as electron donors for the reduction of elemental sulfur (S(0)) and polysulfide by hydrogenase I and hydrogenase II, and both enzymes preferentially reduce polysulfide to sulfide rather than protons to H(2) using NADPH as the electron donor. At least two [4Fe-4S] and one [2Fe-2S] cluster were detected in hydrogenase II by electron paramagnetic resonance spectroscopy, but amino acid sequence analyses indicated a total of five [4Fe-4S] clusters (two in the beta subunit and three in the delta subunit) and one [2Fe-2S] cluster (in the gamma subunit), as well as two putative nucleotide-binding sites in the gamma subunit which are thought to bind FAD and NAD(P)(H). The amino acid sequences of the four subunits of hydrogenase II showed between 55 and 63% similarity to those of hydrogenase I. The two enzymes are present in the cytoplasm at approximately the same concentration. Hydrogenase II may become physiologically relevant at low S(0) concentrations since it has a higher affinity than hydrogenase I for both S(0) and polysulfide.
- Meckenstock RU, Krieger R, Ensign S, Kroneck PM, Schink B
- Acetylene hydratase of Pelobacter acetylenicus. Molecular and spectroscopic properties of the tungsten iron-sulfur enzyme.
- Eur J Biochem. 1999; 264: 176-82
- Display abstract
Acetylene hydratase of Pelobacter acetylenicus is a tungsten iron-sulfur protein involved in the fermentation of acetylene to ethanol and acetate. Expression of the enzyme was increased 10-fold by feeding a 50-L batch culture continuously with 104 Pa acetylene at pH 6.8-7.0. Acetylene hydratase was purified to homogeneity by a three-step procedure in either the absence or presence of dioxygen. The enzyme was a monomer with a molecular mass of 73 kDa (SDS/PAGE) or 83 kDa (matrix-assisted laser-desorption ionization MS) and contained 0.5 +/- 0.1 W (inductively coupled plasma/MS) and 1.3 +/- 0.1 molybdopterin-guanine dinucleotide per mol. Selenium was absent. EPR spectra (enzyme as isolated, under air) showed a signal typical of a [3Fe-4S] cluster with gav = 2.01, at 10 K. In enzyme prepared under N2/H2, this signal was absent and reaction with dithionite led to a rhombic signal with gz = 2.048, gy = 1.939 and gx = 1.920 indicative of a low-potential ferredoxin-type [4Fe-4S] cluster. Upon oxidation with hexacyanoferrate(III), a new signal appeared with gx = 2.007, gy = 2.019 and gz = 2.048 (gav = 2.022), which disappeared after further oxidation. The signal was still visible at 150 K and was tentatively assigned to a W(V) center. The iron-sulfur center of acetylene hydratase (prepared under N2/H2) gave a midpoint redox potential of -410 +/- 20 mV in a spectrophotometric titration with dithionite. Enzyme activity depended on the redox potential of the solution, with 50% of maximum activity at -340 +/- 20 mV. The presence of a pterin-guanine dinucleotide cofactor differentiates acetylene hydratase from the aldehyde ferredoxin oxidoreductase-type enzymes which have a pterin mononucleotide cofactor.
- Hagedoorn PL, Freije JR, Hagen WR
- Pyrococcus furiosus glyceraldehyde 3-phosphate oxidoreductase has comparable W(6+/5+) and W(5+/4+) reduction potentials and unusual [4Fe-4S] EPR properties.
- FEBS Lett. 1999; 462: 66-70
- Display abstract
Pyrococcus furiosus glyceraldehyde 3-phosphate oxidoreductase has been characterized using EPR-monitored redox titrations. Two different W signals were found. W(1)(5+) is an intermediate species in the catalytic cycle, with the midpoint potentials E(m)(W(6+/5+))=-507 mV and E(m)(W(5+/4+))=-491 mV. W(2)(5+) represents an inactivated species with E(m)(W(6+/5+))=-329 mV. The cubane cluster exhibits both S=3/2 and S=1/2 signals with the same midpoint potential: E(m)([4Fe-4S](2+/1+))=-335 mV. The S=1/2 EPR signal is unusual with all g values below 2.0. The titration results combined with catalytic voltammetry data are consistent with electron transfer from glyceraldehyde 3-phosphate first to the tungsten center, then to the cubane cluster and finally to the ferredoxin.
- Solomon PS, Shaw AL, Lane I, Hanson GR, Palmer T, McEwan AG
- Characterization of a molybdenum cofactor biosynthetic gene cluster in Rhodobacter capsulatus which is specific for the biogenesis of dimethylsulfoxide reductase.
- Microbiology. 1999; 145: 1421-9
- Display abstract
The DMSO reductase of Rhodobacter capsulatus contains a pterin molybdenum cofactor (Moco) and is located in the periplasm. DNA sequence analysis identified four genes involved in the biosynthesis of the Moco (moaA, moaD, moeB and moaC) immediately downstream of the dor (DMSO respiratory) gene cluster. Rhodobacter capsulatus MoaA was expressed in Escherichia coli as a His6-tagged protein. Although, the expressed protein formed inclusion bodies, EPR spectroscopy showed that MoaA contains a [3Fe-4S] cluster. A moaA mutant was constructed and its phenotype indicates that the Moco biosynthetic gene cluster downstream of the dor operon is specific for the biogenesis of DMSO reductase. Two forms of DMSO reductase were purified by immunoaffinity chromatography from the moaA mutant. A mature form of DMSO reductase was located in the periplasm and a precursor form was found in the cytoplasm.
- Leimkuhler S, Klipp W
- The molybdenum cofactor biosynthesis protein MobA from Rhodobacter capsulatus is required for the activity of molybdenum enzymes containing MGD, but not for xanthine dehydrogenase harboring the MPT cofactor.
- FEMS Microbiol Lett. 1999; 174: 239-46
- Display abstract
The requirement of MobA for molybdoenzymes with different molybdenum cofactors was analyzed in Rhodobacter capsulatus. MobA is essential for DMSO reductase and nitrate reductase activity, both enzymes containing the molybdopterin guanine dinucleotide cofactor (MGD), but not for active xanthine dehydrogenase, harboring the molybdopterin cofactor. In contrast to the mob locus of Escherichia coli and R. sphaeroides, the mobB gene is not located downstream of mobA in R. capsulatus. The mobA gene is expressed constitutively at low levels and no increase in mobA expression could be observed even under conditions of high MGD demand.
- Ma K, Adams MW
- A hyperactive NAD(P)H:Rubredoxin oxidoreductase from the hyperthermophilic archaeon Pyrococcus furiosus.
- J Bacteriol. 1999; 181: 5530-3
- Display abstract
NAD(P)H:rubredoxin oxidoreductase (NROR) has been purified from the hyperthermophilic archaeon Pyrococcus furiosus. The enzyme is exceedingly active in catalyzing the NADPH-dependent reduction of rubredoxin, a small (5.3-kDa) iron-containing redox protein that had previously been purified from this organism. The apparent Vmax at 80 degrees C is 20,000 micromol/min/mg, which corresponds to a kcat/Km value of 300,000 mM(-1) s(-1). The apparent Km values measured at 80 degrees C and pH 8.0 for rubredoxin, NADPH, and NADH were 50, 5, and 34 microM, respectively. The enzyme did not reduce P. furiosus ferredoxin. NROR is a monomer with a molecular mass of 45 kDa and contains one flavin adenine dinucleotide molecule per mole but lacks metals and inorganic sulfide. The possible physiological role of this hyperactive enzyme is discussed.
- Brereton PS, Duderstadt RE, Staples CR, Johnson MK, Adams MW
- Effect of serinate ligation at each of the iron sites of the [Fe4S4] cluster of Pyrococcus furiosus ferredoxin on the redox, spectroscopic, and biological properties.
- Biochemistry. 1999; 38: 10594-605
- Display abstract
Pyrococcus furiosus ferredoxin (Fd) contains a single [Fe(4)S(4)] cluster coordinated by three cysteine (at positions 11, 17, and 56) and one aspartate ligand (at position 14). In this study, the spectroscopic, redox, and functional consequences of D14C, D14C/C11S, D14S, D14C/C17S, and D14C/C56S mutations have been investigated. The four serine variants each contain a potential cluster coordination sphere of one serine and three cysteine residues, with serine ligation at each of the four Fe sites of the [Fe(4)S(4)] cluster. All five variants were expressed in Escherichia coli, and each contained a [Fe(4)S(4)](2+,+) cluster as shown by UV-visible absorption and resonance Raman studies of the oxidized protein and EPR and variable-temperature magnetic circular dichroism (VTMCD) studies of the as-prepared, dithionite-reduced protein. Changes in both the absorption and resonance Raman spectra are consistent with changing from complete cysteinyl cluster ligation in the D14C variant to three cysteines and one oxygenic ligand in each of the four serine variants. EPR and VTMCD studies show distinctive ground and excited state properties for the paramagnetic [Fe(4)S(4)](+) centers in each of these variant proteins, with the D14C and D14C/C11S variants having homogeneous S = (1)/(2) ground states and the D14S, D14C/C17S, and D14C/C56S variants having mixed-spin, S = (1)/(2) and (3)/(2) ground states. The midpoint potentials (pH 7.0, 23 degrees C) of the D14C/C11S and D14C/C17S variants were unchanged compared to that of the D14C variant (E(m) = -427 mV) within experimental error, but the potentials of D14C/C56S and D14S variants were more negative by 49 and 78 mV, respectively. Since the VTMCD spectra indicate the presence of a valence-delocalized Fe(2. 5+)Fe(2.5+) pair in all five variants, the midpoint potentials are interpreted in terms of Cys11 and Cys17 ligating the nonreducible valence-delocalized pair in D14C. Only the D14S variant exhibited a pH-dependent redox potential over the range of 3.5-10, and this is attributed to protonation of the serinate ligand to the reduced cluster (pK(a) = 4.75). All five variants had similar K(m) and V(m) values in a coupled assay in which Fd was reduced by pyruvate ferredoxin oxidoreductase (POR) and oxidized by ferredoxin NADP oxidoreductase (FNOR), both purified from P. furiosus. Hence, the mode of ligation at each Fe atom in the [Fe(4)S(4)] cluster appears to have little effect on the interaction and the electron transfer between Fd and FNOR.
- Kang BS, Kim YM
- Cloning and molecular characterization of the genes for carbon monoxide dehydrogenase and localization of molybdopterin, flavin adenine dinucleotide, and iron-sulfur centers in the enzyme of Hydrogenophaga pseudoflava.
- J Bacteriol. 1999; 181: 5581-90
- Display abstract
Carbon monoxide dehydrogenases (CO-DH) are the enzymes responsible for the oxidation of CO to carbon dioxide in carboxydobacteria and consist of three nonidentical subunits containing molybdopterin flavin adenine dinucleotide (FAD), and two different iron-sulfur clusters (O. Meyer, K. Frunzke, D. Gadkari, S. Jacobitz, I. Hugendieck, and M. Kraut, FEMS Microbiol. Rev. 87:253-260, 1990). The three structural genes of CO-DH in Hydrogenophaga pseudoflava were cloned and characterized. The genes were clustered on the chromosome in the transcriptional order cutM-cutS-cutL. The cloned cutM, cutS, and cutL genes had open reading frames of 864, 492, and 2,412 nucleotides, coding for proteins with calculated molecular weights of 30,694, 17,752, and 87,224, respectively. The overall identities in the nucleotide sequence of the genes and the amino acid sequence of the subunits with those of other carboxydobacteria were 64.5 to 74.3% and 62.8 to 72.3%, respectively. Primer extension analysis revealed that the transcriptional start site of the genes was the nucleotide G located 47 bp upstream of the cutM start codon. The deduced amino acid sequences of the three subunits of CO-DH implied the presence of molybdenum cofactor, FAD, and iron-sulfur centers in CutL, CutM, and CutS, respectively. Fluorometric analysis coupled with denaturing polyacrylamide gel electrophoresis of fractions from hydroxyapatite column chromatography in the presence of 8 M urea of active CO-DH and from gel filtration of spontaneously inactivated enzyme revealed that the large and medium subunits of CO-DH in H. pseudoflava bind molybdopterin and FAD cofactors, respectively. Iron-sulfur centers of the enzyme were identified to be present in the small subunit on the basis of the iron content in each subunit eluted from the denaturing polyacrylamide gels.
- Hu Y, Faham S, Roy R, Adams MW, Rees DC
- Formaldehyde ferredoxin oxidoreductase from Pyrococcus furiosus: the 1.85 A resolution crystal structure and its mechanistic implications.
- J Mol Biol. 1999; 286: 899-914
- Display abstract
Crystal structures of formaldehyde ferredoxin oxidoreductase (FOR), a tungstopterin-containing protein from the hyperthermophilic archaeon Pyrococcus furiosus, have been determined in the native state and as a complex with the inhibitor glutarate at 1.85 A and 2. 4 A resolution, respectively. The native structure was solved by molecular replacement using the structure of the homologous P. furiosus aldehyde ferredoxin oxidoreductase (AOR) as the initial model. Residues are identified in FOR that may be involved in either the catalytic mechanism or in determining substrate specificity. The binding site on FOR for the physiological electron acceptor, P. furiosus ferredoxin (Fd), has been established from an FOR-Fd cocrystal structure. Based on the arrangement of redox centers in this structure, an electron transfer pathway is proposed that begins at the tungsten center, leads to the (4Fe:4S) cluster of FOR via one of the two pterins that coordinate the tungsten, and ends at the (4Fe:4S) cluster of ferredoxin. This pathway includes two residues that coordinate the (4Fe:4S) clusters, Cys287 of FOR and Asp14 of ferredoxin. Similarities in the active site structures between FOR and the unrelated molybdoenzyme aldehyde oxidoreductase from Desulfovibrio gigas suggest that both enzymes utilize a common mechanism for aldehyde oxidation.
- Roy R, Mukund S, Schut GJ, Dunn DM, Weiss R, Adams MW
- Purification and molecular characterization of the tungsten-containing formaldehyde ferredoxin oxidoreductase from the hyperthermophilic archaeon Pyrococcus furiosus: the third of a putative five-member tungstoenzyme family.
- J Bacteriol. 1999; 181: 1171-80
- Display abstract
Pyrococcus furiosus is a hyperthermophilic archaeon which grows optimally near 100 degreesC by fermenting peptides and sugars to produce organic acids, CO2, and H2. Its growth requires tungsten, and two different tungsten-containing enzymes, aldehyde ferredoxin oxidoreductase (AOR) and glyceraldehyde-3-phosphate ferredoxin oxidoreductase (GAPOR), have been previously purified from P. furiosus. These two enzymes are thought to function in the metabolism of peptides and carbohydrates, respectively. A third type of tungsten-containing enzyme, formaldehyde ferredoxin oxidoreductase (FOR), has now been characterized. FOR is a homotetramer with a mass of 280 kDa and contains approximately 1 W atom, 4 Fe atoms, and 1 Ca atom per subunit, together with a pterin cofactor. The low recovery of FOR activity during purification was attributed to loss of sulfide, since the purified enzyme was activated up to fivefold by treatment with sulfide (HS-) under reducing conditions. FOR uses P. furiosus ferredoxin as an electron acceptor (Km = 100 microM) and oxidizes a range of aldehydes. Formaldehyde (Km = 15 mM for the sulfide-activated enzyme) was used in routine assays, but the physiological substrate is thought to be an aliphatic C5 semi- or dialdehyde, e.g., glutaric dialdehyde (Km = 1 mM). Based on its amino-terminal sequence, the gene encoding FOR (for) was identified in the genomic database, together with those encoding AOR and GAPOR. The amino acid sequence of FOR corresponded to a mass of 68.7 kDa and is highly similar to those of the subunits of AOR (61% similarity and 40% identity) and GAPOR (50% similarity and 23% identity). The three genes are not linked on the P. furiosus chromosome. Two additional (and nonlinked) genes (termed wor4 and wor5) that encode putative tungstoenzymes with 57% (WOR4) and 56% (WOR5) sequence similarity to FOR were also identified. Based on sequence motif similarities with FOR, both WOR4 and WOR5 are also proposed to contain a tungstobispterin site and one [4Fe-4S] cluster per subunit.
- Dias JM et al.
- Crystal structure of the first dissimilatory nitrate reductase at 1.9 A solved by MAD methods.
- Structure. 1999; 7: 65-79
- Display abstract
BACKGROUND: The periplasmic nitrate reductase (NAP) from the sulphate reducing bacterium Desulfovibrio desulfuricans ATCC 27774 is induced by growth on nitrate and catalyses the reduction of nitrate to nitrite for respiration. NAP is a molybdenum-containing enzyme with one bis-molybdopterin guanine dinucleotide (MGD) cofactor and one [4Fe-4S] cluster in a single polypeptide chain of 723 amino acid residues. To date, there is no crystal structure of a nitrate reductase. RESULTS: The first crystal structure of a dissimilatory (respiratory) nitrate reductase was determined at 1.9 A resolution by multiwavelength anomalous diffraction (MAD) methods. The structure is folded into four domains with an alpha/beta-type topology and all four domains are involved in cofactor binding. The [4Fe-4S] centre is located near the periphery of the molecule, whereas the MGD cofactor extends across the interior of the molecule interacting with residues from all four domains. The molybdenum atom is located at the bottom of a 15 A deep crevice, and is positioned 12 A from the [4Fe-4S] cluster. The structure of NAP reveals the details of the catalytic molybdenum site, which is coordinated to two MGD cofactors, Cys140, and a water/hydroxo ligand. A facile electron-transfer pathway through bonds connects the molybdenum and the [4Fe-4S] cluster. CONCLUSIONS: The polypeptide fold of NAP and the arrangement of the cofactors is related to that of Escherichia coli formate dehydrogenase (FDH) and distantly resembles dimethylsulphoxide reductase. The close structural homology of NAP and FDH shows how small changes in the vicinity of the molybdenum catalytic site are sufficient for the substrate specificity.
- Isupov MN, Fleming TM, Dalby AR, Crowhurst GS, Bourne PC, Littlechild JA
- Crystal structure of the glyceraldehyde-3-phosphate dehydrogenase from the hyperthermophilic archaeon Sulfolobus solfataricus.
- J Mol Biol. 1999; 291: 651-60
- Display abstract
The enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) from the archaea shows low sequence identity (16-20%) with its eubacterial and eukaryotic counterparts. The crystal structure of the apo GAPDH from Sulfolobus solfataricus has been determined by multiple isomorphous replacement at 2.05 A resolution. The enzyme has several differences in secondary structure when compared with eubacterial GAPDHs, with an overall increase in the number of alpha-helices. There is a relocation of the active-site residues within the catalytic domain of the enzyme. The thermostability of the S. solfataricus enzyme can be attributed to a combination of an ion pair cluster and an intrasubunit disulphide bond.
- Kardinahl S, Schmidt CL, Hansen T, Anemuller S, Petersen A, Schafer G
- The strict molybdate-dependence of glucose-degradation by the thermoacidophile Sulfolobus acidocaldarius reveals the first crenarchaeotic molybdenum containing enzyme--an aldehyde oxidoreductase.
- Eur J Biochem. 1999; 260: 540-8
- Display abstract
In order to investigate the effects of trace elements on different metabolic pathways, the thermoacidophilic Crenarchaeon Sulfolobus acidocaldarius (DSM 639) has been cultivated on various carbon substrates in the presence and absence of molybdate. When grown on glucose (but neither on glutamate nor casein hydrolysate) as sole carbon source, the lack of molybdate results in serious growth inhibition. By analysing cytosolic fractions of glucose adapted cells for molybdenum containing compounds, an aldehyde oxidoreductase was detected that is present in the cytosol to at least 0.4% of the soluble protein. With Cl2Ind (2,6-dichlorophenolindophenol) as artificial electron acceptor, the enzyme exhibits oxidizing activity towards glyceraldehyde, glyceraldehyde-3-phosphate, isobutyraldehyde, formaldehyde, acetaldehyde and propionaldehyde. At its pH-optimum (6.7), close to the intracellular pH of Sulfolobus, the glyceraldehyde-oxidizing activity is predominant. The protein has an apparent molecular mass of 177 kDa and consists of three subunits of 80.5 kDa (alpha), 32 kDa (beta) and 19.5 kDa (gamma). It contains close to one Mo, four Fe, four acid-labile sulphides and four phosphates per protein molecule. Methanol extraction revealed the existence of 1 FAD per molecule and 1 molybdopterin per molecule, which was identified as molybdopterin guanine dinucleotide on the basis of perchloric acid cleavage and thin layer chromatography. EPR-spectra of the aerobically prepared enzyme exhibit the so-called 'desulpho-inhibited'-signal, known from chemically modified forms of molybdenum containing proteins. Anaerobically prepared samples show both, the signals arising from the active molybdenum-cofactor as well as from the two [2Fe-2S]-clusters. According to metal-, cofactor-, and subunit-composition, the enzyme resembles the members of the xanthine oxidase family. Nevertheless, the melting point and long-term thermostability of the protein are outstanding and perfectly in tune with the growth temperature of S. acidocaldarius (80 degrees C). The findings suggest the enzyme to function as a glyceraldehyde oxidoreductase in the course of the nonphosphorylated Entner-Doudoroff pathway and thereby may attribute a new physiological role to this class of enzyme.
- Ma K, Adams MW
- An unusual oxygen-sensitive, iron- and zinc-containing alcohol dehydrogenase from the hyperthermophilic archaeon Pyrococcus furiosus.
- J Bacteriol. 1999; 181: 1163-70
- Display abstract
Pyrococcus furiosus is a hyperthermophilic archaeon that grows optimally at 100 degreesC by the fermentation of peptides and carbohydrates to produce acetate, CO2, and H2, together with minor amounts of ethanol. The organism also generates H2S in the presence of elemental sulfur (S0). Cell extracts contained NADP-dependent alcohol dehydrogenase activity (0.2 to 0.5 U/mg) with ethanol as the substrate, the specific activity of which was comparable in cells grown with and without S0. The enzyme was purified by multistep column chromatography. It has a subunit molecular weight of 48,000 +/- 1,000, appears to be a homohexamer, and contains iron ( approximately 1.0 g-atom/subunit) and zinc ( approximately 1.0 g-atom/subunit) as determined by chemical analysis and plasma emission spectroscopy. Neither other metals nor acid-labile sulfur was detected. Analysis using electron paramagnetic resonance spectroscopy indicated that the iron was present as low-spin Fe(II). The enzyme is oxygen sensitive and has a half-life in air of about 1 h at 23 degreesC. It is stable under anaerobic conditions even at high temperature, with half-lives at 85 and 95 degreesC of 160 and 7 h, respectively. The optimum pH for ethanol oxidation was between 9. 4 and 10.2 (at 80 degreesC), and the apparent Kms (at 80 degreesC) for ethanol, acetaldehyde, NADP, and NAD were 29.4, 0.17, 0.071, and 20 mM, respectively. P. furiosus alcohol dehydrogenase utilizes a range of alcohols and aldehydes, including ethanol, 2-phenylethanol, tryptophol, 1,3-propanediol, acetaldehyde, phenylacetaldehyde, and methyl glyoxal. Kinetic analyses indicated a marked preference for catalyzing aldehyde reduction with NADPH as the electron donor. Accordingly, the proposed physiological role of this unusual alcohol dehydrogenase is in the production of alcohols. This reaction simultaneously disposes of excess reducing equivalents and removes toxic aldehydes, both of which are products of fermentation.
- Leimkuhler S, Angermuller S, Schwarz G, Mendel RR, Klipp W
- Activity of the molybdopterin-containing xanthine dehydrogenase of Rhodobacter capsulatus can be restored by high molybdenum concentrations in a moeA mutant defective in molybdenum cofactor biosynthesis.
- J Bacteriol. 1999; 181: 5930-9
- Display abstract
During the screening for Rhodobacter capsulatus mutants defective in xanthine degradation, one Tn5 mutant which was able to grow with xanthine as a sole nitrogen source only in the presence of high molybdate concentrations (1 mM), a phenotype resembling Escherichia coli mogA mutants, was identified. Unexpectedly, the corresponding Tn5 insertion was located within the moeA gene. Partial DNA sequence analysis and interposon mutagenesis of regions flanking R. capsulatus moeA revealed that no further genes essential for molybdopterin biosynthesis are located in the vicinity of moeA and revealed that moeA forms a monocistronic transcriptional unit in R. capsulatus. Amino acid sequence alignments of R. capsulatus MoeA (414 amino acids [aa]) with E. coli MogA (195 aa) showed that MoeA contains an internal domain homologous to MogA, suggesting similar functions of these proteins in the biosynthesis of the molybdenum cofactor. Interposon mutants defective in moeA did not exhibit dimethyl sulfoxide reductase or nitrate reductase activity, which both require the molybdopterin guanine dinucleotide (MGD) cofactor, even after addition of 1 mM molybdate to the medium. In contrast, the activity of xanthine dehydrogenase, which binds the molybdopterin (MPT) cofactor, was restored to wild-type levels after the addition of 1 mM molybdate to the growth medium. Analysis of fluorescent derivatives of the molybdenum cofactor of purified xanthine dehydrogenase isolated from moeA and modA mutant strains, respectively, revealed that MPT is inserted into the enzyme only after molybdenum chelation, and both metal chelation and Mo-MPT insertion can occur only under high molybdate concentrations in the absence of MoeA. These data support a model for the biosynthesis of the molybdenum cofactor in which the biosynthesis of MPT and MGD are split at a stage when the molybdenum atom is added to MPT.
- Dobbek H, Gremer L, Meyer O, Huber R
- Crystal structure and mechanism of CO dehydrogenase, a molybdo iron-sulfur flavoprotein containing S-selanylcysteine.
- Proc Natl Acad Sci U S A. 1999; 96: 8884-9
- Display abstract
CO dehydrogenase from the aerobic bacterium Oligotropha carboxidovorans catalyzes the oxidation of CO with H(2)O, yielding CO(2), two electrons, and two H(+). Its crystal structure in the air-oxidized form has been determined to 2.2 A. The active site of the enzyme, which contains molybdenum with three oxygen ligands, molybdopterin-cytosine dinucleotide and S-selanylcysteine, delivers the electrons to an intramolecular electron transport chain composed of two types of [2Fe-2S] clusters and flavin-adenine dinucleotide. CO dehydrogenase is composed of an 88.7-kDa molybdoprotein (L), a 30. 2-kDa flavoprotein (M), and a 17.8-kDa iron-sulfur protein (S). It is organized as a dimer of LMS heterotrimers and resembles xanthine dehydrogenase/oxidase in many, but not all, aspects. A mechanism based on a structure with the bound suicide-substrate cyanide is suggested and displays the necessity of S-selanylcysteine for the catalyzed reaction.
- Rothery RA, Trieber CA, Weiner JH
- Interactions between the molybdenum cofactor and iron-sulfur clusters of Escherichia coli dimethylsulfoxide reductase.
- J Biol Chem. 1999; 274: 13002-9
- Display abstract
We have used site-directed mutagenesis to study the interactions between the molybdo-bis(molybdopterin guanine dinucleotide) cofactor (Mo-bisMGD) and the other prosthetic groups of Escherichia coli Me2SO reductase (DmsABC). In redox-poised preparations, there is a significant spin-spin interaction between the reduced Em,7 = -120 mV [4Fe-4S] cluster of DmsB and the Mo(V) of the Mo-bisMGD of DmsA. This interaction is significantly modified in a DmsA-C38S mutant that contains a [3Fe-4S] cluster in DmsA, suggesting that the [3Fe-4S] cluster is in close juxtaposition to the vector connecting the Mo(V) and the Em,7 = -120 mV cluster of DmsB. In a DmsA-R77S mutant, the interaction is eliminated, indicating the importance of this residue in defining the interaction pathway. In ferricyanide-oxidized glycerol-inhibited DmsAC38SBC, there is no detectable interaction between the oxidized [3Fe-4S] cluster and the Mo-bisMGD, except for a minor broadening of the Mo(V) spectrum. In a double mutant, DmsAS176ABC102SC, which contains an engineered [3Fe-4S] cluster in DmsB, no significant paramagnetic interaction is detected between the oxidized [3Fe-4S] cluster and the Mo(V). These results have important implications for (i) understanding the magnetic interactions between the Mo(V) and other paramagnetic centers and (ii) delineating the electron transfer pathway from the [4Fe-4S] clusters of DmsB to the Mo-bisMGD of DmsA.
- Canne C et al.
- Kinetics and interactions of molybdenum and iron-sulfur centers in bacterial enzymes of the xanthine oxidase family: mechanistic implications.
- Biochemistry. 1999; 38: 14077-87
- Display abstract
For isoquinoline 1-oxidoreductase (IsoOr), the reaction mechanism under turnover conditions was studied by EPR spectroscopy using rapid-freeze methods. IsoOr displays several EPR-active Mo(V) species including the "very rapid" component found also in xanthine oxidase (XanOx). For IsoOr, unlike XanOx or quinoline 2-oxidoreductase (QuinOr), this species is stable for about 1 h in the absence of an oxidizing substrate [Canne, C., Stephan, I., Finsterbusch, J., Lingens, F., Kappl, R., Fetzner, S., and Huttermann, J. (1997) Biochemistry 36, 9780-9790]. Under rapid-freeze conditions in the presence of ferricyanide the very rapid species behaves as a kinetically competent intermediate present only during steady-state turnover. To explain the persistence of the very rapid species in IsoOr in the absence of an added oxidant, extremely slow product dissociation is required. This new finding that oxidative conditions facilitate decay of the very rapid signal for IsoOr supports the mechanism of substrate turnover proposed by Lowe, Richards, and Bray [Lowe, D. J., Richards, R. L., and Bray, R. C. (1997) Biochem. Soc. Trans. 25, 774-778]. Additional stopped-flow data reveal that alternative catalytic cycles occur in IsoOr and show that the product dissociates after transfer of a single oxidizing equivalent from ferricyanide. In rapid-freeze measurements magnetic interactions of the very rapid Mo(V) species and the iron-sulfur center FeSI of IsoOr and QuinOr were observed, proving that FeSI is located close to the molybdopterin cofactor in the two proteins. This finding is used to relate the two different iron-sulfur centers of the aldehyde oxidoreductase structure with the EPR-detectable FeS species of the enzymes.
- Cheng TC, Ramakrishnan V, Chan SI
- Purification and characterization of a cobalt-activated carboxypeptidase from the hyperthermophilic archaeon Pyrococcus furiosus.
- Protein Sci. 1999; 8: 2474-86
- Display abstract
A novel metallocarboxypeptidase (PfuCP) has been purified to homogeneity from the hyperthermophilic archaeon, Pyrococcus furiosus, with its intended use in C-terminal ladder sequencing of proteins and peptides at elevated temperatures. PfuCP was purified in its inactive state by the addition of ethylenediaminetetraacetic acid (EDTA) and dithiothreitol (DTT) to purification buffers, and the activity was restored by the addition of divalent cobalt (K, = 24 +/- 4 microM at 80 degrees C). The serine protease inhibitor phenylmethylsulfonyl fluoride (PMSF) had no effect on the activity. The molecular mass of monomeric PfuCP is 59 kDa as determined by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) and 58 kDa by SDS-PAGE analysis. In solution, PfuCP exists as a homodimer of approximately 128 kDa as determined by gel filtration chromatography. The activity of PfuCP exhibits a temperature optimum exceeding 90 degrees C under ambient pressure, and a narrow pH optimum of 6.2-6.6. Addition of Co2+ to the apoPfuCP at room temperature does not alter its far-UV circular dichroism (CD) or its intrinsic fluorescence spectrum. Even when the CoPfuCP is heated to 80 degrees C, its far-UV CD shows a minimal change in the global conformation and the intrinsic fluorescence of aromatic residues shows only a partial quenching. Changes in the intrinsic fluorescence appear essentially reversible with temperature. Finally, the far-UV CD and intrinsic fluorescence data suggest that the overall structure of the holoenzyme is extremely thermostable. However, the activities of both the apo and holo enzyme exhibit a similar second-order decay over time, with 50% activity remaining after approximately 40 min at 80 degrees C. The N-blocked synthetic dipeptide, N-carbobenzoxy-Ala-Arg (ZAR), was used in the purification assay. The kinetic parameters at 80 degrees C with 0.4 mM CoCl2 were: Km, 0.9 +/- 0.1 mM; Vmax, 2,300 +/- 70 U mg(-1); and turn over number, 600 +/- 20 s(-1). Activity against other ZAX substrates (X = V, L, I, M, W, Y, F, N, A, S, H, K) revealed a broad specificity for neutral, aromatic, polar, and basic C-terminal residues. This broad specificity was confirmed by the C-terminal ladder sequencing of several synthetic and natural peptides, including porcine N-acetyl-renin substrate, for which we have observed (by MALDI-TOF MS) stepwise hydrolysis by PfuCP of up to seven residues from the C-terminus: Ac-Asp-Arg-Val-Tyr-Ile-His-Pro-Phe-His-Leu-Leu-Val-Tyr-Ser.
- Toth J, Ismaiel AA, Chen JS
- The ald gene, encoding a coenzyme A-acylating aldehyde dehydrogenase, distinguishes Clostridium beijerinckii and two other solvent-producing clostridia from Clostridium acetobutylicum.
- Appl Environ Microbiol. 1999; 65: 4973-80
- Display abstract
The coenzyme A (CoA)-acylating aldehyde dehydrogenase (ALDH) catalyzes a key reaction in the acetone- and butanol (solvent)-producing clostridia. It reduces acetyl-CoA and butyryl-CoA to the corresponding aldehydes, which are then reduced by alcohol dehydrogenase (ADH) to form ethanol and 1-butanol. The ALDH of Clostridium beijerinckii NRRL B593 was purified. It had no ADH activity, was NAD(H) specific, and was more active with butyraldehyde than with acetaldehyde. The N-terminal amino acid sequence of the purified ALDH was determined. The open reading frame preceding the ctfA gene (encoding a subunit of the solvent-forming CoA transferase) of C. beijerinckii NRRL B593 was identified as the structural gene (ald) for the ALDH. The ald gene encodes a polypeptide of 468 amino acid residues with a calculated M(r) of 51, 353. The position of the ald gene in C. beijerinckii NRRL B593 corresponded to that of the aad/adhE gene (encoding an aldehyde-alcohol dehydrogenase) of Clostridium acetobutylicum ATCC 824 and DSM 792. In Southern analyses, a probe derived from the C. acetobutylicum aad/adhE gene did not hybridize to restriction fragments of the genomic DNAs of C. beijerinckii and two other species of solvent-producing clostridia. In contrast, a probe derived from the C. beijerinckii ald gene hybridized to restriction fragments of the genomic DNA of three solvent-producing species but not to those of C. acetobutylicum, indicating a key difference among the solvent-producing clostridia. The amino acid sequence of the ALDH of C. beijerinckii NRRL B593 was most similar (41% identity) to those of the eutE gene products (CoA-acylating ALDHs) of Salmonella typhimurium and Escherichia coli, whereas it was about 26% identical to the ALDH domain of the aldehyde-alcohol dehydrogenases of C. acetobutylicum, E. coli, Lactococcus lactis, and amitochondriate protozoa. The predicted secondary structure of the C. beijerinckii ALDH suggests the presence of an atypical Rossmann fold for NAD(+) binding. A comparison of the proposed catalytic pockets of the CoA-dependent and CoA-independent ALDHs identified 6 amino acids that may contribute to interaction with CoA.
- van der Oost J, Schut G, Kengen SW, Hagen WR, Thomm M, de Vos WM
- The ferredoxin-dependent conversion of glyceraldehyde-3-phosphate in the hyperthermophilic archaeon Pyrococcus furiosus represents a novel site of glycolytic regulation.
- J Biol Chem. 1998; 273: 28149-54
- Display abstract
The fermentative conversion of glucose in anaerobic hyperthermophilic Archaea is a variant of the classical Embden-Meyerhof pathway found in Bacteria and Eukarya. A major difference of the archaeal glycolytic pathway concerns the conversion of glyceraldehyde-3-phosphate. In the hyperthermophilic archaeon Pyrococcus furiosus, this reaction is catalyzed by an unique enzyme, glyceraldehyde-3-phosphate ferredoxin oxidoreductase (GAPOR). Here, we report the isolation, characterization, and transcriptional analysis of the GAPOR-encoding gene. GAPOR is related to a family of ferredoxin-dependent tungsten enzymes in (hyper)thermophilic Archaea and, in addition, to a hypothetical protein in Escherichia coli. Electron paramagnetic resonance analysis of the purified P. furiosus GAPOR protein confirms the anticipated involvement of tungsten in catalysis. During glycolysis in P. furiosus, GAPOR gene expression is induced, whereas the activity of glyceraldehyde-3-phosphate dehydrogenase is repressed. It is discussed that this unprecedented unidirectional reaction couple in the pyrococcal glycolysis and gluconeogenesis gives rise to a novel site of glycolytic regulation that might be widespread among Archaea.
- Boll M, Fuchs G
- Identification and characterization of the natural electron donor ferredoxin and of FAD as a possible prosthetic group of benzoyl-CoA reductase (dearomatizing), a key enzyme of anaerobic aromatic metabolism.
- Eur J Biochem. 1998; 251: 946-54
- Display abstract
Under anoxic conditions most aromatic compounds are metabolized via benzoyl-CoA which becomes reduced by benzoyl-CoA reductase (dearomatizing); this enzyme was recently described in the bacterium Thauera aromatica [Boll, M. & Fuchs, G. (1995) Eur. J. Biochem. 234, 921-933]. It catalyzes the reaction benzoyl-CoA + 2 e- + 2 H+ + 2 MgATP + 2 H2O --> cyclohexa-1,5-diene-1-carboxyl-CoA + 2 MgADP + 2 Pi. The iron-sulfur protein has a native molecular mass of 160-170 kDa and consists of four different subunits. In addition a flavin may be present. The nature of the potential prosthetic group and the natural electron donor were determined. Purified benzoyl-CoA reductase preparations contained 0.25-0.3 mol FAD/mol enzyme. Cells grown anaerobically with aromatic substrates contained a ferredoxin which represented the main, if not the only ferredoxin present. It was purified from 200 g cells with a yield of 60 mg and its N-terminal amino acid sequence was determined. The native molecular mass was 9659 +/- 2 Da as determined by electrospray mass spectrometry. The protein contained 7.6 +/- 0.6 mol iron and 7.6 +/- 1 mol acid-labile sulfur/mol. The ultraviolet-visible spectrum of the protein was typical for ferredoxins with maxima at 280 nm and 390 nm (in the oxidized state). The estimated molar absorption coefficients were 63500 M(-1) cm(-1) at 280 nm and 40500 M(-1) cm(-1) at 390 nm. The difference spectrum between the oxidized and the reduced form had a maximum at 415 nm with delta epsilon415 = 8200 M(-1) cm(-1). 1 mol ferredoxin became reduced/mol dithionite added, suggesting the presence of two [4Fe-4S] clusters. The average midpoint potential of the iron-sulfur clusters was -450 mV. The ferredoxin gene was cloned and sequenced. It was located in a gene cluster coding for enzymes involved in anaerobic aromatic metabolism. The amino acid sequence of the T. aromatica ferredoxin showed high similarities to several other ferredoxins containing 2[4Fe-4S] clusters, e.g. from Clostridia and phototrophic bacteria. The reduced ferredoxin served as electron donor for benzoyl-CoA reduction at a three times higher rate compared with the rate obtained with the artificial electron donor reduced methyl viologen. The turnover number with the natural electron donor of 5 s(-1) can explain the bacterial growth rate with benzoate as substrate. Half-maximal enzyme activity was obtained with 6 microM reduced ferredoxin, at an estimated cellular concentration of 70 microM ferredoxin. Both the low apparent Km value and the turnover number are consistent with the proposed role of ferredoxin in aromatic-ring reduction.
- Magalon A et al.
- Molybdenum cofactor properties and [Fe-S] cluster coordination in Escherichia coli nitrate reductase A: investigation by site-directed mutagenesis of the conserved his-50 residue in the NarG subunit.
- Biochemistry. 1998; 37: 7363-70
- Display abstract
Most of the molybdoenzymes contain, in the amino-terminal region of their catalytic subunits, a conserved Cys group that in some cases binds an [Fe-S] cluster. In dissimilatory nitrate reductases, the first Cys residue of this motif is replaced by a conserved His residue. Site-directed mutagenesis of this residue (His-50) was performed on the NarG subunit from Escherichia coli nitrate reductase A. The results obtained by EPR spectroscopy enable us to exclude the implication of this residue in [Fe-S] binding. Additionally, we showed that the His-50 residue does not coordinate the molybdenum atom, but its substitution by Cys or Ser introduces a perturbation of the hydrogen bonding network around the molybdenum cofactor. From potentiometric studies, it is proposed that the high-pH and the low-pH forms of the Mo(V) are both involved during the redox turnover of the enzyme. Perturbation of the Mo(V) pKV value might be responsible for the low activity reported in the His-50-Cys mutant enzyme. A catalytic model is proposed in which the protonation/deprotonation of the Mo(V) species is an essential step. Thus, one of the two protons involved in the catalytic cycle could be the one coupled to the molybdenum atom in the dissimilatory nitrate reductase of E. coli.
- Fischer B, Enemark JH, Basu P
- A chemical approach to systematically designate the pyranopterin centers of molybdenum and tungsten enzymes and synthetic models.
- J Inorg Biochem. 1998; 72: 13-21
- Display abstract
The recent growth in the chemistry of the oxo-molybdenum enzymes has demonstrated the need for developing systematic methods for naming and abbreviating the novel pterin cofactors that bind to the metal ion via the sulfur atoms of an ene-1,2-dithiolate moiety. Historically, the term "molybdopterin" was coined to designate a special pterin that binds molybdenum and the molybdenum-bound form was termed the "molybdenum cofactor". However, recent studies have demonstrated that this novel pterin also binds tungsten. Furthermore, considerable variation has been found in the pterin entity itself. Taken together, these facts show that molybdenum- and tungsten-containing enzymes possess a family of cofactors rather than a single "molybdenum cofactor". This article proposes a unified methodology for describing these cofactors and their metal-free pterin units in light of recent results from protein crystallography. The various numbering schemes that have been used for this heterocycle are considered, as well as the IUPAC rules which are currently being used for related tricyclic compounds. A unified methodology for uniquely designating and abbreviating each cofactor is proposed. The available chemical and spectroscopic information on the pyranopterin entities that are present in the molybdenum and tungsten enzymes, the precursors to these centers, and synthetic pyranopterins are in part the basis of the systematic names and simplifying abbreviations.
- Kisker C, Schindelin H, Baas D, Retey J, Meckenstock RU, Kroneck PM
- A structural comparison of molybdenum cofactor-containing enzymes.
- FEMS Microbiol Rev. 1998; 22: 503-21
- Display abstract
This work gives an overview of the recent achievements which have contributed to the understanding of the structure and function of molybdenum and tungsten enzymes. Known structures of molybdo-pterin cofactor-containing enzymes will be described briefly and the structural differences between representatives of the same and different families will be analyzed. This comparison will show that the molybdo-pterin cofactor-containing enzymes represent a very heterogeneous group with differences in overall enzyme structure, cofactor composition and stoichiometry, as well as differences in the immediate molybdenum environment. Two recently discovered molybdo-pterin cofactor-containing enzymes will be described with regard to molecular and EPR spectroscopic properties, pyrogallol-phloroglucinol transhydroxylase from Pelobacter acidigallici and acetylene hydratase from Pelobacter acetylenicus. On the basis of its amino acid sequence, transhydroxylase can be classified as a member of the dimethylsulfoxide reductase family, whereas classification of the tungsten/molybdenum-containing acetylene hydratase has to await the determination of its amino acid sequence.
- Brereton PS, Verhagen MF, Zhou ZH, Adams MW
- Effect of iron-sulfur cluster environment in modulating the thermodynamic properties and biological function of ferredoxin from Pyrococcus furiosus.
- Biochemistry. 1998; 37: 7351-62
- Display abstract
The ferredoxin (7.5 kDa) of the hyperthermophilic archaeon, Pyrococcus furiosus, contains a single [4Fe-4S]1+,2+ cluster that is coordinated by three Cys and one Asp residue rather than the expected four Cys. The role of this Asp residue was investigated using a series of mutants, D14X, where X = C, S, H, N, V, and Y, prepared by heterologous gene expression in Escherichia coli. While the recombinant form of the wild-type and the D14S and D14C mutants contained a [4Fe-4S]1+,2+ cluster, the D14V, D14H, D14Y, and D14N proteins contained a [3Fe-4S]0,+ center, as determined by visible spectroscopy and electrochemistry. The redox potentials (at pH 7.0, 23 degrees C) of the D14C and D14S mutants were decreased by 58 and 133 mV, respectively, compared to those of the wild-type 4Fe-ferredoxin (Em -368 mV), while those of the 3Fe-protein mutants (including the 3Fe-form of the D14S, generated by chemical oxidation) were between 15 and 118 mV more positive than that of wild-type 3Fe-form (obtained by chemical oxidation, Em -203 mV). The reduction potentials of all of the 3Fe-forms, except the D14S mutant, showed a pH response over the range 3.0-10.0 with a pK of 3.3-4.7, and this was assigned to cluster protonation. The D14H mutant and the wild-type 3Fe-proteins showed an additional pK (both at 5.9) assumed to arise from protonation of the amino acid side chain. With the 4Fe-proteins, there was no dramatic change in the potentials of the wild-type or D14C form, while the pH response of the D14S mutant (pK 4.75) was ascribed to protonation of the serinate. While the ferredoxin variants exhibited a range of thermal stabilities (measured at 80 degrees C, pH 2.5), none of them showed any temperature-dependent transitions (0-80 degrees C) in their reduction potentials, and there was no correlation between the calculated DeltaS degrees' values and the absorbance maximum, reduction potential, or hydrophobicity of residue 14. In contrast, there was a linear correlation between the DeltaH degrees' value and reduction potential. Kinetic analyses were carried out at 80 degrees C using the ferredoxin as either an electron acceptor to pyruvate oxidoreductase (POR) or as an electron donor to ferredoxin:NADP oxidoreductase (FNOR, both from P. furiosus). The data showed that the reduction potential of the ferredoxin, rather than cluster type or the nature of the residue at position 14, appears to be the predominant factor in determining efficiency of electron transfer in both systems. However, compared to all the variants, the reduction potential of WT Fd makes it the most appropriate protein to both accept electrons from POR and donate them to FNOR.
- Hanzelmann P, Meyer O
- Effect of molybdate and tungstate on the biosynthesis of CO dehydrogenase and the molybdopterin cytosine-dinucleotide-type of molybdenum cofactor in Hydrogenophaga pseudoflava.
- Eur J Biochem. 1998; 255: 755-65
- Display abstract
The molybdenum-containing iron-sulfur flavoprotein CO dehydrogenase is expressed in a catalytically fully competent form during heterotrophic growth of the aerobic bacterium Hydrogenophaga pseudoflava with pyruvate plus CO. We have adopted these conditions for studying the effect of molybdate (Mo) and tungstate (W) on the biosynthesis of CO dehydrogenase and its molybdopterin (MPT) cytosine-dinucleotide-(MCD)-type molybdenum cofactor. W was taken up by the Mo transport system and, therefore, interfered with Mo transport in an antagonistic way. Depletion of Mo from the growth medium as well as inclusion of excess W both resulted in the absence of intracellular Mo and led to the biosynthesis of CO dehydrogenase species of proper L2M2S2 subunit structure that carried the two 2Fe:2S type-I and type-II centers and two FAD molecules. EPR, ultraviolet/visible and CD spectroscopies established the full functionality of the cofactors. Due to the absence of the Mo-MCD cofactor, the enzyme species were catalytically inactive. Unexpectedly, the following cytidine nucleotides were present in inactive CO dehydrogenase: CDP, dCDP, CMP, dCMP, CTP or dCTP. The sum of cytidine nucleotides was two/mol enzyme. The binding specificities of inactive CO dehydrogenase for cytidine nucleotides (oxy > deoxy; diphosphate > monophosphate > triphosphate), and the absence of MPT suggest that, in active CO dehydrogenase, the cytidine diphosphate moiety of Mo-MCD provides the strongest interactions with the protein and determines the specificity for the type of nucleotide. In H. pseudoflava, the biosynthesis of MPT (identified as form A) was independent of Mo. Mo was, however, strictly required for the conversion of MPT to MCD (identified as form-A-CMP) as well as the insertion of Mo-MCD into CO dehydrogenase. These data support a model for the involvement of Mo in the biosynthesis of the Mo-MCD cofactor and of fully functional CO dehydrogenase in which the synthesis and insertion of Mo-MCD require Mo, and protein synthesis including integration of the FeS-centers and FAD are independent of Mo.
- Ghosh M, Grunden AM, Dunn DM, Weiss R, Adams MW
- Characterization of native and recombinant forms of an unusual cobalt-dependent proline dipeptidase (prolidase) from the hyperthermophilic archaeon Pyrococcus furiosus.
- J Bacteriol. 1998; 180: 4781-9
- Display abstract
Proline dipeptidase (prolidase) was purified from cell extracts of the proteolytic, hyperthermophilic archaeon Pyrococcus furiosus by multistep chromatography. The enzyme is a homodimer (39.4 kDa per subunit) and as purified contains one cobalt atom per subunit. Its catalytic activity also required the addition of Co2+ ions (Kd, 0.24 mM), indicating that the enzyme has a second metal ion binding site. Co2+ could be replaced by Mn2+ (resulting in a 25% decrease in activity) but not by Mg2+, Ca2+, Fe2+, Zn2+, Cu2+, or Ni2+. The prolidase exhibited a narrow substrate specificity and hydrolyzed only dipeptides with proline at the C terminus and a nonpolar amino acid (Met, Leu, Val, Phe, or Ala) at the N terminus. Optimal prolidase activity with Met-Pro as the substrate occurred at a pH of 7.0 and a temperature of 100 degrees C. The N-terminal amino acid sequence of the purified prolidase was used to identify in the P. furiosus genome database a putative prolidase-encoding gene with a product corresponding to 349 amino acids. This gene was expressed in Escherichia coli and the recombinant protein was purified. Its properties, including molecular mass, metal ion dependence, pH and temperature optima, substrate specificity, and thermostability, were indistinguishable from those of the native prolidase from P. furiosus. Furthermore, the Km values for the substrate Met-Pro were comparable for the native and recombinant forms, although the recombinant enzyme exhibited a twofold greater Vmax value than the native protein. The amino acid sequence of P. furiosus prolidase has significant similarity with those of prolidases from mesophilic organisms, but the enzyme differs from them in its substrate specificity, thermostability, metal dependency, and response to inhibitors. The P. furiosus enzyme appears to be the second Co-containing member (after methionine aminopeptidase) of the binuclear N-terminal exopeptidase family.
- Breese K, Fuchs G
- 4-Hydroxybenzoyl-CoA reductase (dehydroxylating) from the denitrifying bacterium Thauera aromatica--prosthetic groups, electron donor, and genes of a member of the molybdenum-flavin-iron-sulfur proteins.
- Eur J Biochem. 1998; 251: 916-23
- Display abstract
4-Hydroxybenzoyl-CoA reductase catalyzes an important reaction in the anaerobic metabolism of phenolic compounds, i.e. the reductive removal of an aromatic hydroxyl group. The prosthetic groups and the natural electron donor of the enzyme were investigated and the genes were cloned and sequenced. The enzyme is a molybdenum-flavin-iron-sulfur protein of subunit composition of alpha2beta2gamma2. It contains approximately 1.3 flavin nucleotide, probably FAD, 1.9 Mo, 15 Fe, and 12.5 acid-labile sulfur. Sequence interpretation suggests that the native enzyme contains two [4Fe-4S] and four [2Fe-2S] clusters. A 9.8-kDa ferredoxin with two [4Fe-4S] clusters functions as the natural electron donor. The genes coding for the three subunits, hcrABC, show high similarities to other molybdenum-flavin-iron-sulfur proteins of the xanthine oxidase family, notably to the three putative 4-hydroxybenzoyl-CoA reductase genes in Rhodopseudomonas palustris. In addition, there are close similarities to three open reading frames (orf) in E. coli. A major difference is the presence of an additional domain in the beta-subunit (HcrB, 35 kDa) probably carrying an additional iron-sulfur cluster. The 82-kDa alpha-subunit (HcrA) contains a Mo-cofactor-binding site. The 17-kDa gamma-subunit (HcrC) harbors two [2Fe-2S] clusters. Upstream of the hcrCAB region, an ORF was found coding for a regulatory protein of the MarR family. Downstream of the hcrCAB region lies an ORF presumably coding for a hydrophobic permease.
- McEwan AG, Hanson GR, Bailey S
- Dimethylsulphoxide reductase from purple phototrophic bacteria: structures and mechanism(s).
- Biochem Soc Trans. 1998; 26: 390-6
- Menon AL, Hendrix H, Hutchins A, Verhagen MF, Adams MW
- The delta-subunit of pyruvate ferredoxin oxidoreductase from Pyrococcus furiosus is a redox-active, iron-sulfur protein: evidence for an ancestral relationship with 8Fe-type ferredoxins.
- Biochemistry. 1998; 37: 12838-46
- Display abstract
Pyruvate ferredoxin oxidoreductase (POR) from the hyperthermophilic archaeon Pyrococcus furiosus (Pf) catalyzes the final oxidative step in carbohydrate fermentation in which pyruvate is oxidized to acetyl-CoA and CO2, coupled to the reduction of ferredoxin (Fd). POR is composed of two 'catalytic units' of molecular mass approximately 120 kDa. Each unit consists of four subunits, alpha beta gamma delta, with masses of approximately 44, 36, 20, and 12 kDa, respectively, and contains at least two [4Fe-4S] clusters. The precise mechanism of catalysis and the role of the individual subunits are not known. The gene encoding the delta-subunit of Pf POR has been expressed in E. coli, and the protein was purified after reconstitution with iron and sulfide. The reconstituted delta-subunit (recPOR-delta) is monomeric with a mass of 11 879 +/- 1.2 Da as determined by mass spectrometry, in agreement with that predicted from the gene sequence. Purified recPOR-delta contains 8 Fe mol/mol and remained intact when incubated at 85 degreesC for 2 h, as judged by its visible absorption properties. The reduced form of the protein exhibited an EPR spectrum characteristic of two, spin-spin interacting [4Fe-4S]1+ clusters. When compared with the EPR properties of the reduced holoenzyme, the latter was shown to contain a third [4Fe-4S]1+ cluster in addition to the two within the delta-subunit. The reduction potential of the two 4Fe clusters in isolated recPOR-delta (-403 +/- 8 mV at pH 8.0 and 24 degreesC) decreased linearly with temperature (-1.55 mV/ degreesC) up to 82 degreesC. RecPOR-delta replaced Pf Fd as an in vitro electron carrier for two oxidoreductases from Pf, POR and Fd:NADP oxidoreductase, and the POR holoenzyme displayed a higher apparent affinity for its own subunit (apparent Km = 1.0 microM at 80 degreesC) than for Fd (apparent Km = 4.4 microM). The molecular and spectroscopic properties and amino acid sequence of the isolated delta-subunit suggest that it evolved from an 8Fe-type Fd by the addition of approximately 40 residues at the N-terminus, and that this extension enabled it to interact with additional subunits within POR.
- McAlpine AS, McEwan AG, Bailey S
- The high resolution crystal structure of DMSO reductase in complex with DMSO.
- J Mol Biol. 1998; 275: 613-23
- Display abstract
The crystal structure of the molybdenum enzyme dimethylsulphoxide reductase (DMSOR) has been determined at 1.9 A resolution with substrate bound at the active site. DMSOR is an oxotransferase which catalyses the reduction of dimethylsulphoxide (DMSO) to dimethylsulphide (DMS) in a two stage reaction which is linked to oxygen atom transfer and electron transfer. In the first step, DMSO binds to reduced (Mo(IV)) enzyme, the enzyme is oxidised to Mo(VI) with an extra oxygen ligand and DMS is released. Regeneration of reduced enzyme is achieved by transfer of two electrons, successively from a specific cytochrome, and release of the oxygen as water. The enzyme, purified under aerobic conditions, is in the oxidised (Mo(VI)) state. Addition of a large excess of DMS to the oxidised enzyme in solution causes a change in the absorption spectrum of the enzyme. The same reaction occurs within crystals of the enzyme and the crystal structure reveals a complex with DMSO bound to the molybdenum via its oxygen atom. X-ray edge data indicate that the metal is in the Mo(IV) state. The DMSO ligand replaces one of the two oxo groups which ligate the oxidised form of the enzyme, suggesting very strongly that this is the oxygen which is transferred during catalysis. Residues 384 to 390, disordered in the oxidised enzyme, are now clearly seen in the cleft leading to the active site. The side-chain of Trp388 forms a lid trapping the substrate/product.
- McMaster J, Enemark JH
- The active sites of molybdenum- and tungsten-containing enzymes.
- Curr Opin Chem Biol. 1998; 2: 201-7
- Display abstract
Protein X-ray crystallography has revealed the structures of the active sites of several molybdenum- and tungsten-containing enzymes that catalyze formal hydroxylation and oxygen atom transfer reactions. Each molybdenum (or tungsten) atom is coordinated by one (or two) ene-dithiolate groups of a novel pterin (molybdopterin), and the active sites are further differentiated from one another by the number of terminal oxo and/or sulfido groups and by coordinated amino acid residues. These active-site structures have no precedent in the coordination chemistry of molybdenum and tungsten.
- Ramakrishnan V, Teng Q, Adams MW
- Characterization of UDP amino sugars as major phosphocompounds in the hyperthermophilic archaeon Pyrococcus furiosus.
- J Bacteriol. 1997; 179: 1505-12
- Display abstract
The archaeon Pyrococcus furiosus is a strictly anaerobic heterotroph that grows optimally at 100 degrees C by the fermentation of carbohydrates. It is known to contain high concentrations of novel intracellular solutes such as beta-mannosylglycerate and di-myo-inositol 1,1'-phosphate (DIP) (L. O. Martins and H. Santos, Appl. Environ. Microbiol. 61:3299-3303, 1995). Here, 31P nuclear magnetic resonance (NMR) spectroscopy was used to show that this organism also accumulates another type of phospho compound, as revealed by a major multiplet signal in the pyrophosphate region. The compounds were purified from cell extracts of P. furiosus by anion-exchange and gel filtration chromatographic procedures and were structurally analyzed by 1H, 13C, and 31P NMR spectroscopy. They were identified as two uridylated amino sugars, UDP N-acetylglucosamine and UDP N-acetylgalactosamine. Unambiguous characterizations and complete assignments of 1H and 13C resonances from such sugars have not been previously reported. In vitro 31P NMR spectroscopic analyses showed that, in contrast to DIP, which is maintained at a constant intracellular concentration (approximately 32 mM) throughout the growth phase of P. furiosus, the UDP amino sugars accumulated (to approximately 14 mM) only during the late log phase. The possible biochemical roles of these compounds in P. furiosus are discussed.
- Solomon PS, Lane I, Hanson GR, McEwan AG
- Characterisation of the pterin molybdenum cofactor in dimethylsulfoxide reductase of Rhodobacter capsulatus.
- Eur J Biochem. 1997; 246: 200-3
- Display abstract
Analysis of dimethylsulfoxide reductase from Rhodobacter capsulatus showed that it contained 1 mol Mo and 2 mol GMP. This indicates that the molybdenum cofactor in dimethylsulfoxide reductase is bis(molybdopterin guanine dinucleotide) molybdenum. The absorption spectrum of the molybdopterin guanine dinucleotide released from dimethylsulfoxide reductase after denaturation of the holoenzyme was compared with those of pterin standards of known redox state. The spectra were most similar to pterin standards in the dihydro state and oxidised state. The reduction of 2,6-dichloroindophenol by molybdopterin guanine dinucleotide released from dimethylsulfoxide reductase and by pterin standards was also measured and approximately 2 mol electrons/2 mol molybdopterin guanine dinucleotide were found to reduce 2,6-dichloroindophenol. These results are consistent with the presence of one molybdopterin guanine dinucleotide moiety with a pyrazine ring at the oxidation level of a dihydropteridine and one molybdopterin guanine dinucleotide moiety with a pyrazine ring at the oxidation level of a fully aromatic pteridine. It is suggested that the pyrazine ring of Q-molybdopterin guanine dinucleotide is fully aromatic and contains a 5,6 double bond.
- Tersteegen A, Linder D, Thauer RK, Hedderich R
- Structures and functions of four anabolic 2-oxoacid oxidoreductases in Methanobacterium thermoautotrophicum.
- Eur J Biochem. 1997; 244: 862-8
- Display abstract
Methanobacterium thermoautotrophicum (strain Marburg), which grows autotrophically on H2 and CO2, was found to contain 2-oxoisovalerate oxidoreductase (Vor) and indolepyruvate oxidoreductase (Ior) besides pyruvate oxidoreductase (Por) and 2-oxoglutarate oxidoreductase (Kor). So far, Vor and Ior have only been detected in peptide-utilizing hyperthermophilic Archaea. The four 2-oxoacid oxidoreductases were purified and characterized with respect to their subunit composition, N-terminal amino acid sequences, and catalytic properties. Por and Kor were composed of four different subunits, Vor was composed of three different subunits, and Ior of two different subunits. Comparisons of the N-terminal amino acid sequences revealed that the four enzymes are structurally related to each other and to the respective enzymes from Pyrococcus and Thermococcus sp. Vor from M. thermoautotrophicum differed from Vor from Pyrococcus furiosus in being composed of only three instead of four different subunits. Evidence is presented that in the autotrophic methanogen the four 2-oxoacid oxidoreductases have anabolic functions, Vor and Ior being involved in the biosynthesis of amino acids from fatty acids taken up from the growth medium, as shown by 14C-labelling studies.
- Glasemacher J, Bock AK, Schmid R, Schonheit P
- Purification and properties of acetyl-CoA synthetase (ADP-forming), an archaeal enzyme of acetate formation and ATP synthesis, from the hyperthermophile Pyrococcus furiosus.
- Eur J Biochem. 1997; 244: 561-7
- Display abstract
Acetyl-CoA synthetase (ADP-forming) is an enzyme in Archaea that catalyzes the formation of acetate from acetyl-CoA and couples this reaction with the synthesis of ATP from ADP and Pi (acetyl-CoA + ADP + Pi --> acetate + ATP + CoA) [Schifer, T., Selig, M. & Schonheit, P. (1993) Arch. Microbiol. 159, 72-83]. The enzyme from the anaerobic hyperthermophile Pyrococcus furiosus was purified 96-fold with a yield of 20% to apparent electrophoretic homogeneity. The oxygen-stable enzyme had an apparent molecular mass of 145 kDa and was composed of two subunits with apparent molecular masses of 47 kDa and 25 kDa, indicating an alpha2beta2 structure. The N-terminal amino acid sequences of both subunits were determined; they do not show significant identity to other proteins in databases. The purified enzyme catalyzed the reversible conversion of acetyl-CoA, ADP and Pi to acetate, ATP and CoA. The apparent Vmax value in the direction of acetate formation was 18 U/mg (55 degrees C), the apparent Km values for acetyl-CoA, ADP and Pi were 17 microM, 60 microM and 200 microM, respectively. ADP and Pi could not be replaced by AMP and PPi, defining the enzyme as an ADP-forming rather than an AMP-forming acetyl-CoA synthetase. The apparent Vmax value in the direction of acetyl-CoA formation was about 40 U/mg (55 degrees C), and the apparent Km values for acetate, ATP and CoA were 660 microM, 80 microM and 30 microM, respectively. The purified enzyme was not specific for acetyl-CoA or acetate, in addition to acetyl-CoA (100%), the enzyme accepts propionyl-CoA (110%) and butyryl-CoA (92%), and in addition to acetate (100%), the enzyme accepts propionate (100%), butyrate (92%), isobutyrate (79%), valerate (36%) and isovalerate (34%), indicating that the enzyme functions as an acyl-CoA synthetase (ADP-forming) with a broad substrate spectrum. Succinate, phenylacetate and indoleacetate did not serve as substrates for the enzyme (<3%). In addition to ADP (100%), GDP (220%) and IDP (250%) were used, and in addition to ATP (100%), GTP (210%) and ITP (320%) were used. Pyrimidine nucleotides were not accepted. The enzyme was dependent on Mg2+, which could be partly substituted by Mn2+ and Co2+. The pH optimum was pH 7. The enzyme has a temperature optimum at 90 degrees C, which is in accordance with its physiological function under hyperthermophilic conditions. The enzyme was stabilized against heat inactivation by salts. In the presence of KCI (1 M), which was most effective, the enzyme did not loose activity after 2 h incubation at 100 degrees C.
- Boschi-Muller S, Azza S, Pollastro D, Corbier C, Branlant G
- Comparative enzymatic properties of GapB-encoded erythrose-4-phosphate dehydrogenase of Escherichia coli and phosphorylating glyceraldehyde-3-phosphate dehydrogenase.
- J Biol Chem. 1997; 272: 15106-12
- Display abstract
GapB-encoded protein of Escherichia coli and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) share more than 40% amino acid identity. Most of the amino acids involved in the binding of cofactor and substrates to GAPDH are conserved in GapB-encoded protein. This enzyme shows an efficient non-phosphorylating erythrose-4-phosphate dehydrogenase activity (Zhao, G., Pease, A. J., Bharani, N., and Winkler, M. E. (1995) J. Bacteriol. 177, 2804-2812) but a low phosphorylating glyceraldehyde-3-phosphate dehydrogenase activity, whereas GAPDH shows a high efficient phosphorylating glyceraldehyde-3-phosphate dehydrogenase activity and a low phosphorylating erythrose-4-phosphate dehydrogenase activity. To identify the structural factors responsible for these differences, comparative kinetic and binding studies have been carried out on both GapB-encoded protein of Escherichia coli and GAPDH of Bacillus stearothermophilus. The KD constant of GapB-encoded protein for NAD is 800-fold higher than that of GAPDH. The chemical mechanism of erythrose 4-phosphate oxidation by GapB-encoded protein is shown to proceed through a two-step mechanism involving covalent intermediates with Cys-149, with rates associated to the acylation and deacylation processes of 280 s-1 and 20 s-1, respectively. No isotopic solvent effect is observed suggesting that the rate-limiting step is not hydrolysis. The rate of oxidation of glyceraldehyde 3-phosphate is 0.12 s-1 and is hydride transfer limiting, at least 2000-fold less efficient compared with that of erythrose 4-phosphate. Thus, it can be concluded that it is only the structure of the substrates that prevails in forming a ternary complex enzyme-NAD-thiohemiacetal productive (or not) for hydride transfer in the acylation step. This conclusion is reinforced by the fact that the rate of oxidation for erythrose 4-phosphate by GAPDH is 0.1 s-1 and is limited by the acylation step, whereas glyceraldehyde 3-phosphate acylation is efficient and is not rate-determining (>/=800 s-1). Substituting Asn for His-176 on GapB-encoded protein, a residue postulated to facilitate hydride transfer as a base catalyst, decreases 40-fold the kcat of glyceraldehyde 3-phosphate oxidation. This suggests that the non-efficient positioning of the C-1 atom of glyceraldehyde 3-phosphate relative to the pyridinium of the cofactor within the ternary complex is responsible for the low catalytic efficiency. No phosphorylating activity on erythrose 4-phosphate with GapB-encoded protein is observed although the Pi site is operative as proven by the oxidative phosphorylation of glyceraldehyde 3-phosphate. Thus the binding of inorganic phosphate to the Pi site likely is not productive for attacking efficiently the thioacyl intermediate formed with erythrose 4-phosphate, whereas a water molecule is an efficient nucleophile for the hydrolysis of the thioacyl intermediate. Compared with glyceraldehyde-3-phosphate dehydrogenase activity, this corresponds to an activation of the deacylation step by >/=4.5 kcal.mol-1. Altogether these results suggest subtle structural differences between the active sites of GAPDH and GapB-encoded protein that could be revealed and/or modulated by the structure of the substrate bound. This also indicates that a protein engineering approach could be used to convert a phosphorylating aldehyde dehydrogenase into an efficient non-phosphorylating one and vice versa.
- Russell RJ, Ferguson JM, Hough DW, Danson MJ, Taylor GL
- The crystal structure of citrate synthase from the hyperthermophilic archaeon pyrococcus furiosus at 1.9 A resolution,.
- Biochemistry. 1997; 36: 9983-94
- Display abstract
The crystal structure of the closed form of citrate synthase, with citrate and CoA bound, from the hyperthermophilic Archaeon Pyrococcus furiosus has been determined to 1.9 A. This has allowed direct structural comparisons between the same enzyme from organisms growing optimally at 37 degrees C (pig), 55 degrees C (Thermoplasma acidophilum) and now 100 degrees C (Pyrococcus furiosus). The three enzymes are homodimers and share a similar overall fold, with the dimer interface comprising primarily an eight alpha-helical sandwich of four antiparallel pairs of helices. The active sites show similar modes of substrate binding; moreover, the structural equivalence of the amino acid residues implicated in catalysis implies that the mechanism proceeds via the same acid-base catalytic process. Given the overall structural and mechanistic similarities, it has been possible to make detailed structural comparisons between the three citrate synthases, and a number of differences can be identified in passing from the mesophilic to thermophilic to hyperthermophilic citrate synthases. The most significant of these are an increased compactness of the enzyme, a more intimate association of the subunits, an increase in intersubunit ion pairs, and a reduction in thermolabile residues. Compactness is achieved by the shortening of a number of loops, an increase in the number of atoms buried from solvent, an optimized packing of side chains in the interior, and an absence of cavities. The intimate subunit association in the dimeric P. furiosus enzyme is achieved by greater complementarity of the monomers and by the C-terminal region of each monomer folding over the surface of the other monomer, in contrast to the pig enzyme where the C-terminus has a very different fold. The increased number of intersubunit ion pairs is accompanied by an increase in the number involved in networks. Interestingly, all loop regions in the P. furiosus enzyme either are shorter or contain additional ion pairs compared with the pig enzyme. The possible relevance of these structural features to enzyme hyperthermostability is discussed.
- Zhou ZH, Adams MW
- Site-directed mutations of the 4Fe-ferredoxin from the hyperthermophilic archaeon Pyrococcus furiosus: role of the cluster-coordinating aspartate in physiological electron transfer reactions.
- Biochemistry. 1997; 36: 10892-900
- Display abstract
Ferredoxin from the hyperthermophilic archaeon Pyrococcus furiosus is a monomeric protein (7.5 kDa) that contains a single [4Fe-4S]1+, 2+ cluster. The protein is unusual in that its cluster is coordinated by three Cys and one Asp residue, rather than by the typical four Cys residues. Site-directed mutagenesis has been used to obtain mutant forms in which the cluster-coordinating Asp was replaced by Cys (D14C) and also by Ser (D14S), together with a third mutant (A1K) which contained N-Met-Lys at the N-terminus instead of N-Ala. Analyses using UV-visible absorption, far-UV circular dichroism, and EPR spectroscopy showed that there were no gross structural differences between the native and the three mutant forms and that they each contained a [4Fe-4S] cluster. The reduction potentials, determined by direct electrochemistry (at 23 degrees C, pH 8.0), of the D14S, D14C, and A1K mutants were -490, -422, and -382 mV, respectively, which compare with values of -375 mV for native [4Fe-4S]-containing ferredoxin and -160 mV for the [3Fe-4S]-containing form. The native, D14C, and A1K proteins functioned as electron acceptors in vitroat 80 degrees C for pyruvate ferredoxin oxidoreductase (POR) and aldehyde ferredoxin oxidoreductase (AOR) from P. furiosus using pyruvate and crotonaldehyde as substrates, respectively. The calculated kcat/Km values were similar for the three proteins when ferredoxin reduction was measured either directly by visible absorption or indirectly by coupling ferredoxin reoxidation to the reduction of metronidazole. In contrast, using the D14S mutant and the 3Fe-form of the native ferredoxin as electron acceptors, the activity with AOR was virtually undetectable, and with POR the calculated kcat/Km values were at least 3-fold lower than those obtained with the native (4Fe-), D14C, and A1K proteins. The ability of this 4Fe-ferredoxin to accept electrons from two oxidoreductases of the same organism is therefore not absolutely dependent upon Asp14, as this residue can be effectively replaced by Cys. However, the efficiency of electron transfer is compromised if Asp14 is replaced by Ser, or if the 4Fe-cluster is converted to the 3Fe-form, but Asp14 does not appear to offer any kinetic advantage over the expected Cys.
- Ori N, Eshed Y, Pinto P, Paran I, Zamir D, Fluhr R
- TAO1, a representative of the molybdenum cofactor containing hydroxylases from tomato.
- J Biol Chem. 1997; 272: 1019-25
- Display abstract
Aldehyde oxidase and xanthine dehydrogenase are a group of ubiquitous hydroxylases, containing a molybdenum cofactor (MoCo) and two iron-sulfur groups. Plant aldehyde oxidase and xanthine dehydrogenase activities are involved in nitrogen metabolism and hormone biosynthesis, and their corresponding genes have not yet been isolated. Here we describe a new gene from tomato, which shows the characteristics of a MoCo containing hydroxylase. It shares sequence homology with xanthine dehydrogenases and aldehyde oxidases from various organisms, and similarly contains binding sites for two iron-sulfur centers and a molybdenum-binding region. However, it does not contain the xanthine dehydrogenase conserved sequences thought to be involved in NAD binding and in substrate specificity, and is likely to encode an aldehyde oxidase-type activity. This gene was designated tomato aldehyde oxidase 1 (TAO1). TAO1 belongs to a multigene family, whose members are shown to map to clusters on chromosomes 1 and 11. MoCo hydroxylase activity is shown to be recognized by antibodies raised against recombinant TAO1 polypeptides. Immunoblots reveal that TAO1 cross-reacting material is ubiquitously expressed in various organisms, and in plants it is mostly abundant in fruits and rapidly dividing tissues.
- Canne C et al.
- Comparative EPR and redox studies of three prokaryotic enzymes of the xanthine oxidase family: quinoline 2-oxidoreductase, quinaldine 4-oxidase, and isoquinoline 1-oxidoreductase.
- Biochemistry. 1997; 36: 9780-90
- Display abstract
For three prokaryotic enzymes of the xanthine oxidase family, namely quinoline 2-oxidoreductase, quinaldine 4-oxidase, and isoquinoline 1-oxidoreductase, the electron transfer centers were investigated by electron paramagnetic resonance. The enzymes are containing a molybdenum-molybdopterin cytosine dinucleotide cofactor, two distinct [2Fe-2S] clusters and, apart from isoquinoline 1-oxidoreductase, a flavin adenine dinucleotide. The latter cofactor yields two different organic radical signals in quinoline 2-oxidoreductase and quinaldine 4-oxidase, typical for the neutral and anionic form, respectively. A "rapid" Mo(V) species is present in all enzymes with small differences in magnetic parameters. From spectra simulation of 95Mo-substituted quinoline 2-oxidoreductase, a deviation of 25 degrees between the maximal g and 95Mo-hyperfine tensor component was derived. The very rapid Mo(V) species was detected in small amounts upon reduction with substrates in quinoline 2-oxidoreductase and quinaldine 4-oxidase, but showed a different kinetic behavior with considerable EPR intensities in isoquinoline 1-oxidoreductase. The FeSI and FeSII centers produced different signals in all three enzymes and, in case of isoquinoline 1-oxidoreductase, revealed a dipolar interaction, from which a maximum distance of 15 A between FeSI and FeSII was estimated. The midpoint potentials of the FeS centers were surprisingly different and determined for FeSI/FeSII with -155/-195 mV in quinoline 2-oxidoreductase, -250/-70 mV in quinaldine 4-oxidase, and +65/+10 mV in isoquinoline 1-oxidoreductase. The slopes of the fitting curves for the Nernst equation are indicative for nonideal behavior. Only in quinoline 2-oxidoreductase, an averaged midpoint potential of the molybdenum redox pairs of about -390 mV could be determined. Both of the other enzymes did not produce Mo(V) signals in redox titration experiments, probably because of direct reduction of Mo(VI) to Mo(IV) in the presence of dithionite.
- Siddiqui MA, Fujiwara S, Imanaka T
- Indolepyruvate ferredoxin oxidoreductase from Pyrococcus sp. KOD1 possesses a mosaic structure showing features of various oxidoreductases.
- Mol Gen Genet. 1997; 254: 433-9
- Display abstract
Indolepyruvate ferredoxin oxidoreductase (IOR) catalyzes the oxidative decarboxylation of arylpyruvates. Gene cloning and sequencing analysis of the IOR gene from the hyperthermophilic archaeon Pyrococcus sp. KOD1 was performed. Two genes, iorA and iorB. encoding alpha and beta subunits of IOR were found to be tandemly arranged, which suggests that gene expression is translationally coupled. Sequence analysis showed the C-terminal region of the alpha subunit to have a typical ferredoxin-type [4Fe-4S] cluster motif (CXXCXXCXXCXXXCP), which is similar to that present in the delta subunits of other oxidoreductases such as pyruvate ferredoxin oxidoreductase (POR) and 2-ketoisovalerate ferredoxin oxidoreductase (VOR). We suggest that the alpha subunit of KOD1-IOR has a mosaic structure composed of features characteristic of the alpha, beta and delta subunits from POR and VOR. KOD1-IOR was overproduced in anaerobically incubated Escherichia coli cells and the crude enzyme was extracted under anaerobic conditions. The optimal temperature for activity of recombinant IOR was 70 degrees C and the half-life of this enzyme in the presence of air was 15 min at 25 degrees C.
- Halio SB, Bauer MW, Mukund S, Adams M, Kelly RM
- Purification and Characterization of Two Functional Forms of Intracellular Protease PfpI from the Hyperthermophilic Archaeon Pyrococcus furiosus.
- Appl Environ Microbiol. 1997; 63: 289-295
- Display abstract
The hyperthermophilic archaeon Pyrococcus furiosus grows optimally at 100(deg)C by the fermentation of peptides and carbohydrates. From this organism, we have purified to homogeneity an intracellular protease, previously designated PfpI (P. furiosus protease I) (S. B. Halio, I. I. Blumentals, S. A. Short, B. M. Merrill, and R. M. Kelly, J. Bacteriol. 178:2605-2612, 1996). The protease contains a single subunit with a molecular mass of approximately 19 kDa and exists in at least two functional conformations, which were purified separately. The predominant form from the purification (designated PfpI-C1) is a hexamer with a molecular mass of 124 (plusmn) 6 kDa (by gel filtration) and comprises about 90% of the total activity. The minor form (designated PfpI-C2) is trimeric with a molecular mass of 59 (plusmn) 3 kDa. PfpI-C1 hydrolyzed both basic and hydrophobic residues in the P1 position, indicating trypsin- and chymotrypsin-like specificities, respectively. The temperature optimum for Ala-Ala-Phe-7-amido-4-methylcoumarin (AAF-MCA) hydrolysis was (symbl)85(deg)C both for purified PfpI-C1 and for proteolytic activity in P. furiosus cell extract. In contrast, the temperature optimum for PfpI prepared by incubating a cell extract of P. furiosus at 98(deg)C in 1% sodium dodecyl sulfate for 24 h at 95 to 100(deg)C (I. I. Blumentals, A. S. Robinson, and R. M. Kelly, Appl. Environ. Microbiol. 56:1255-1262, 1990), designated PfpI-H, was (symbl)100(deg)C. Moreover, the half-life of activity of PfpI-C1 at 98(deg)C was less than 30 min, in contrast to a value of more than 33 h measured for PfpI-H. PfpI-C1 appears to be a predominant serine-type protease in cell extracts but is converted in vitro, probably in part by deamidation of Asn and Gln residues, to a more thermally stable form (PfpI-H) by prolonged heat treatment. The deamination hypothesis is supported by the differences in the measured pI values of PfpI-C1 (6.1) and PfpI-H (3.8). High levels of potassium phosphate (>0.5 mM) were found to extend the half-life of PfpI-C1 activity towards AAF-MCA by up to 2.5-fold at 90(deg)C, suggesting that compatible solutes play an important role in the in vivo function of this protease.
- Romao MJ, Knablein J, Huber R, Moura JJ
- Structure and function of molybdopterin containing enzymes.
- Prog Biophys Mol Biol. 1997; 68: 121-44
- Display abstract
Molybdopterin containing enzymes are present in a wide range of living systems and have been known for several decades. However, only in the past two years have the first crystal structures been reported for this type of enzyme. This has represented a major breakthrough in this field. The enzymes share common structural features, but reveal different polypeptide folding topologies. In this review we give an account of the related spectroscopic information and the crystallographic results, with emphasis on structure-function studies.
- Knapp S, de Vos WM, Rice D, Ladenstein R
- Crystal structure of glutamate dehydrogenase from the hyperthermophilic eubacterium Thermotoga maritima at 3.0 A resolution.
- J Mol Biol. 1997; 267: 916-32
- Display abstract
The extremely thermostable glutamate dehydrogenase from the hyperthermophilic bacterium Thermotoga maritima has been crystallized and the three-dimensional structure has been determined by X-ray diffraction methods. Crystals up to a maximum size of 1.2 mm have been grown in 3% polyethylene glycol, 120 mM ammonium acetate and 50 mM bis-tris propane (pH 6.5). The enzyme crystallized in the trigonal space group P3(1)21 with the cell dimensions a = b = 147.3 A, c = 273.6 A. The diffraction limit of these crystals is 3.0 A. Measured diffraction data have a completeness of 94% up to a resolution of 3.0 A and contain 75% of all possible data in the last resolution shell between 3.1 and 3.0 A. The crystal structure of T. maritima glutamate dehydrogenase has been solved by Patterson search methods using the hexameric Pyrococcus furiosus glutamate dehydrogenase as a search model. The crystallographic refinement has been carried out to a maximum resolution of 3.1 A and an crystallographic R-value of 22.5% (Rfree = 29.5%). The three-dimensional structure of the T. maritima enzyme shows typical features of hexameric glutamate dehydrogenases: six subunits are arranged in 32 symmetry. Each subunit consists of two domains connected by a flexible hinge region. Secondary structure elements as well as residues important for the catalytic activity of the enzyme are highly conserved. A structural comparison of the two glutamate dehydrogenases from the hyperthermophiles T. maritima and P. furiosus with the enzyme from the mesophilic bacterium Clostridium symbiosum has revealed that common as well as distinct mechanisms contribute to the thermal stability of these enzymes. The number of intrasubunit ion pairs is increased and the volume of intrasubunit cavities decreased in both thermostable enzymes, whereas striking differences have been observed in the subunit interfaces. In P. furiosus glutamate dehydrogenase the subunit interactions are dominated by ionic interactions realized by large saltbridge networks. However, in T. maritima glutamate dehydrogenase the number of intersubunit ion pairs is reduced and the hydrophobic interactions are increased.
- Stiefel EI
- Molybdenum bolsters the bioinorganic brigade.
- Science. 1996; 272: 1599-600
- Kletzin A, Adams MW
- Molecular and phylogenetic characterization of pyruvate and 2-ketoisovalerate ferredoxin oxidoreductases from Pyrococcus furiosus and pyruvate ferredoxin oxidoreductase from Thermotoga maritima.
- J Bacteriol. 1996; 178: 248-57
- Display abstract
Previous studies have shown that the hyperthermophilic archaeon Pyrococcus furiosus contains four distinct cytoplasmic 2-ketoacid oxidoreductases (ORs) which differ in their substrate specificities, while the hyperthermophilic bacterium Thermotoga maritima contains only one, pyruvate ferredoxin oxidoreductase (POR). These enzymes catalyze the synthesis of the acyl (or aryl) coenzyme A derivative in a thiamine PPi-dependent oxidative decarboxylation reaction with reduction of ferredoxin. We report here on the molecular analysis of the POR (por) and 2-ketoisovalerate ferredoxin oxidoreductase (vor) genes from P. furiosus and of the POR gene from T. maritima, all of which comprise four different subunits. The operon organization for P. furiosus POR and VOR was porG-vorDAB-porDAB, wherein the gamma subunit is shared by the two enzymes. The operon organization for T. maritima POR was porGDAB. The three enzymes were 46 to 53% identical at the amino acid level. Their delta subunits each contained two ferredoxin-type [4Fe-4S] cluster binding motifs (CXXCXXCXXXCP), while their beta subunits each contained four conserved cysteines in addition to a thiamine PPi-binding domain. Amino-terminal sequence comparisons show that POR, VOR, indolepyruvate OR, and 2-ketoglutarate OR of P. furiosus all belong to a phylogenetically homologous OR family. Moreover, the single-subunit pyruvate ORs from mesophilic and moderately thermophilic bacteria and from an amitochondriate eucaryote each contain four domains which are phylogenetically homologous to the four subunits of the hyperthermophilic ORs (27% sequence identity). Three of these subunits are also homologous to the dimeric POR from a mesophilic archaeon, Halobacterium halobium (21% identity). A model is proposed to account for the observed phenotypes based on genomic rearrangements of four ancestral OR subunits.
- Mai X, Adams MW
- Purification and characterization of two reversible and ADP-dependent acetyl coenzyme A synthetases from the hyperthermophilic archaeon Pyrococcus furiosus.
- J Bacteriol. 1996; 178: 5897-903
- Display abstract
Pyrococcus furiosus is a strictly anaerobic archaeon (archaebacterium) that grows at temperatures up to 105 degrees C by fermenting carbohydrates and peptides. Cell extracts have been previously shown to contain an unusual acetyl coenzyme A (acetyl-CoA) synthetase (ACS) which catalyzes the formation of acetate and ATP from acetyl-CoA by using ADP and phosphate rather than AMP and PPi. We show here that P. furiosus contains two distinct isoenzymes of ACS, and both have been purified. One, termed ACS I, uses acetyl-CoA and isobutyryl-CoA but not indoleacetyl-CoA or phenylacetyl-CoA as substrates, while the other, ACS II, utilizes all four CoA derivatives. Succinyl-CoA did not serve as a substrate for either enzyme. ACS I and ACS II have similar molecular masses (approximately 140 kDa), and both appear to be heterotetramers (alpha2beta2) of two different subunits of 45 (alpha) and 23 (beta) kDa. They lack metal ions such as Fe2+, Cu2+, Zn2+, and Mg2+ and are stable to oxygen. At 25 degrees C, both enzymes were virtually inactive and exhibited optimal activities above 90 degrees C (at pH 8.0) and at pH 9.0 (at 80 degrees C). The times required to lose 50% of their activity at 80 degrees C were about 18 h for ACS I and 8 h for ACS II. With both enzymes in the acid formation reactions, ADP and phosphate could be replaced by GDP and phosphate but not by CDP and phosphate or by AMP and PPi. The apparent Km values for ADP, GDP, and phosphate were approximately 150, 132, and 396 microM, respectively, for ACS I (using acetyl-CoA) and 61, 236, and 580 microM, respectively, for ACS II (using indoleacetyl-CoA). With ADP and phosphate as substrates, the apparent Km values for acetyl-CoA and isobutyryl-CoA were 25 and 29 microM, respectively, for ACS I and 26 and 12 microM, respectively, for ACS II. With ACS II, the apparent Km value for phenylacetyl-CoA was 4 microM. Both enzymes also catalyzed the reverse reaction, the ATP-dependent formation of the CoA derivatives of acetate (I and II), isobutyrate (I and II), phenylacetate (II only), and indoleacetate (II only). The N-terminal amino acid sequences of the two subunits of ACS I were similar to those of ACS II and to that of a hypothetical 67-kDa protein from Escherichia coli but showed no similarity to mesophilic ACS-type enzymes. To our knowledge, ACS I and II are the first ATP-utilizing enzymes to be purified from a hyperthermophile, and ACS II is the first enzyme of the ACS type to utilize aromatic CoA derivatives.
- Schneider F, Lowe J, Huber R, Schindelin H, Kisker C, Knablein J
- Crystal structure of dimethyl sulfoxide reductase from Rhodobacter capsulatus at 1.88 A resolution.
- J Mol Biol. 1996; 263: 53-69
- Display abstract
The periplasmic dimethyl sulfoxide reductase (DMSOR) from the photosynthetic purple bacterium Rhodobacter capsulatus functions as the terminal electron acceptor in its respiratory chain. The enzyme catalyzes the reduction of highly oxidized substrates like dimethyl sulfoxide to dimethyl sulfide. At a molybdenum redox center, two single electrons are transferred from cytochrome C556 to the substrate dimethyl sulfoxide, generating dimethyl sulfide and (with two protons) water. The enzyme was purified and crystallized in space group P4(1)2(1)2 with unit cell dimensions of a = b = 80.7 A and c = 229.2 A. The crystals diffract beyond 1.8 A with synchrotron radiation. The three-dimensional structure was solved by a combination of multiple isomorphous replacement and molecular replacement techniques. The atomic model was refined to an R-factor of 0.169 for 57,394 independent reflections. The spherical protein consists of four domains with a funnel-like cavity that leads to the freely accessible metal-ion redox center. The bis(molybdopterin guanine dinucleotide) molybdenum cofactor (1541 Da) of the single chain protein (85,033 Da) has the molybdenum ion bound to the cis-dithiolene group of only one molybdopterin guanine dinucleotide molecule. Three additional ligands, two oxo groups and the oxygen of a serine side-chain, are bound to the molybdenum ion. The second molybdopterin system is not part of the ligand sphere of the metal center with its sulfur atoms at distances of 3.5 A and 3.8 A away. It might be involved in electron shuttling from the protein surface to the molybdenum center.
- Gremer L, Meyer O
- Characterization of xanthine dehydrogenase from the anaerobic bacterium Veillonella atypica and identification of a molybdopterin-cytosine-dinucleotide-containing molybdenum cofactor.
- Eur J Biochem. 1996; 238: 862-6
- Display abstract
The molybdenum-containing iron-sulfur flavoprotein xanthine dehydrogenase from the anaerobic bacterium Veillonella atypica has been purified approximately 800-fold with a yield of approximately 40% and a specific activity of approximately 70 micromol ferricyanide reduced x min(-1) x mg protein(-1) with xanthine as electron donor, which corresponds to approximately 30 micromol xanthine oxidized x min(-1) x mg protein(-1) with methylene blue as electron acceptor. The 129-kDa enzyme was a non-covalent heterotrimer with large (82.4 kDa), medium (28.5 kDa) and small (18.4 kDa) subunits. The N-termini of the small and medium polypeptides of V. atypica xanthine dehydrogenase and the corresponding domains of eukaryotic xanthine dehydrogenases were similar, whereas the N-terminus of the large polypeptide was unrelated to eukaryotic xanthine dehydrogenases. The enzyme contained 0.86 atoms Mo, 1.75 atoms Fe, 1.61 atoms acid-labile sulfur and 0.68 molecules FAD/molecule, which corresponds to a 1:2.0:1.9:0.8 molar ratio. Acid hydrolysis revealed 0.95 mol CMP and 0.80 mol AMP/mol xanthine dehydrogenase. After treatment of the enzyme with iodoacetamide, di(carboxamidomethyl)molybdopterin cytosine dinucleotide was identified, which indicates that molybdopterin cytosine dinucleotide is the organic portion of the V. atypica xanthine dehydrogenase molybdenum cofactor. The enzyme and its molybdenum cofactor occurred in a 1:1 molar ratio. Xanthine dehydrogenases from eukaryotic sources are characterized by a domain structure and the presence of duplicate copies of two types of [2Fe-2S) clusters. In contrast, the xanthine dehydrogenase from V. atypica had a heterotrimeric subunit structure and a single [2Fe-2S] cluster. In addition, the enzyme indicates the presence of a molybdopterin dinucleotide as a constituent of a xanthine dehydrogenase molybdenum cofactor.
- Doyle WA, Burke JF, Chovnick A, Dutton FL, Whittle JR, Bray RC
- Properties of xanthine dehydrogenase variants from rosy mutant strains of Drosophila melanogaster and their relevance to the enzyme's structure and mechanism.
- Eur J Biochem. 1996; 239: 782-95
- Display abstract
Xanthine dehydrogenase, a molybdenum, iron-sulfur flavoenzyme encoded in the fruit fly Drosophila melanogaster by the rosy gene, has been characterised both from the wild-type and mutant files. Enzyme assays, using a variety of different oxidising and reducing substrates were supplemented by limited molecular characterisation. Four rosy strains showed no detectable activity in any enzyme assay tried, whereas from four wild-type and three rosy mutant strains, those for the [E89K], [L127F] and [L157P]xanthine dehydrogenases (in all of which the mutation is in the iron-sulfur domain), the enzyme molecules, although present at different levels, had extremely similar or identical properties. This was confirmed by purification of one wild-type and one mutant enzyme. [E89K]xanthine dehydrogenase. These both had ultraviolet-visible absorption spectra similar to milk xanthine oxidase. Both were found to be quite stable molecules, showing very high catalytic-centre activities and with little tendency to become degraded by proteolysis or modified by conversion to oxidase or desulfo forms. In three further rosy strains, giving [G353D]xanthine dehydrogenase and [S357F]xanthine dehydrogenase mutated in the flavin domain, and [G1011E]xanthine dehydrogenase mutated in the molybdenum domain, enzyme activities were selectively diminished in certain assays. For the G353D and S357F mutant enzymes activities to NAD+ as oxidising substrate were diminished, to zero for the latter. In addition for [G353D]xanthine dehydrogenase, there was an increase in apparent Km values both for NAD+ and NADH. These findings indicate involvement of this part of the sequence in the NAD(+)-binding site. The G1011E mutation has a profound effect on the enzyme. As isolated and as present in crude extracts of the files, this xanthine dehydrogenase variant lacks activity to xanthine or pterin as reducing substrate, indicating an impairment of the functioning of its molybdenum centre. However, it retains full activity to NADH with dyes as oxidising substrate. Mild oxidation of the enzyme converts it, apparently irreversibly, to a form showing full activity to xanthine and pterin. The nature of the group that is oxidised is discussed in the light of redox potential data. It is proposed that the process involves oxidation of the pterin of the molybdenum cofactor from the tetrahydro to a dihydro oxidation state. This conclusion is fully consistent with recent information [Romao, M. J., Archer, M., Moura, I., Moura. J.J.G., LeGall, J., Engh, R., Schneider, M., Hof, P. & Huber, R. (1995) Science 270. 1170-1176) from X-ray crystallography on the structure of a closely related enzyme from Desulfovibrio gigas. It is proposed, that apparent irreversibility of the oxidative activating process for [G1011E]xanthine dehydrogenase, is due to conversion of its pterin to the tricyclic derivative detected by these workers. The data thus provide the strongest evidence available, that the oxidation state of the pterin can have a controlling influence on the activity of a molybdenum cofactor enzyme. Implications regarding pterin incorporation into xanthine dehydrogenase and in relation to other molybdenum enzymes are discussed.
- Huber R et al.
- A structure-based catalytic mechanism for the xanthine oxidase family of molybdenum enzymes.
- Proc Natl Acad Sci U S A. 1996; 93: 8846-51
- Display abstract
The crystal structure of the xanthine oxidase-related molybdenum-iron protein aldehyde oxido-reductase from the sulfate reducing anaerobic Gram-negative bacterium Desulfovibrio gigas (Mop) was analyzed in its desulfo-, sulfo-, oxidized, reduced, and alcohol-bound forms at 1.8-A resolution. In the sulfo-form the molybdenum molybdopterin cytosine dinucleotide cofactor has a dithiolene-bound fac-[Mo, = O, = S, ---(OH2)] substructure. Bound inhibitory isopropanol in the inner compartment of the substrate binding tunnel is a model for the Michaelis complex of the reaction with aldehydes (H-C = O,-R). The reaction is proposed to proceed by transfer of the molybdenum-bound water molecule as OH- after proton transfer to Glu-869 to the carbonyl carbon of the substrate in concert with hydride transfer to the sulfido group to generate [MoIV, = O, -SH, ---(O-C = O, -R)). Dissociation of the carboxylic acid product may be facilitated by transient binding of Glu-869 to the molybdenum. The metal-bound water is replenished from a chain of internal water molecules. A second alcohol binding site in the spacious outer compartment may cause the strong substrate inhibition observed. This compartment is the putative binding site of large inhibitors of xanthine oxidase.
- Gladyshev VN, Khangulov SV, Stadtman TC
- Properties of the selenium- and molybdenum-containing nicotinic acid hydroxylase from Clostridium barkeri.
- Biochemistry. 1996; 35: 212-23
- Display abstract
NADP(+)-coupled nicotinic acid hydroxylase (NAH) has been purified to near-homogeneity from Clostridium barkeri by an improved purification scheme that allowed the isolation of milligram amounts of enzyme of higher specific activity then previously reported. NAH is most stable at alkaline pH in the presence of glycerol. The protein which consists of four dissimilar subunits occurs in forms of different molecular masses. There are 5-7 Fe, 1 FAD, and 1 Mo per 160 kDa protein promoter. Mo in the enzyme is bound to a dinucleotide form of molybdopterin and is coordinated with selenium. Mo(V), flavin radical, and two Fe2S2 clusters could be observed with EPR spectroscopy. The Se cofactor which is essential for nicotinic acid hydroxylase activity could be released from NAH as a reactive low molecular weight compound by a number of denaturing procedures. Parallel losses of Se and catalytic activity were observed during purification and storage of the enzyme. Addition of sodium selenide or selenophosphate did not restore the catalytic activity of the enzyme. Instead, NAH is reversibly inactivated by these compounds and also by sulfide. Cyanide, a common inhibitor of Mo-containing hydroxylases, does not affect NAH catalytic activity. The "as isolated" enzyme exhibits a Mo(V) EPR signal (2.067 signal) that was detected at early stages of purification. NAH exhibits a high substrate specificity toward electron donor substrates. The ability of a nicotinate analog to reduce NAH (disappearance of 2.067 signal) correlates with the rate of oxidation of the analog in the standard assay mixture. The properties of NAH differentiate the enzyme from known Mo-containing hydroxylases.
- Schindelin H, Kisker C, Hilton J, Rajagopalan KV, Rees DC
- Crystal structure of DMSO reductase: redox-linked changes in molybdopterin coordination.
- Science. 1996; 272: 1615-21
- Display abstract
The molybdoenzyme dimethylsulfoxide (DMSO) reductase contributes to the release of dimethylsulfide, a compound that has been implicated in cloud nucleation and global climate regulation. The crystal structure of DMSO reductase from Rhodobacter sphaeroides reveals a monooxo molybdenum cofactor containing two molybdopterin guanine dinucleotides that asymmetrically coordinate the molybdenum through their dithiolene groups. One of the pterins exhibits different coordination modes to the molybdenum between the oxidized and reduced states, whereas the side chain oxygen of Ser147 coordinates the metal in both states. The change in pterin coordination between the Mo(VI) and Mo(IV) forms suggests a mechanism for substrate binding and reduction by this enzyme. Sequence comparisons of DMSO reductase with a family of bacterial oxotransferases containing molybdopterin guanine dinucleotide indicate a similar polypeptide fold and active site with two molybdopterins within this family.
- Menendez C, Siebert D, Brandsch R
- MoaA of Arthrobacter nicotinovorans pAO1 involved in Mo-pterin cofactor synthesis is an Fe-S protein.
- FEBS Lett. 1996; 391: 101-3
- Display abstract
MoaA, involved in an early step in the biosynthesis of the molybdopterin cofactor (MoCo), has not yet been characterized biochemically and the reaction it catalyzes is unknown. We overexpressed MoaA from pAO1 of Arthrobacter nicotinovorans in Escherichia coli as a N-terminal fusion with either glutathione-S-transferase or a 6-histidine tag. The pAO1 encoded MoaA as well as the fusion proteins functionally complement E. coli moaA mutants. Here we show that purified MoaA contains approximately 4 microM Fe and approximately 3 microM acid-labile S/microM protein. EPR spectroscopy revealed a predominant signal at g(av) = 2.01, indicative of a [3Fe-xS] cluster.
- Hilton JC, Rajagopalan KV
- Identification of the molybdenum cofactor of dimethyl sulfoxide reductase from Rhodobacter sphaeroides f. sp. denitrificans as bis(molybdopterin guanine dinucleotide)molybdenum.
- Arch Biochem Biophys. 1996; 325: 139-43
- Display abstract
Chemical analysis of dimethyl sulfoxide reductase from Rhodobacter sphaeroides f. sp. denitrificans has shown that its molybdenum center contains two molybdopterin guanine dinucleotide molecules and a single atom of molybdenum. The enzyme, which exists as a monomer of 86 kDa, was shown to contain 1 mol of molybdenum, 4 mol of organic phosphate, and 2 mol of guanine per mole of protein. In addition, the relative yield of Form A, a fluorescent derivative of molybdopterin, was twice that obtained from sulfite oxidase, a protein which contains a single molybdopterin per molybdenum. These findings correlate with the recent report of the presence of two molybdopterin ligands in the tungsten cofactor of aldehyde ferredoxin oxidoreductase from Pyrococcus furiosus, providing the first example of a bis(pterin)molybdenum cofactor and extending this structural motif to the molybdopterin dinucleotide enzymes.
- Reichenbecher W, Rudiger A, Kroneck PM, Schink B
- One molecule of molybdopterin guanine dinucleotide is associated with each subunit of the heterodimeric Mo-Fe-S protein transhydroxylase of Pelobacter acidigallici as determined by SDS/PAGE and mass spectrometry.
- Eur J Biochem. 1996; 237: 406-13
- Display abstract
The molybdenum-containing iron-sulfur protein 1,2,3,5-tetrahydroxybenzene: 1,2,3-trihydroxybenzene hydroxyltransferase (transhydroxylase) of Pelobacter acidigallici was investigated by various techniques including mass spectrometry and electron paramagnetic resonance. Mass spectrometry confirmed that the 133-kDa protein is a heterodimer consisting of an alpha subunit (100.4 kDa) and a beta subunit (31.3 kDa). The presence of a molybdenum cofactor was documented by fluorimetric analysis of the oxidized form A of molybdopterin. The enzyme contained 1.55 +/- 0.14 mol pterin and 0.92 +/- 0.25 mol molybdenum/mol enzyme (133 kDa). Alkylation of the molybdenum cofactor with iodoacetamide formed di(carboxamidomethyl)-molybdopterin. Upon acid hydrolysis, 1.4 mol 5'GMP/mol enzyme (133 kDa) was released indicating that molybdenum is bound by a molybdopterin guanine dinucleotide. The alpha and beta subunits were separated by preparative gel electrophoresis. Both subunit fractions were free of molybdenum but contained equal amounts of a fluorescent form of the molybdenum cofactors. Mass spectrometry at various pH values revealed that an acid-labile cofactor was released from the large subunit and also from the small subunit. At X-band, 5-25 K, transhydroxylase (as isolated) showed minor EPR resonances with apparent g values around 4.3, 2.03 and, depending on the preparation, a further signal at g of approximately 1.98. This signal was still detectable above 70 K and was attributed to a Mo(V) center. Upon addition of dithionite, a complex set of intense resonances appeared in the region g 2.08-1.88. From their temperature dependence, three distinct sites could be identified: the Fe-S center I with gx,y,z at approximately 1.875, 1.942 and 2.087 (gav 1.968, detectable < 20 K); the Fe-S center II with gx,y,z at approximately 1.872, 1.955 and 2.051 (gav 1.959, detectable > 20 K); and the Mo(V) center consisting of a multiple signal around g 1.98 (detectable > 70 K).
- Xiang Q, Edmondson DE
- Purification and characterization of a prokaryotic xanthine dehydrogenase from Comamonas acidovorans.
- Biochemistry. 1996; 35: 5441-50
- Display abstract
Xanthine dehydrogenase (XDH) is induced in Comamonas acidovorans cells incubated in a limited medium with hypoxanthine as the only carbon and nitrogen source. The enzyme has been purified to homogeneity using standard techniques and characterized. It contains two subunits with M(r) values of 90 and 60 kDa. Gel filtration studies show the enzyme to have an alpha 2 beta 2 native structure. No precursor form of the enzyme is observed on Western blot analysis of cell extracts obtained at various stages of enzyme induction. Metal analysis of the purified enzyme shows 1.1 Mo, 4.0 Fe, and 3.6 phosphorus atoms per alpha beta protomer. Cofactor analysis shows the enzyme to contain a single molybdopterin mononucleotide and one FAD per alpha beta protomer. Electron spin resonance and circular dichroism spectral studies of the oxidized and reduced forms of the enzyme suggest the Fe centers to be two nonidentical [2Fe-2S] clusters. Electron spin resonance signals due to Mo(V) and neutral FAD radical are also observed in the reduced form of the enzyme. Purified enzyme preparations ranged from 70% to 100% functionality. The enzyme is irreversibly inactivated by CN- and is inhibited on incubation with allopurinol. With xanthine and NAD+ as substrates the enzyme has a specific activity of 50 units/mg, a kcat value of 120 s-1, an activity/flavin ratio of 1930, and respective Km values of 66 and 160 mM. Using 8-D-xanthine as substrate, a DV value of 1.8 is found with no change in Km. Thus, the Km and KD values of the enzyme for xanthine are equal. These data show Comamonas XDH to exhibit structural properties similar to bovine milk xanthine oxidase/dehydrogenase and to chicken liver xanthine dehydrogenase. Although the bacterial enzyme exhibits a 6-7-fold greater turnover rate than bovine or avian enzymes, the catalytic efficiencies (as measured by V/K) are similar for all three enzymes.
- Heider J, Mai X, Adams MW
- Characterization of 2-ketoisovalerate ferredoxin oxidoreductase, a new and reversible coenzyme A-dependent enzyme involved in peptide fermentation by hyperthermophilic archaea.
- J Bacteriol. 1996; 178: 780-7
- Display abstract
Cell extracts of the proteolytic and hyperthermophilic archaea Thermococcus litoralis, Thermococcus sp. strain ES-1, Pyrococcus furiosus, and Pyrococcus sp. strain ES-4 contain an enzyme which catalyzes the coenzyme A-dependent oxidation of branched-chain 2-ketoacids coupled to the reduction of viologen dyes or ferredoxin. This enzyme, termed VOR (for keto-valine-ferredoxin oxidoreductase), has been purified from all four organisms. All four VORs comprise four different subunits and show amino-terminal sequence homology. T. litoralis VOR has an M(r) of ca. 230,000, with subunit M(r) values of 47,000 (alpha), 34,000 (beta), 23,000 (gamma), and 13,000 (delta). It contains about 11 iron and 12 acid-labile sulfide atoms and 13 cysteine residues per heterotetramer (alpha beta gamma delta), but thiamine pyrophosphate, which is required for catalytic activity, was lost during purification. The most efficient substrates (kcat/Km > 1.0 microM-1 s-1; Km < 100 microM) for the enzyme were the 2-ketoacid derivatives of valine, leucine, isoleucine, and methionine, while pyruvate and aryl pyruvates were very poor substrates (kcat/Km < 0.2 microM-1 s-1) and 2-ketoglutarate was not utilized. T. litoralis VOR also functioned as a 2-ketoisovalerate synthase at 85 degrees C, producing 2-ketoisovalerate and coenzyme A from isobutyryl-coenzyme A (apparent Km, 250 microM) and CO2 (apparent Km, 48 mM) with reduced viologen as the electron donor. The rate of 2-ketoisovalerate synthesis was about 5% of the rate of 2-ketoisovalerate oxidation. The optimum pH for both reactions was 7.0. A mechanism for 2-ketoisovalerate oxidation based on data from substrate-induced electron paramagnetic resonance spectra is proposed, and the physiological role of VOR is discussed.
- Mukund S, Adams MW
- Molybdenum and vanadium do not replace tungsten in the catalytically active forms of the three tungstoenzymes in the hyperthermophilic archaeon Pyrococcus furiosus.
- J Bacteriol. 1996; 178: 163-7
- Display abstract
Three different types of tungsten-containing enzyme have been previously purified from Pyrococcus furiosus (optimum growth temperature, 100 degrees C): aldehyde ferredoxin oxidoreductase (AOR), formaldehyde ferredoxin oxidoreductase (FOR), and glyceraldehyde-3-phosphate oxidoreductase (GAPOR). In this study, the organism was grown in media containing added molybdenum (but not tungsten or vanadium) or added vanadium (but not molybdenum or tungsten). In both cell types, there were no dramatic changes compared with cells grown with tungsten, in the specific activities of hydrogenase, ferredoxin:NADP oxidoreductase, or the 2-keto acid ferredoxin oxidoreductases specific for pyruvate, indolepyruvate, 2-ketoglutarate, and 2-ketoisovalerate. Compared with tungsten-grown cells, the specific activities of AOR, FOR, and GAPOR were 40, 74, and 1%, respectively, in molybdenum-grown cells, and 7, 0, and 0%, respectively, in vanadium-grown cells. AOR purified from vanadium-grown cells lacked detectable vanadium, and its tungsten content and specific activity were both ca. 10% of the values for AOR purified from tungsten-grown cells. AOR and FOR purified from molybdenum-grown cells contained no detectable molybdenum, and their tungsten contents and specific activities were > 70% of the values for the enzymes purified from tungsten-grown cells. These results indicate that P. furiosus uses exclusively tungsten to synthesize the catalytically active forms of AOR, FOR, and GAPOR, and active molybdenum- or vanadium-containing isoenzymes are not expressed when the cells are grown in the presence of these other metals.
- Hanlon SP, Toh TH, Solomon PS, Holt RA, McEwan AG
- Dimethylsulfide:acceptor oxidoreductase from Rhodobacter sulfidophilus. The purified enzyme contains b-type haem and a pterin molybdenum cofactor.
- Eur J Biochem. 1996; 239: 391-6
- Display abstract
Dimethylsulfide:receptor oxidoreductase was purified from the purple non-sulfur phototrophic bacterium Rhodobacter sulfidophilus. The native form of the enzyme had a molecular mass of 152 kDa and was composed of three distinct subunits of 94, 38 and 32 kDa. Dimethylsulfide:acceptor oxidoreductase did not oxidise other thioethers which were tested. The enzyme was able to reduce a variety of N-oxides using reduced methylviologen as electron donor but it reduced dimethylsulfoxide at a very low rate. The resting form of dimethylsulfide:acceptor oxidoreductase exhibited a spectrum which was characteristic of a reduced cytochrome with absorbance maxima at 562 nm, 533 nm and 428 nm. Pyridine haemochrome analysis established that the cytochrome contained a b-type haem and a content of 0.65 mol protohaem/mol enzyme was determined. After oxidation of the haem with ferricyanide, the absorbance spectrum of the reduced cytochrome was restored by reduction with dimethylsulfide. Metal analysis revealed that dimethylsulfide:acceptor oxidoreductase contained 0.5 mol Mo and 3.5 mol Fe/mol enzyme. Heat treatment of the enzyme released material with fluorescence excitation and emission spectra which were characteristic of form B of the pterin component of the pterin molybdenum cofactor. From this analysis it is concluded that dimethylsulfide:acceptor oxidoreductase is a molybdenum oxotransferase which may also contain a iron-sulfur cluster. It is suggested that the haem and pterin molybdenum cofactor are associated with the 94-kDa subunit.
- Stephan I, Tshisuaka B, Fetzner S, Lingens F
- Quinaldine 4-oxidase from Arthrobacter sp. Ru61a, a versatile procaryotic molybdenum-containing hydroxylase active towards N-containing heterocyclic compounds and aromatic aldehydes.
- Eur J Biochem. 1996; 236: 155-62
- Display abstract
Quinaldine 4-oxidase from Arthrobacter sp. Ru61a, an inducible molybdenum-containing hydroxylase, was purified to homogeneity by an optimized five-step procedure. Molecular oxygen is proposed as physiological electron acceptor. Electrons are also transferred to artificial electron acceptors with E'o > -8 mV. The molybdo-iron/sulfur flavoprotein regiospecifically attacks its N-heterocyclic substrates: isoquinoline and phthalazine are hydroxylated adjacent to the N-heteroatom at Cl, whereas quinaldine, quinoline, cinnoline and quinazoline are hydroxylated at C4. Additionally, the aromatic aldehydes benzaldehyde, salicylaldehyde, vanillin and cinnamaldehyde are oxidized to the corresponding carboxylic acids, whereas short-chain aliphatic aldehydes are not. Quinaldine 4-oxidase is compared to the two molybdenum-containing hydroxylases quinoline 2-oxidoreductase from Pseudomonas putida 86 [Tshisuaka, B., Kappl, R., Huttermann, J. & Lingens, F. (1993) Biochemistry 32, 12928-12934] and isoquinoline 1-oxidoreductase from Pseudomonas diminuta 7 [Lehmann, M., Tshisuaka, B., Fetzner, S., Roger, P. & Lingens, F. (1994) J. Biol. Chem. 269, 11254-11260] with respect to the substrates converted and the electron-acceptor specificities. These dehydrogenases hydroxylate their N-heterocyclic substrates exclusively adjacent to the heteroatom. Whereas the aldehydes tested are scarcely oxidized by quinoline 2-oxidoreductase, isoquinoline 1-oxidoreductase catalyzes the oxidation of the aromatic aldehydes, although being progressively inhibited. Neither quinoline 2-oxidoreductase nor isoquinoline 1-oxidoreductase transfer electrons to oxygen. Otherwise, the spectrum of electron acceptors used by quinoline 2-oxidoreductase and quinaldine 4-oxidase is identical. However, isoquinoline 1-oxidoreductase differs in its electron-acceptor specificity. Quinaldine 4-oxidase is unusual in its substrate and electron-acceptor specificity. This enzyme is able to function as oxidase or dehydrogenase, it oxidizes aldehydes, and it catalyzes the nucleophilic attack of N-containing heterocyclic compounds at two varying positions depending on the substrate.
- Mai X, Adams MW
- Characterization of a fourth type of 2-keto acid-oxidizing enzyme from a hyperthermophilic archaeon: 2-ketoglutarate ferredoxin oxidoreductase from Thermococcus litoralis.
- J Bacteriol. 1996; 178: 5890-6
- Display abstract
Thermococcus litoralis is a strictly anaerobic archaeon (archaebacterium) that grows at temperatures up to 98 degrees C by fermenting peptides. It is known to contain three distinct ferredoxin-dependent, 2-keto acid oxidoreductases, which use pyruvate, aromatic 2-keto acids such as indolepyruvate, or branched-chain 2-keto acids such as 2-ketoisovalerate, as their primary substrates. We show here that T. litoralis also contains a fourth member of this family of enzymes, 2-ketoglutarate ferredoxin oxidoreductase (KGOR). In the presence of coenzyme A, KGOR catalyzes the oxidative decarboxylation of 2-ketoglutarate to succinyl coenzyme A and CO2 and reduces T. litoralis ferredoxin. The enzyme was oxygen sensitive (half-life of approximately 5 min) and was purified under anaerobic conditions. It had an M(r) of approximately 210,000 and appeared to be an octomeric enzyme (alpha2beta2gamma2delta2) with four different subunits with M(r)s of 43,000 (alpha), 29,000 (beta), 23,000 (gamma), and 10,000 (delta). The enzyme contained 0.9 mol of thiamine PPi and at least four [4Fe-4S] clusters per mol of holoenzyme as determined by metal analyses and electron paramagnetic resonance spectroscopy. Significant amounts of other metals (Cu, Zn, Mo, W, and Ni) were not present (<0.1 mol/mol of holoenzyme). Pure KGOR did not utilize other 2-keto acids, such as pyruvate, indolepyruvate, or 2-ketoisovalerate, as substrates, and the apparent Km values for 2-ketoglutarate, coenzyme A, T. litoralis ferredoxin, and thiamine PPi were approximately 250, 40, 8, and 9 microM, respectively. The enzyme was virtually inactive at 25 degrees C and exhibited optimal activity above 90 degrees C (at pH 8.0) and at pH 8.0 (at 80 degrees C). KGOR was quite thermostable, with a half-life at 80 degrees C (under anaerobic conditions) of about 2 days. An enzyme analogous to KGOR has been previously purified from a mesophilic archaeon, but the molecular properties of T. litoralis KGOR more closely resemble those of the other oxidoreductases from hyperthermophiles. In contrast to these enzymes, however, KGOR appears to have a biosynthetic function rather than a role in energy conservation.
- Bock AK, Kunow J, Glasemacher J, Schonheit P
- Catalytic properties, molecular composition and sequence alignments of pyruvate: ferredoxin oxidoreductase from the methanogenic archaeon Methanosarcina barkeri (strain Fusaro).
- Eur J Biochem. 1996; 237: 35-44
- Display abstract
Methanosarcina barkeri (strain Fusaro) was grown on pyruvate as methanogenic substrate [Bock, A. K., Prieger-Kraft, A. & Schonheit, P. (1994) Arch. Microbiol. 161, 33-46]. The first enzyme of pyruvate catabolism, pyruvate oxidoreductase, which catalyzes oxidation of pyruvate to acetyl-CoA was purified about 90-fold to apparent electrophoretic homogeneity. The purified enzyme catalyzed the CoA-dependent oxidation of pyruvate with ferredoxin as an electron acceptor which defines the enzyme as a pyruvate: ferredoxin oxidoreductase. The deazaflavin, coenzyme F420, which has been proposed to be the physiological electron acceptor of pyruvate oxidoreductase in methanogens, was not reduced by the purified enzyme. In addition to ferredoxin and viologen dyes, flavin nucleotides served as electron acceptors. Pyruvate: ferredoxin oxidoreductase also catalyzed the oxidation of 2-oxobutyrate but not the oxidation of 2-oxoglutarate, indolepyruvate, phenylpyruvate, glyoxylate, 3-hydroxypyruvate and oxaloacetate. The apparent Km values of pyruvate:ferredoxin oxidoreductase were 70 microM for pyruvate, 6 microM for CoA and 30 microM for clostridial ferredoxin. The apparent Vmax with ferredoxin was about 30 U/mg (at 37 degrees C) with a pH optimum of approximately 7. The temperature optimum was approximately 60 degrees C and the Arrhenius activation energy was 40 kJ/mol (between 30 degrees C and 60 degrees C). The enzyme was extremely oxygen sensitive, losing 90% of its activity upon exposure to air for 1 h at 0 degrees C. Sodium nitrite inhibited the enzyme with a Ki of about 10 mM. The native enzyme had an apparent molecular mass of approximately 130 kDa and was composed of four different subunits with apparent molecular masses of 48, 30, 25, and 15 kDa which indicates that the enzyme has an alpha beta gamma delta structure. The enzyme contained 1 mol/mol thiamine diphosphate, and about 12 mol/mol each of non-heme iron and acid-labile sulfur. FAD, FMN and lipoic acid were not found. The N-terminal amino acid sequences of the four subunits were determined. The sequence of the alpha-subunit was similar to the N-terminal amino acid sequence of the alpha-subunit of the heterotetrameric pyruvate:ferredoxin oxidoreductases of the hyperthermophiles Archaeoglobus fulgidus, Pyrococcus furiosus and Thermotoga maritima and of the mesophile Helicobacter pylori, and to the N-terminal amino acid sequence of the homodimeric pyruvate:ferredoxin oxidoreductase from proteobacteria and from cyanobacteria. No sequence similarities were found, however, between the alpha-subunit of the M. barkeri enzyme and the heterodimeric pyruvate:ferredoxin oxidoreductase of the archaeon Halobacterium halobium.
- Smith ET, Blamey JM, Zhou ZH, Adams MW
- A variable-temperature direct electrochemical study of metalloproteins from hyperthermophilic microorganisms involved in hydrogen production from pyruvate.
- Biochemistry. 1995; 34: 7161-9
- Display abstract
The hyperthermophilic bacterium Thermotoga maritima and the hyperthermophilic archaeon Pyrococcus furiosus grow optimally at 80 and 100 degrees C, respectively, by the fermentation of carbohydrates to organic acids, CO2, and H2. Pyruvate is a major source of reductant for H2 production during fermentation, and pyruvate ferredoxin oxidoreductase (POR), a 4Fe-type ferredoxin, and hydrogenase have been previously purified from both species. P. furiosus utilizes a copper-iron-containing POR and a nickel-iron-containing hydrogenase, whereas the POR of T. maritima lacks copper and its hydrogenase lacks nickel. For all four enzymes and for the two ferredoxins, we have determined their reduction potentials (E degrees') and, where possible, thermodynamic parameters associated with electron transfer (delta S degrees and delta H degrees), using differential pulse voltammetry at temperatures ranging from 25 to 95 degrees C. At ambient temperature, the E degrees' values for all six proteins were comparable and spanned less than 50 mV, but their temperature dependence varied dramatically, even between analogous proteins, such that in the physiological-relevant temperature range the E degrees' values became widely separated. In most cases, transition points were observed in E degrees'/temperature profiles, and these generally corresponded with significant increases in catalytic activity, but occurred at lower temperatures in T. maritima than in P. furiosus. The two ferredoxins (and also P. furiosus rubredoxin) had much more negative entropy terms than were calculated for POR and hydrogenase, and these values were also more negative than those previously reported for mesophilic redox proteins. The reduction potentials measured at high temperatures and likely efficiencies of electron transfer between the various proteins were consistent with in vitro activity measurements.(ABSTRACT TRUNCATED AT 250 WORDS)
- Romao MJ et al.
- Crystal structure of the xanthine oxidase-related aldehyde oxido-reductase from D. gigas.
- Science. 1995; 270: 1170-6
- Display abstract
The crystal structure of the aldehyde oxido-reductase (Mop) from the sulfate reducing anaerobic Gram-negative bacterium Desulfovibrio gigas has been determined at 2.25 A resolution by multiple isomorphous replacement and refined. The protein, a homodimer of 907 amino acid residues subunits, is a member of the xanthine oxidase family. The protein contains a molybdopterin cofactor (Mo-co) and two different [2Fe-2S] centers. It is folded into four domains of which the first two bind the iron sulfur centers and the last two are involved in Mo-co binding. Mo-co is a molybdenum molybdopterin cytosine dinucleotide. Molybdopterin forms a tricyclic system with the pterin bicycle annealed to a pyran ring. The molybdopterin dinucleotide is deeply buried in the protein. The cis-dithiolene group of the pyran ring binds the molybdenum, which is coordinated by three more (oxygen) ligands.
- Hensgens CM, Hagen WR, Hansen TA
- Purification and characterization of a benzylviologen-linked, tungsten-containing aldehyde oxidoreductase from Desulfovibrio gigas.
- J Bacteriol. 1995; 177: 6195-200
- Display abstract
Desulfovibrio gigas NCIMB 9332 cells grown in ethanol-containing medium with 0.1 microM tungstate contained a benzylviologen-linked aldehyde oxidoreductase. The enzyme was purified to electrophoretic homogeneity and found to be a homodimer with a subunit M(r) of 62,000. It contained 0.68 +/- 0.08 W, 4.8 Fe, and 3.2 +/- 0.2 labile S per subunit. After acid iodine oxidation of the purified enzyme, a fluorescence spectrum typical for form A of molybdopterin was obtained. Acetaldehyde, propionaldehyde, and benzaldehyde were excellent substrates, with apparent Km values of 12.5, 10.8, and 20 microM, respectively. The natural electron acceptor is not yet known; benzylviologen was used as an artificial electron acceptor (apparent Km, 0.55 mM). The enzyme was activated by potassium ions and strongly inhibited by cyanide, arsenite, and iodoacetate. In the as-isolated enzyme, electron paramagnetic resonance studies readily detected W(V) as a complex signal with g values in the range of 1.84 to 1.97. The dithionite-reduced enzyme exhibited a broad signal at low temperature with g = 2.04 and 1.92; this is indicative of a [4Fe-4S]1+ cluster interacting with a second paramagnet, possibly the S = 1 system of W(IV). Until now W-containing aldehyde oxidoreductases had only been found in two Clostridium strains and two hyperthermophilic archaea. The D. gigas enzyme is the first example of such an enzyme in a gram-negative bacterium.
- Kilpatrick L et al.
- Resonance Raman spectroscopic characterization of the molybdopterin active site of DMSO reductase.
- Biochemistry. 1995; 34: 3032-9
- Display abstract
Resonance Raman spectra are compared for Rhodobacter sphaeroides dimethyl sulfoxide reductase, an enzyme containing a molybdopterin cofactor, and two model compounds, I and II, which have pterin and quinoxaline, respectively, attached to a Cp2Mo[IV]-dithiolene chelate [Cp = cyclopentadienyl]. The effect of 34S incorporation was also determined. Several bands in the 200-500 cm-1 region show remarkably similar patterns of frequencies and isotope shifts between protein and models: a band at 351 cm-1 shifts 6-8 cm-1, and bands at lower and higher frequencies show smaller shifts upon 34S substitution. A normal coordinate analysis on II indicates the 351 cm-1 mode to be the symmetric Mo-S[dithiolene] stretch and the remaining low-frequency modes to contain contributions from deformations of the quinoxaline ring as well as from Mo-S stretching. The similarity in the low-frequency spectra between the model compounds and the enzyme strongly supports a dithiolene chelate as the mode of Mo-pterin interaction in the cofactor. Resonance enhancement of both high- and low-frequency quinoxaline or pterin modes is observed for both model compounds, implicating the heterocyclic rings as part of the electronic system involved in the Mo-dithiolene charge transfer transitions. RR spectra of 6-methylpterin and biopterin are reported and used to identify the pterin and quinoxaline high-frequency bands in the model compound spectra. The dithiolene C = C stretch is tentatively assigned to bands at 1506 cm-1 in I and 1515 cm-1 in II.(ABSTRACT TRUNCATED AT 250 WORDS)
- Boll M, Fuchs G
- Benzoyl-coenzyme A reductase (dearomatizing), a key enzyme of anaerobic aromatic metabolism. ATP dependence of the reaction, purification and some properties of the enzyme from Thauera aromatica strain K172.
- Eur J Biochem. 1995; 234: 921-33
- Display abstract
Anoxic metabolism of many aromatic compounds proceeds via the common intermediate benzoyl-CoA. Benzoyl-CoA is dearomatized by benzoyl-CoA reductase (dearomatizing) in a two-electron reduction step, possibly yielding cyclohex-1,5-diene-1-carboxyl-CoA. This process has to overcome a high activation energy and is considered a biological Birch reduction. The central, aromatic-ring-reducing enzyme was investigated for the first time in the denitrifying bacterium Thauera aromatica strain K172. A spectrophotometric assay was developed which was strictly dependent on MgATP, both with cell extract and with purified enzyme. The oxygen-sensitive new enzyme was purified 35-fold with 20% yield under anaerobic conditions in the presence of 0.25 mM dithionite. It had a native molecular mass of approximately 170 kDa and consisted of four subunits a,b,c,d of 48, 45, 38 and 32 kDa. The oligomer composition of the protein most likely is abcd. The ultraviolet/visible spectrum of the protein as isolated, but without dithionite, was characteristic for an iron-sulfur protein with an absorption maximum at 279 nm and a broad shoulder at 390 nm. The estimated molar absorption coefficient at 390 nm was 35,000 M-1 cm-1. Reduction of the enzyme by dithionite resulted in a decrease of absorbance at 390 nm, and the colour turned from greenish-brown to red-brown. The enzyme contained 10.8 +/- 1.5 mol Fe and 10.5 +/- 1.5 mol acid-labile sulfur/mol. Besides zinc (0.5 mol/mol protein) no other metals nor selenium could be detected in significant amounts. The enzyme preparation contained a flavin or flavin-like compound; the estimated content was 0.3 mol/mol enzyme. The enzyme reaction required MgATP and a strong reductant such as Ti(III). The reaction catalyzed is: benzoyl-CoA + 2 Ti(III) + n ATP-->non-aromatic acyl-CoA + 2 Ti(IV) + n ADP + n Pi. The estimated number n of ATP molecules hydrolyzed/two electrons transferred in benzoyl-CoA reduction is 2-4. In the absence of benzoyl-CoA the enzyme exhibited oxygen-sensitive ATPase activity. The enzyme was specific for Mg(2+)-ATP, other nucleoside triphosphates being inactive (< 1%). Mg2+ could be substituted to some extent by Mn2+, Fe2+ and less efficiently by Co2+. Benzoate was not reduced, whereas some fluoro, hydroxy, amino and methyl analogues of the activated benzoic acid were reduced, albeit at much lower rate; the products remain to be identified. The specific activity with reduced methyl viologen as the electron donor was 0.55 mumol min-1 mg-1 corresponding to a catalytic number of 1.6 s-1. The apparent Km values under the assay conditions (0.5 mM for both reduced and oxidized methyl viologen) of benzoyl-CoA and ATP were 15 microM and 0.6 mM, respectively. The enzyme was inactivated by ethylene, bipyridyl and, in higher concentrations, by acetylene. Benzoyl-CoA reductase also catalyzed the ATP-dependent two-electron reduction of hydroxylamine (Km 0.15 mM) and azide. Some of the properties of the enzyme are reminiscent of those of nitrogenase which similarly overcomes the high activation energy for dinitrogen reduction by coupling electron transfer to the hydrolysis of ATP.
- Kletzin A, Mukund S, Kelley-Crouse TL, Chan MK, Rees DC, Adams MW
- Molecular characterization of the genes encoding the tungsten-containing aldehyde ferredoxin oxidoreductase from Pyrococcus furiosus and formaldehyde ferredoxin oxidoreductase from Thermococcus litoralis.
- J Bacteriol. 1995; 177: 4817-9
- Display abstract
The hyperthermophilic archaea Pyrococcus furiosus and Thermococcus litoralis contain the tungstoenzymes aldehyde ferredoxin oxidoreductase, a homodimer, and formaldehyde ferredoxin oxidoreductase, a homotetramer. herein we report the cloning and sequencing of the P. furiosus gene aor (605 residues; M(r), 66,630) and the T. litoralis gene for (621 residues; M(r), 68,941).
- Hochheimer A, Schmitz RA, Thauer RK, Hedderich R
- The tungsten formylmethanofuran dehydrogenase from Methanobacterium thermoautotrophicum contains sequence motifs characteristic for enzymes containing molybdopterin dinucleotide.
- Eur J Biochem. 1995; 234: 910-20
- Display abstract
Formylmethanofuran dehydrogenases are molybdenum or tungsten iron-sulfur proteins containing a pterin dinucleotide cofactor. We report here on the primary structures of the four subunits FwdABCD of the tungsten enzyme from Methanobacterium thermoautotrophicum which were determined by cloning and sequencing the encoding genes fwdABCD. FwdB was found to contain sequence motifs characteristic for molybdopterin-dinucleotide-containing enzymes indicating that this subunit harbors the active site. FwdA, FwdC and FwdD showed no significant sequence similarity to proteins in the data bases. Northern blot analysis revealed that the four fwd genes form a transcription unit together with three additional genes designated fwdE, fwdF and fwdG. A 17.8-kDa protein and an 8.6-kDa protein, both containing two [4Fe-4S] cluster binding motifs, were deduced from fwdE and fwdG. The open reading frame fwdF encodes a 38.6-kDa protein containing eight binding motifs for [4Fe-4S] clusters suggesting the gene product to be a novel polyferredoxin. All seven fwd genes were expressed in Escherichia coli yielding proteins of the expected size. The fwd operon was found to be located in a region of the M. thermoautotrophicum genome encoding molybdenum enzymes and proteins involved in molybdopterin biosynthesis.
- Buc J et al.
- Kinetic studies of a soluble alpha beta complex of nitrate reductase A from Escherichia coli. Use of various alpha beta mutants with altered beta subunits.
- Eur J Biochem. 1995; 234: 766-72
- Display abstract
A soluble alpha beta complex of nitrate reductase can be obtained from a strain of Escherichia coli that lacks the narI gene and expresses only the alpha and beta subunits. The beta subunit contains four Fe-S centres and the alpha subunit contains the molybdenum cofactor, which is the site at which nitrate is reduced. Despite the lack of the gamma subunit of the complete enzyme, this complex can still catalyse the reduction of nitrate with artificial electron donors such as benzyl viologen, so that it is suitable for studying the transfer of electrons between these two types of redox centre. To examine whether the electrons from reduced benzyl viologen are initially delivered to the Fe-S centres, or directly to the molybdenum cofactor, or both, we have studied the steady-state kinetics and the binding of benzyl viologen to the alpha beta complex and mutants alpha beta* with altered beta subunits. Reduction of the enzyme by reduced benzyl viologen in the absence of nitrate showed that all four Fe-S centres and the molybdenum cofactor could be reduced. Two classes of site with different equilibrium constants could be distinguished. The kinetic results suggest that benzyl viologen supplies its electrons directly to the molybdenum cofactor, at a rate showing a hyperbolic dependence on the square of the concentration of the electron donor. A reaction mechanism is proposed for the reduction of nitrate catalysed by the alpha beta complex of nitrate reductase with artificial electron donors.
- Heider J, Ma K, Adams MW
- Purification, characterization, and metabolic function of tungsten-containing aldehyde ferredoxin oxidoreductase from the hyperthermophilic and proteolytic archaeon Thermococcus strain ES-1.
- J Bacteriol. 1995; 177: 4757-64
- Display abstract
Thermococcus strain ES-1 is a strictly anaerobic, hyperthermophilic archaeon that grows at temperatures up to 91 degrees C by the fermentation of peptides. It is obligately dependent upon elemental sulfur (S(o)) for growth, which it reduces to H2S. Cell extracts contain high aldehyde oxidation activity with viologen dyes as electron acceptors. The enzyme responsible, which we term aldehyde ferredoxin oxidoreductase (AOR), has been purified to electrophoretic homogeneity. AOR is a homodimeric protein with a subunit M(r) of approximately 67,000. It contains molybdopterin and one W, four to five Fe, one Mg, and two P atoms per subunit. Electron paramagnetic resonance analyses of the reduced enzyme indicated the presence of a single [4Fe-4S]+ cluster with an S = 3/2 ground state. While AOR oxidized a wide range of aliphatic and aromatic aldehydes, those with the highest apparent kcat/Km values (> 10 microM-1S-1) were acetaldehyde, isovalerylaldehyde, and phenylacetaldehyde (Km values of < 100 microM). The apparent Km value for Thermococcus strain ES-1 ferredoxin was 10 microM (with crotonaldehyde as the substrate). Thermococcus strain ES-1 AOR also catalyzed the reduction of acetate (apparent Km of 1.8 mM) below pH 6.0 (with reduced methyl viologen as the electron donor) but at much less than 1% of the rate of the oxidative reaction (with benzyl viologen as the electron acceptor at pH 6.0 to 10.0). The properties of Thermococcus strain ES-1 AOR are very similar to those of AOR previously purified from the saccharolytic hyperthermophile Pyrococcus furiosus, in which AOR was proposed to oxidize glyceraldehyde as part of a novel glycolytic pathway (S. Mukund and M. W. W. Adams, J. Biol. Chem. 266:14208-14216, 1991). However, Thermococcus strain ES-1 is not known to metabolize carbohydrates, and glyceraldehyde was a very poor substrate (kcat/Km of < 0.2 microM-1S-1) for its AOR. The most efficient substrates for Thermococcus strain ES-1 AOR were the aldehyde derivatives of transaminated amino acids. This suggests that the enzyme functions to oxidize aldehydes generated during amino acid catabolism, although the possibility that AOR generates aldehydes from organic acids produced by fermentation cannot be ruled out.
- Kunow J, Linder D, Thauer RK
- Pyruvate: ferredoxin oxidoreductase from the sulfate-reducing Archaeoglobus fulgidus: molecular composition, catalytic properties, and sequence alignments.
- Arch Microbiol. 1995; 163: 21-8
- Display abstract
Archaeoglobus fulgidus is a hyperthermophilic sulfate-reducing archaeon. In this communication we describe the purification and properties of pyruvate: ferredoxin oxidoreductase from this organism. The catabolic enzyme was purified 250-fold to apparent homogeneity with a yield of 16%. The native enzyme had an apparent molecular mass of 120 kDa and was composed of four different subunits of apparent molecular masses of 45, 33, 25, and 13 kDa, indicating an alpha beta gamma delta structure. Per mol, the enzyme contained 0.8 mol thiamine pyrophosphate, 9 mol non-heme iron, and 8 mol acid-labile sulfur. FAD, FMN, lipoic acid, and copper were not found. The purified enzyme showed an apparent Km for coenzyme A of 0.02 mM, for pyruvate of 0.3 mM, and for clostridial ferredoxin of 0.01 mM, an apparent Vmax of 64 U/mg (at 65 degrees C) with a pH optimum near 7.5 and an Arrhenius activation energy of 75 kJ/mol (between 30 and 70 degrees C). The temperature optimum was above 90 degrees C. At 90 degrees C, the enzyme lost 50% activity within 60 min in the presence of 2 M KCl. The enzyme did not catalyze the oxidation of 2-oxoglutarate, indolepyruvate, phenylpyruvate, glyoxylate, and hydroxypyruvate. The N-terminal amino acid sequences of the four subunits were determined. The sequence of the alpha-subunit had similarities to the N-terminal amino acid sequence of the alpha-subunit of the heterotetrameric pyruvate: ferredoxin oxidoreductase from Pyrococcus furiosus and from Thermotoga maritima, and unexpectedly, to the N-terminal amino acid sequence of the homodimeric pyruvate:ferredoxin oxidoreductase from proteobacteria and from cyanobacteria. No sequence similarities were found, however, between the alpha-subunits of the enzyme from A. fulgidus and the heterodimeric pyruvate:ferredoxin oxidoreductase from Halobacterium halobium.
- Ma K, Loessner H, Heider J, Johnson MK, Adams MW
- Effects of elemental sulfur on the metabolism of the deep-sea hyperthermophilic archaeon Thermococcus strain ES-1: characterization of a sulfur-regulated, non-heme iron alcohol dehydrogenase.
- J Bacteriol. 1995; 177: 4748-56
- Display abstract
The strictly anaerobic archaeon Thermococcus strain ES-1 was recently isolated from near a deep-sea hydrothermal vent. It grows at temperatures up to 91 degrees C by the fermentation of peptides and reduces elemental sulfur (S(o)) to H2S. It is shown here that the growth rates and cell yields of strain ES-1 are dependent upon the concentration of S(o) in the medium, and no growth was observed in the absence of S(o). The activities of various catabolic enzymes in cells grown under conditions of sufficient and limiting S(o) concentrations were investigated. These enzymes included alcohol dehydrogenase (ADH); formate benzyl viologen oxidoreductase; hydrogenase; glutamate dehydrogenase; alanine dehydrogenase; aldehyde ferredoxin (Fd) oxidoreductase; formaldehyde Fd oxidoreductase; and coenzyme A-dependent, Fd-linked oxidoreductases specific for pyruvate, indolepyruvate, 2-ketoglutarate, and 2-ketoisovalerate. Of these, changes were observed only with ADH, formate benzyl viologen oxidoreductase, and hydrogenase, the specific activities of which all dramatically increased in cells grown under S(o) limitation. This was accompanied by increased amounts of H2 and alcohol (ethanol and butanol) from cultures grown with limiting S(o). Such cells were used to purify ADH to electrophoretic homogeneity. ADH is a homotetramer with a subunit M(r) of 46,000 and contains 1 g-atom of Fe per subunit, which, as determined by electron paramagnetic resonance analyses, is present as a mixture of ferrous and ferric forms. No other metals or acid-labile sulfide was detected by colorimetric and elemental analyses. ADH utilized NADP(H) as a cofactor and preferentially catalyzed aldehyde reduction. It is proposed that, under So limitation, ADH reduces to alcohols the aldehydes that are generated by fermentation, thereby serving to dispose of excess reductant.
- Rosner BM, Schink B
- Purification and characterization of acetylene hydratase of Pelobacter acetylenicus, a tungsten iron-sulfur protein.
- J Bacteriol. 1995; 177: 5767-72
- Display abstract
Acetylene hydratase of the mesophilic fermenting bacterium Pelobacter acetylenicus catalyzes the hydration of acetylene to acetaldehyde. Growth of P. acetylenicus with acetylene and specific acetylene hydratase activity depended on tungstate or, to a lower degree, molybdate supply in the medium. The specific enzyme activity in cell extract was highest after growth in the presence of tungstate. Enzyme activity was stable even after prolonged storage of the cell extract or of the purified protein under air. However, enzyme activity could be measured only in the presence of a strong reducing agent such as titanium(III) citrate or dithionite. The enzyme was purified 240-fold by ammonium sulfate precipitation, anion-exchange chromatography, size exclusion chromatography, and a second anion-exchange chromatography step, with a yield of 36%. The protein was a monomer with an apparent molecular mass of 73 kDa, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The isoelectric point was at pH 4.2. Per mol of enzyme, 4.8 mol of iron, 3.9 mol of acid-labile sulfur, and 0.4 mol of tungsten, but no molybdenum, were detected. The Km for acetylene as assayed in a coupled photometric test with yeast alcohol dehydrogenase and NADH was 14 microM, and the Vmax was 69 mumol.min-1.mg of protein-1. The optimum temperature for activity was 50 degrees C, and the apparent pH optimum was 6.0 to 6.5. The N-terminal amino acid sequence gave no indication of resemblance to any enzyme protein described so far.
- Andreotti G et al.
- An extremely thermostable aromatic aminotransferase from the hyperthermophilic archaeon Pyrococcus furiosus.
- Biochim Biophys Acta. 1995; 1247: 90-6
- Display abstract
Pyrococcus furiosus is a strictly anaerobic archaeon (formerly archaebacterium) that grows optimally at 100 degrees C by the fermentation of peptides. Cell-free extracts were found to contain two distinct aromatic aminotransferases (ArAT, EC 2.6.1.57), one of which was purified to electrophoretic homogeneity. P. furiosus ArAT is a homodimer with a subunit M(r) value of 44,000 +/- 1000. Using 2-ketoglutarate as the amino acceptor, the purified enzyme catalyzed the pyridoxal 5'-phosphate (PMP)-dependent transamination of phenylalanine, tyrosine and tryptophan with respective kcat values of 253, 72 and 62 (s-1 at 80 degrees C) under saturating conditions. The Km values for all three amino acids were between 1.1 and 2.1 mM and the optimum temperature for catalysis was above 95 degrees C. The melting point for the pure enzyme was also above 95 degrees C as determined by the change in ellipticity at 220 nm. Irreversible denaturation of the pure enzyme was not apparent after 6 h at 80 degrees C in the presence of PMP and 2-ketoglutarate and the time required for a 50% loss in activity at 95 degrees C was approx. 16 h. This decreased to approx. 12 h if cofactor and substrate were not added. In contrast, the apoenzyme (lacking PMP) lost most (70%) of its activity (measured after reconstitution) after 6 h at 80 degrees C, indicating that both PMP and 2-ketoglutarate stabilize the enzyme at extreme temperatures. Although few ArATs have been characterized to date, the molecular properties and substrate specificity of P. furiosus ArAT more resemble those of the ArAT from Escherichia coli than those of the analogous enzyme from rat liver. Moreover, the P. furiosus enzyme is by far the most thermostable aminotransferase of any type to be purified so far.
- Gladyshev VN, Lecchi P
- Identification of molybdopterins in molybdenum- and selenium-containing enzymes.
- Biofactors. 1995; 5: 93-7
- Display abstract
Selenium is coordinated to a molybdenum atom in nicotinic acid hydroxylase (NAH) from Clostridium barkeri and formate dehydrogenase H (FDH) from Escherichia coli. Selenium is present in FDH in a selenocysteine residue whereas in NAH in occurs in an unidentified labile cofactor. In this paper we describe a simple procedure for isolation and identification of molybdopterins from Mo-containing enzymes. The molybdopterin, after release from the protein with guanidine-hydrochloride, is reduced with KBH4, alkylated with iodoacetamide and separated on a reverse-phase HPLC column. The carboxam-idomethylated pterin compound is further characterized by UV spectroscopy and mass-spectrometry. We found that FDH contains molybdopterin guanine dinucleotide whereas NAH contains molybdopterin cytosine dinucleotide.
- Blamey JM, Adams MW
- Characterization of an ancestral type of pyruvate ferredoxin oxidoreductase from the hyperthermophilic bacterium, Thermotoga maritima.
- Biochemistry. 1994; 33: 1000-7
- Display abstract
The hyperthermophilic bacterium, Thermotoga maritima, is a strict anaerobe that grows up to 90 degrees C by carbohydrate fermentation. We report here on its pyruvate ferredoxin oxidoreductase (POR), the enzyme that catalyzes the oxidation of pyruvate to acetyl-CoA, the terminal oxidation step in the conversion of glucose to acetate. T. maritima POR was purified to electrophoretic homogeneity under strictly anaerobic conditions. It has a molecular weight of 113,000 and comprises four dissimilar subunits with M(r) values of approximately 43,000, 34,000, 23,000, and 13,000. It contains thiamine pyrophosphate (TPP) and at least two ferredoxin-type [4Fe-4S] clusters per molecule, as determined by iron analysis and EPR spectroscopy. CoASH was absolutely required for pyruvate oxidation activity, while the addition of TPP was stimulatory. The apparent Km values at 80 degrees C for pyruvate, CoASH, and TPP were 14.5, 0.34, and 0.043 mM, respectively, and the corresponding apparent Vm values ranged from 154 to 170 mumol of pyruvate oxidized/min/mg (units/mg). The apparent Km and Vm values for T. maritima ferredoxin, the proposed physiological electron carrier for POR, were 26 microM and 280 units/mg, respectively. POR did not use 2-oxoglutarate, phenyl pyruvate, or indolyl pyruvate as substrates. The enzyme was extremely thermostable: the temperature optimum for pyruvate oxidation was above 90 degrees C, and the time for a 50% loss of activity (t50%) at 80 degrees C (under anaerobic conditions) was 15 h. The enzyme was also very sensitive to inactivation by oxygen, with a t50% in air at 25 degrees C of 70 min.(ABSTRACT TRUNCATED AT 250 WORDS)
- Garrett RM, Rajagopalan KV
- Molecular cloning of rat liver sulfite oxidase. Expression of a eukaryotic Mo-pterin-containing enzyme in Escherichia coli.
- J Biol Chem. 1994; 269: 272-6
- Display abstract
The cDNA encoding sulfite oxidase has been cloned from a rat liver cDNA library. The gene contains a single open reading frame of 1464 nucleotides encoding a protein of 488 amino acids. The deduced amino acid sequence contains a 22-residue amino-terminal presequence that may serve as a mitochondrial targeting signal. The amino acid sequence deduced from the cDNA shows significant similarity to those of sulfite oxidase from chicken liver and nitrate reductases from algal, fungal, and plant sources. Two cysteine residues are conserved in all of these proteins, and it is proposed that one or both of these cysteines serve as ligands to molybdenum. The gene has been expressed in Escherichia coli to a level equivalent to that observed in rat liver. The recombinant enzyme has been found to contain the molybdopterin form of the molybdenum cofactor and is active as determined by the sulfite dependent reduction of cytochrome c.
- Bertram PA, Schmitz RA, Linder D, Thauer RK
- Tungstate can substitute for molybdate in sustaining growth of Methanobacterium thermoautotrophicum. Identification and characterization of a tungsten isoenzyme of formylmethanofuran dehydrogenase.
- Arch Microbiol. 1994; 161: 220-8
- Display abstract
Methanobacterium thermoautotrophicum (strain Marburg) was found to grow on media supplemented with tungstate rather than with molybdate. The Archaeon then synthesized a tungsten iron-sulfur isoenzyme of formylmethanofuran dehydrogenase. The isoenzyme was purified to apparent homogeneity and shown to be composed of four different subunits of apparent molecular masses 65 kDa, 53 kDa, 31 kDa, and 15 kDa and to contain per mol 0.4 mol tungsten, < 0.05 mol molybdenum, 8 mol non-heme iron, 8 mol acid-labile sulfur and molybdopterin guanine dinucleotide. Its molecular and catalytic properties were significantly different from those of the molybdenum isoenzyme characterized previously. The two isoenzymes also differed in their metal specificity: the active molybdenum isoenzyme was only synthesized when molybdenum was available during growth whereas the active tungsten isoenzyme was also generated during growth of the cells on molybdate medium. Under the latter conditions the tungsten isoenzyme was synthesized containing molybdenum rather than tungsten.
- Peak MJ et al.
- The hyperthermophilic glycolytic enzyme enolase in the archaeon, Pyrococcus furiosus: comparison with mesophilic enolases.
- Arch Biochem Biophys. 1994; 313: 280-6
- Display abstract
High enolase activity, as measured by the conversion of 2-phosphoglycerate to phosphoenolpyruvate, was found in the cytoplasm of Pyrococcus furiosus (an anaerobic, hyperthermophilic archaeon that grows optimally at 100 degrees C). In this organism, the enzyme probably functions in a sugar fermentation pathway. The enzyme was purified to homogeneity. It had a temperature optimum of > 90 degrees C and a pH optimum of 8.1. The enzyme was extremely thermostable with a time for 50% inactivation at 100 degrees C of 40 min. In contrast, an enolase from yeast was totally inactivated in 1 min at 88 degrees C. Both the P. furiosus and yeast enzymes required a metal ion for activity, but whereas the yeast enzyme has an absolute requirement for Mg2+, the P. furiosus enolase was equally active in the presence of Mn2+. Both enzymes were competitively inhibited by citrate. P. furiosus enolase, as for mesophilic enolases, probably has a homodimeric structure with subunit M(r) greater than 45,000. A highly conserved sequence of eight amino acids in the N-terminal region was found in enolases from P. furiosus and a wide range of other organisms including bacteria, yeast, birds, and mammals. Substantial differences in the thermal properties of the hyperthermophilic enzyme compared with that from less extreme thermophiles and mesophiles might be due to a substantially enhanced composition of hydrophobic amino acids.
- Ma K, Robb FT, Adams MW
- Purification and characterization of NADP-specific alcohol dehydrogenase and glutamate dehydrogenase from the hyperthermophilic archaeon Thermococcus litoralis.
- Appl Environ Microbiol. 1994; 60: 562-8
- Display abstract
Thermococcus litoralis is a strictly anaerobic archaeon that grows at temperatures up to 98 degrees C by fermenting peptides. Little is known about the primary metabolic pathways of this organism and, in particular, the role of enzymes that are dependent on thermolabile nicotinamide nucleotides. In this paper we show that the cytoplasmic fraction of cell extracts contained NADP-specific glutamate dehydrogenase (GDH) and NADP-specific alcohol dehydrogenase (ADH) activities, neither of which utilized NAD as a cofactor. The GDH is composed of identical subunits having an M(r) of 45,000 and had an optimal pH and optimal temperature for glutamate oxidation of 8.0 and > 95 degrees C, respectively. Potassium phosphate (60 mM), KCl (300 mM), and NaCl (300 mM) each stimulated the rate of glutamate oxidation activity between two- and threefold. For glutamate oxidation the apparent Km values at 80 degrees C for glutamate and NADP were 0.22 and 0.029 mM, respectively, and for 2-ketoglutarate reduction the apparent Km values for 2-ketoglutarate, NADPH, and NH4+ were 0.16, 0.14, and 0.63 mM, respectively. This enzyme is the first NADP-specific GDH purified form a hyperthermophilic organism. T. litoralis ADH is a tetrameric protein composed of identical subunits having an M(r) of 48,000; the optimal pH and optimal temperature for ethanol oxidation were 8.8 and 80 degrees C, respectively. In contrast to GDH activity, potassium phosphate (60 mM), KCl (0.1 M), and NaCl (0.3 M) inhibited ADH activity, whereas (NH4)2SO4 (0.1 M) had a slight stimulating effect. This enzyme exhibited broad substrate specificity for primary alcohols, but secondary alcohols were not oxidized.(ABSTRACT TRUNCATED AT 250 WORDS)
- Ma K, Adams MW
- Sulfide dehydrogenase from the hyperthermophilic archaeon Pyrococcus furiosus: a new multifunctional enzyme involved in the reduction of elemental sulfur.
- J Bacteriol. 1994; 176: 6509-17
- Display abstract
Pyrococcus furiosus is an anaerobic archaeon that grows optimally at 100 degrees C by the fermentation of carbohydrates yielding acetate, CO2, and H2 as the primary products. If elemental sulfur (S0) or polysulfide is added to the growth medium, H2S is also produced. The cytoplasmic hydrogenase of P. furiosus, which is responsible for H2 production with ferredoxin as the electron donor, has been shown to also catalyze the reduction of polysulfide to H2S (K. Ma, R. N. Schicho, R. M. Kelly, and M. W. W. Adams, Proc. Natl. Acad. Sci. USA 90:5341-5344, 1993). From the cytoplasm of this organism, we have now purified an enzyme, sulfide dehydrogenase (SuDH), which catalyzes the reduction of polysulfide to H2S with NADPH as the electron donor. SuDH is a heterodimer with subunits of 52,000 and 29,000 Da. SuDH contains flavin and approximately 11 iron and 6 acid-labile sulfide atoms per mol, but no other metals were detected. Analysis of the enzyme by electron paramagnetic resonance spectroscopy indicated the presence of four iron-sulfur centers, one of which was specifically reduced by NADPH. SuDH has a half-life at 95 degrees C of about 12 h and shows a 50% increase in activity after 12 h at 82 degrees C. The pure enzyme has a specific activity of 7 mumol of H2S produced.min-1.mg of protein-1 at 80 degrees C with polysulfide (1.2 mM) and NADPH (0.4 mM) as substrates. The apparent Km values were 1.25 mM and 11 microM, respectively. NADH was not utilized as an electron donor for polysulfide reduction. P. furiosus rubredoxin (K(m) = 1.6 microM) also functioned as an electron acceptor for SuDH, and SuDH catalyzed the reduction of NADP with reduced P. furiosus ferredoxin (K(m) = 0.7 microM) as an electron donor. The multiple activities of SuDH and its proposed role in the metabolism of S(o) and polysulfide are discussed.
- Smith ET, Blamey JM, Adams MW
- Pyruvate ferredoxin oxidoreductases of the hyperthermophilic archaeon, Pyrococcus furiosus, and the hyperthermophilic bacterium, Thermotoga maritima, have different catalytic mechanisms.
- Biochemistry. 1994; 33: 1008-16
- Display abstract
Pyruvate ferredoxin oxidoreductase (POR) has been previously purified from two hyperthermophiles, the archaeon Pyrococcus furiosus (Pf, Topt = 100 degrees C) and the bacterium Thermotoga maritima (Tm, Topt = 80 degrees C). Each catalyzes the oxidative decarboxylation of pyruvate to acetyl-CoA and CO2 near the optimal growth temperature of the organism and are virtually inactive at 25 degrees C. Both PORs contain a thiamine pyrophosphate (TPP) cofactor and at least two [4Fe-4S] ferredoxin-type clusters. We have now shown, using EPR spectroscopy and metal analyses, that PfPOR also contains an unusual copper center that is not present in Tm POR. In addition, distinct catalytic intermediates were generated in both enzymes by the addition, separately and in combination, of the substrates pyruvate and CoASH, and these were examined by EPR spectroscopy. The addition of pyruvate to oxidized Pf POR produced an isotropic signal centered at g = 2.01, which was measurably broader in the presence of pyruvate-2(13)C. This signal, which was assigned to a (hydroxyethyl)thiamine pyrophosphate radical intermediate, was not observed in Tm POR under the same experimental conditions. Incubation of the oxidized enzymes with CoASH resulted in the partial reduction of the copper site in Pf POR and the partial reduction of a novel iron-sulfur center in Tm POR, which was not seen in the dithionite-reduced enzyme. The addition of both pyruvate and CoASH to the PORs in their oxidized states resulted in the reduction of the same iron-sulfur centers that are reduced by sodium dithionite.(ABSTRACT TRUNCATED AT 250 WORDS)
- Wasserfallen A
- Formylmethanofuran synthesis by formylmethanofuran dehydrogenase from Methanobacterium thermoautotrophicum Marburg.
- Biochem Biophys Res Commun. 1994; 199: 1256-61
- Display abstract
Formylmethanofuran dehydrogenase was purified 30-fold from the cytosolic fraction of cell extract of Methanobacterium thermoautotrophicum (Marburg) and shown for the first time to synthesize in vitro formylmethanofuran from methanofuran and carbon dioxide with electrons donated by titanium(III) citrate. The reaction was methanofuran-, CO2-, and Ti(3+)-dependent. Active enzyme could be purified from cells grown with either molybdenum or tungsten as the sole group VIA trace element. The active form of formylmethanofuran dehydrogenase had an apparent molecular mass of 530 kDa as determined by gel filtration chromatography and was found to copurify with a hydrogenase.
- Burdette D, Zeikus JG
- Purification of acetaldehyde dehydrogenase and alcohol dehydrogenases from Thermoanaerobacter ethanolicus 39E and characterization of the secondary-alcohol dehydrogenase (2 degrees Adh) as a bifunctional alcohol dehydrogenase--acetyl-CoA reductive thioesterase.
- Biochem J. 1994; 302: 163-70
- Display abstract
The purification and characterization of three enzymes involved in ethanol formation from acetyl-CoA in Thermoanaerobacter ethanolicus 39E (formerly Clostridium thermohydrosulfuricum 39E) is described. The secondary-alcohol dehydrogenase (2 degrees Adh) was determined to be a homotetramer of 40 kDa subunits (SDS/PAGE) with a molecular mass of 160 kDa. The 2 degrees Adh had a lower catalytic efficiency for the oxidation of 1 degree alcohols, including ethanol, than for the oxidation of secondary (2 degrees) alcohols or the reduction of ketones or aldehydes. This enzyme possesses a significant acetyl-CoA reductive thioesterase activity as determined by NADPH oxidation, thiol formation and ethanol production. The primary-alcohol dehydrogenase (1 degree Adh) was determined to be a homotetramer of 41.5 kDa (SDS/PAGE) subunits with a molecular mass of 170 kDa. The 1 degree Adh used both NAD(H) and NADP(H) and displayed higher catalytic efficiencies for NADP(+)-dependent ethanol oxidation and NADH-dependent acetaldehyde (identical to ethanal) reduction than for NADPH-dependent acetaldehyde reduction or NAD(+)-dependent ethanol oxidation. The NAD(H)-linked acetaldehyde dehydrogenase was a homotetramer (360 kDa) of identical subunits (100 kDa) that readily catalysed thioester cleavage and condensation. The 1 degree Adh was expressed at 5-20% of the level of the 2 degrees Adh throughout the growth cycle on glucose. The results suggest that the 2 degrees Adh primarily functions in ethanol production from acetyl-CoA and acetaldehyde, whereas the 1 degree Adh functions in ethanol consumption for nicotinamide-cofactor recycling.
- Bertram PA, Karrasch M, Schmitz RA, Bocher R, Albracht SP, Thauer RK
- Formylmethanofuran dehydrogenases from methanogenic Archaea. Substrate specificity, EPR properties and reversible inactivation by cyanide of the molybdenum or tungsten iron-sulfur proteins.
- Eur J Biochem. 1994; 220: 477-84
- Display abstract
Formylmethanofuran dehydrogenases, which are found in methanogenic Archaea, are molybdenum or tungsten iron-sulfur proteins containing a pterin cofactor. We report here on differences in substrate specificity, EPR properties and susceptibility towards cyanide inactivation of the enzymes from Methanosarcina barkeri, Methanobacterium thermoautotrophicum and Methanobacterium wolfei. The molybdenum enzyme from M. barkeri (relative activity with N-formylmethanofuran = 100%) was found to catalyze, albeit at considerably reduced apparent Vmax, the dehydrogenation of N-furfurylformamide (11%), N-methylformamide (0.2%), formamide (0.1%) and formate (1%). The molybdenum enzyme from M. wolfei could only use N-furfurylformamide (1%) and formate (3%) as pseudosubstrates. The molybdenum enzyme from M. thermoautotrophicum and the tungsten enzymes from M. thermoautotrophicum and M. wolfei were specific for N-formylmethanofuran. The molybdenum formylmethanofuran dehydrogenases exhibited at 77 K two rhombic EPR signals, designated FMDred and FMDox, both derived from Mo as shown by isotopic substitution with 97Mo. The FMDred signal was only displayed by the active enzyme in the reduced form and was lost upon enzyme oxidation; the FMDox signal was displayed by an inactive form and was not quenched by O2. The tungsten isoenzymes were EPR silent. The molybdenum formylmethanofuran dehydrogenases were found to be inactivated by cyanide whereas the tungsten isoenzymes, under the same conditions, were not inactivated. Inactivation was associated with a characteristic change in the molybdenum-derived EPR signal. Reactivation was possible in the presence of sulfide.
- Mai X, Adams MW
- Indolepyruvate ferredoxin oxidoreductase from the hyperthermophilic archaeon Pyrococcus furiosus. A new enzyme involved in peptide fermentation.
- J Biol Chem. 1994; 269: 16726-32
- Display abstract
Pyrococcus furiosus is a strictly anaerobic archaeon that grows optimally at 100 degrees C by a fermentative-type metabolism in which complex peptide mixtures such as yeast extract and Tryptone, and also certain sugars, are oxidized to organic acids, H2 and CO2. Enzymes involved in the utilization of peptides such as proteases, aromatic amino transferases, and glutamate dehydrogenase have been previously purified from this organism. It is shown here that P. furiosus also contains significant cytoplasmic concentrations of a new enzyme termed indolepyruvate ferredoxin oxidoreductase (IOR). This catalyzes the oxidative decarboxylation of aryl pyruvates, which are generated by the transamination of aromatic amino acids, to the corresponding aryl acetyl-CoA. IOR is a tetramer (alpha 2 beta 2) of two identical subunits (66,000 and 23,000 Da) with a molecular weight of 180,000. The enzyme contains one molecule of thiamine pyrophosphate and four [4Fe-4S]2+,1+ and one [3Fe-4S]0,1+ cluster, as determined by iron analyses and EPR spectroscopy. Significant amounts of other metals such as copper and zinc were not detected. IOR was virtually inactive at 25 degrees C and exhibited optimal activity above 90 degrees C (at pH 8.0) and at pH 8.5-10.5 (at 80 degrees C). The enzyme was sensitive to inactivation by O2, losing 50% of its activity after exposure to air for 20 min at 23 degrees C, and was quite thermostable, with a half-life of activity at 80 degrees C (under anaerobic conditions) of about 80 min. The Km values (in microM) for indolepyruvate, p-hydroxyphenylpyruvate, phenylpyruvate, CoASH, and P. furiosus ferredoxin, the physiological electron carrier, were 250, 110, 90, 17, and 48, respectively. IOR was inhibited by KCN (apparent Ki = 7.5 mM), but not by CO (1 atm). An enzyme analogous to IOR has not been reported previously. Curiously, it has few properties in common with the pyruvate ferredoxin oxidoreductase of P. furiosus, even though the two enzymes catalyze virtually identical reactions. In fact, of known ketoacid oxidoreductases, the catalytic mechanism of IOR appears to be most similar to that of the pyruvate ferredoxin oxidoreductase from the hyperthermophilic bacterium Thermotoga maritima.
- Kamdar KP, Shelton ME, Finnerty V
- The Drosophila molybdenum cofactor gene cinnamon is homologous to three Escherichia coli cofactor proteins and to the rat protein gephyrin.
- Genetics. 1994; 137: 791-801
- Display abstract
Essentially all organisms depend upon molybdenum oxidoreductases which require a molybdopterin cofactor for catalytic activity. Mutations resulting in a lack of the cofactor show a pleiotropic loss of molybdoenzyme activities and thereby define genes involved in cofactor biosynthesis or utilization. In prokaryotes, two operons are directly associated with biosynthesis of the pterin moiety and its side chain while additional loci play a role in the acquisition of molybdenum and/or activation of the cofactor. Here we report the cloning of cinnamon, a Drosophila molybdenum cofactor gene encoding a protein with sequence similarity to three of the prokaryotic cofactor proteins. In addition, the Drosophila cinnamon protein is homologous to gephyrin, a protein isolated from the rat central nervous system. Our results suggest that some portions of the prokaryotic cofactor biosynthetic pathway composed of monofunctional proteins have evolved into a multifunctional protein in higher eukaryotes.
- Adams MW
- Biochemical diversity among sulfur-dependent, hyperthermophilic microorganisms.
- FEMS Microbiol Rev. 1994; 15: 261-77
- Display abstract
Hyperthermophiles are a recently discovered group of microorganisms that grow at and above 90 degrees C. They currently comprise over 20 different genera, and except for two novel bacteria, all are classified as Archaea. The majority of these organisms are obligately anaerobic heterotrophs that reduce elemental sulfur (S degree) to H2S. The best studied from a biochemical perspective are the archaeon, Pyrococcus furiosus, and the bacterium, Thermotoga maritima, both of which are saccharolytic. P. furiosus is thought to contain a new type of Entner-Doudoroff pathway for the conversion of carbohydrates ultimately to acetate, H2 and CO2. The pathway is independent of nicotinamide nucleotides and involves novel types of ferredoxin-linked oxidoreductases, one of which has tungsten, a rarely used element, as a prosthetic group. The only site of energy conservation is at the level of acetyl CoA, which is the presence of ADP and phosphate is converted to acetate and ATP in a single step. In contrast, T. maritima utilizes a conventional Embden-Meyerhof pathway for sugar oxidation. P. furiosus also utilizes peptides as a sole carbon and energy source. Amino acid oxidation is thought to involve glutamate dehydrogenase together with at least three types of novel ferredoxin-linked oxidoreductases which catalyze the oxidation of 2-ketoglutarate, aryl pyruvates and formaldehyde. One of these enzymes also utilizes tungsten. In P. furiosus, virtually all of the reductant that is generated during the catabolism of both carbohydrates and peptides is channeled to a cytoplasmic hydrogenase. This enzyme is now termed sulhydrogenase, as it reduces both protons to H2 and S degrees (or polysulfide) to H2S. S degrees reduction appears to lead to the conservation of energy in P. furiosus but not in T. maritima, although the mechanism by which this occurs is not known.
- Moura JJ, Barata BA
- Aldehyde oxidoreductases and other molybdenum containing enzymes.
- Methods Enzymol. 1994; 243: 24-42
- de Beyer A, Lingens F
- Microbial metabolism of quinoline and related compounds. XVI. Quinaldine oxidoreductase from Arthrobacter spec. Ru 61a: a molybdenum-containing enzyme catalysing the hydroxylation at C-4 of the heterocycle.
- Biol Chem Hoppe Seyler. 1993; 374: 101-9
- Display abstract
Quinaldine oxidoreductase from Arthrobacter spec. Ru 61a converts quinaldine to 1H-4-oxoquinaldine. The enzyme was purified 70-fold to apparent homogeneity in a 5-step procedure with a recovery of 4%. The molecular mass of the native enzyme was calculated to be 340,000 Da by gel filtration. SDS-polyacrylamide gel electrophoresis of the enzyme revealed 3 protein bands corresponding to 82,000 Da, 35,000 Da and 22,000 Da. The enzyme contained 1.6 atoms of molybdenum, 8 atoms of iron, 8 atoms of acid labile sulfur, 2 molecules of FAD and as part of the molybdenum cofactor, molybdopterin cytosine dinucleotide. Due to the composition of the cofactors the quinaldine oxidoreductase belongs to the class of molybdo-iron/sulfur-flavoproteins. Cyanide, arsenite and 4-hydroxymercuribenzoate were effective inhibitors whereas the enzyme was not affected by methanol.
- DiRuggiero J et al.
- Characterization, cloning, and in vitro expression of the extremely thermostable glutamate dehydrogenase from the hyperthermophilic Archaeon, ES4.
- J Biol Chem. 1993; 268: 17767-74
- Display abstract
Glutamate dehydrogenase (GDH) from the hyperthermophilic Archaeon ES4 (optimal growth temperature 98 degrees C and maximum growth temperature 110 degrees C) was purified to homogeneity. The purified native enzyme had an M(r) of 270,000 +/- 5,000 and was shown by gel filtration and SDS-polyacrylamide gel electrophoresis to be a hexamer with identical subunits of M(r) = 46,000 +/- 3,000. The hexameric subunit composition was also evident from electron micrographs, which show a triangular antiprism structure very similar to that of bovine GDH. The enzyme is exceptionally thermostable, with a half-time of inactivation of 3.5 h at 105 degrees C. Differential scanning calorimetry revealed a tm for denaturation of 113 degrees C, and a tm for activation at 60 degrees C. Antigenic cross-reaction with ES4 GDH was observed with the purified GDH from the thermophilic Archaea, Pyrococcus furiosus and Thermococcus litoralis as well as with bovine and yeast GDHs. The genome of ES4 was shown to contain a single copy of the gdhA gene, and this was cloned and sequenced. The deduced amino acid sequence of the GDH from ES4 corresponded to the NH2-terminal amino acid sequence obtained from the pure protein. From the nucleotide sequence the ES4 protein is composed of 420 residues. It has a relatively high hydrophobicity and a low number of sulfur-containing residues compared with mesophilic GDHs. Relatively high homology (52%) exists between the deduced amino acid sequence of ES4 GDH and Clostridium difficile GDH. Of the two distinct families of GDH sequences known, ES4 GDH belongs to the same family as vertebrates, C. difficile, and other Archaea. The gdhA gene of ES4 was expressed in vitro in a rabbit reticulocyte cell-free lysate, thus providing a system for structural studies of the mechanisms of thermostability in hyper-thermophilic proteins.
- Fischer B, Schmalle H, Dubler E, Viscontini M
- Molybdenum-pterin complexes: a functional and structural model for the binding site in the enzyme dimethyl sulfoxide reductase.
- Adv Exp Med Biol. 1993; 338: 369-72
- Schicho RN, Ma K, Adams MW, Kelly RM
- Bioenergetics of sulfur reduction in the hyperthermophilic archaeon Pyrococcus furiosus.
- J Bacteriol. 1993; 175: 1823-30
- Display abstract
The bioenergetic role of the reduction of elemental sulfur (S0) in the hyperthermophilic archaeon (formerly archaebacterium) Pyrococcus furiosus was investigated with chemostat cultures with maltose as the limiting carbon source. The maximal yield coefficient was 99.8 g (dry weight) of cells (cdw) per mol of maltose in the presence of S0 but only 51.3 g (cdw) per mol of maltose if S0 was omitted. However, the corresponding maintenance coefficients were not found to be significantly different. The primary fermentation products detected were H2, CO2, and acetate, together with H2S, when S0 was also added to the growth medium. If H2S was summed with H2 to represent total reducing equivalents released during fermentation, the presence of S0 had no significant effect on the pattern of fermentation products. In addition, the presence of S0 did not significantly affect the specific activities in cell extracts of hydrogenase, sulfur reductase, alpha-glucosidase, or protease. These results suggest either that S0 reduction is an energy-conserving reaction, i.e., S0 respiration, or that S0 has a stimulatory effect on or helps overcome a process that is yield limiting. A modification of the Entner-Doudoroff glycolytic pathway has been proposed as the primary route of glucose catabolism in P. furiosus (S. Mukund and M. W. W. Adams, J. Biol. Chem. 266:14208-14216, 1991). Operation of this pathway should yield 4 mol of ATP per mol of maltose oxidized, from which one can calculate a value of 12.9 g (cdw) per mol of ATP for non-S0 growth. Comparison of this value to the yield data for growth in the presence of S0 reduction is equivalent to an ATP yield of 0.5 mol of ATP per mol of S0 reduced. Possible mechanism to account for this apparent energy conservation are discussed.
- Johnson JL, Rajagopalan KV, Mukund S, Adams MW
- Identification of molybdopterin as the organic component of the tungsten cofactor in four enzymes from hyperthermophilic Archaea.
- J Biol Chem. 1993; 268: 4848-52
- Display abstract
The hyperthermophilic Archaea represent some of the most ancient organisms on earth. A study of enzymatic cofactors in these organisms could provide basic information on the origins of related cofactors in man and other more recently evolved organisms. To this end, the nature of the tungsten cofactor in aldehyde ferredoxin oxidoreductases from Pyrococcus furiosus and ES-4 and in formaldehyde ferredoxin oxidoreductases from P. furiosus and Thermococcus litoralis has been investigated. All four proteins contain molybdopterin, previously characterized as the organic component of the molybdenum cofactor in a large number of molybdoenzymes. Molybdopterin was identified by conversion to the dicarboxamidomethyl derivative by alkylation of the vicinal sulfhydryl groups on the pterin side chain and by conversion to the oxidized fluorescent derivative, Form A. The pterin of the tungsten cofactor in the four enzymes was examined for the presence of appended GMP, CMP, AMP, or IMP previously observed in molybdenum cofactors of some molybdoenzymes. No evidence for the presence of a molybdopterin dinucleotide or other modified form of molybdopterin was obtained. These results further document the essential nature of molybdopterin for the function of molybdenum and tungsten enzymes in diverse life forms.
- Blamey JM, Adams MW
- Purification and characterization of pyruvate ferredoxin oxidoreductase from the hyperthermophilic archaeon Pyrococcus furiosus.
- Biochim Biophys Acta. 1993; 1161: 19-27
- Display abstract
Pyrococcus furiosus grows optimally at 100 degrees C by carbohydrate fermentation. It is thought to contain a novel tungsten-dependent, NAD(P)-independent glycolytic pathway in which one of the oxidation steps is catalyzed by a tungsten-containing aldehyde ferredoxin oxidoreductase. The enzyme that catalyzes the terminal oxidation step, pyruvate ferredoxin oxidoreductase (POR), has now been purified. POR has a molecular mass of 100 kDa and is comprised of three subunits (45, 31 and 24 kDa). It lacks tungsten but contains thiamine pyrophosphate (TPP) and two ferredoxin-type [4Fe-4S] clusters per molecule which, by EPR spectroscopy, can be differentiated by their relaxation properties. The enzyme requires CoASH but not TPP for pyruvate oxidation activity and will not use 2-oxoglutarate, phenyl pyruvate or indole pyruvate as substrates. POR is virtually inactive at 25 degrees C and shows a temperature optimum for pyruvate oxidation above 90 degrees C. The apparent Km values for pyruvate, CoASH and P. furiosus ferredoxin at 80 degrees C are 460, 100 and 70 microM, respectively. Carbon monoxide was a potent inhibitor of pyruvate oxidation (apparent Ki = 7 microM). The half-life of activity (t50%) in air at 25 degrees C was 15 min and the t50% value at 80 degrees C (under anaerobic conditions) was 23 min. Based on molecular comparisons with PORs from mesophilic organisms, it is proposed that P. furiosus POR may represent an ancestral form of a pyruvate-oxidizing enzyme.
- Gangeswaran R, Lowe DJ, Eady RR
- Purification and characterization of the assimilatory nitrate reductase of Azotobacter vinelandii.
- Biochem J. 1993; 289: 335-42
- Display abstract
1. A soluble reduced Methyl Viologen-dependent assimilatory nitrate reductase from Azotobacter vinelandii strain UW136 grown aerobically on nitrate was purified to homogeneity by the criteria of nitrate reductase activity staining, and coincidence of a Coomassie Blue-staining protein band on polyacrylamide gels run under non-denaturing conditions. The specific activity was 3 mumol of NO2- formed/min per mg of protein. 2. Gel filtration on Superose-12 and SDS/PAGE showed that the enzyme had an M(r) of 105,000 and was monomeric. The enzyme contained 1 Mo atom, 4 Fe atoms and 4 acid-labile sulphide atoms per molecule; no evidence for the presence of cytochrome or FAD was found. 3. Mo was present in a molybdenum cofactor, which on extraction was capable of activating apo-(nit-1) nitrate reductase present in crude extracts of nit-1 mutants of Neurospora crassa. 4. As isolated, the enzyme had e.p.r. signals assigned to Mo(V) with g-values g1 = 2.023; g2 = 1.998; g3 = 1.993 and with gav. = 2.004 indicating an unusual environment of Mo in this enzyme. 5. Reduction with S2O4(2-) bleached the e.p.r. signals which, on reoxidation after the addition of NO3(2-) to initiate enzyme turnover, exhibited at short times Mo(V) signals similar to those of dissimilatory nitrate reductases, with g1 = 1.998; g2 = 1.989; g3 = 1.981 and gav. = 1.989. Prolonged incubation subsequently gave a mixture of both e.p.r. species. 6. Neither NADH nor NADPH was effective as an electron donor, but reduced Methyl Viologen (apparent Km 998 microM) and reduced Bromophenol Blue (apparent Km 158 microM) were effective. With these donors the apparent Km values for nitrate were 70 microM and 217 microM respectively.
- Adams MW
- Enzymes and proteins from organisms that grow near and above 100 degrees C.
- Annu Rev Microbiol. 1993; 47: 627-58
- Display abstract
Microorganisms that can grow at and above 100 degrees C were discovered a decade ago, and about 20 different genera are now known. These so-called hyperthermophiles are the most ancient of all extant life; all but two genera are classified as Archaea. All have been isolated from geothermal heated environments including deep-sea hydrothermal vents. This group includes some methanogenic and sulfate-reducing species, but the majority are strictly anaerobic heterotrophs that utilize complex peptide mixtures as sources of energy, carbon, and nitrogen. Only a few species are saccharolytic. Most of the hyperthermophiles absolutely depend on the reduction of elemental sulfur (S0) to H2S for significant growth, a property that severely limits their large-scale culture in conventional fermentation systems. Consequently, most physiological and metabolic studies have focused on those that can also grow in the absence of S0, including species of the Archaea, Pyrococcus and Thermococcus, and the bacterium Thermotoga. The fermentative pathways for the metabolism of both peptides and carbohydrates in the Archaea appear to depend upon enzymes that contain tungsten, an element seldom used in biological systems. The mechanisms of S0 reduction and energy conservation remain unclear. Enzymes purified from the S0-reducing hyperthermophiles include proteases, amylolytic-type enzymes, hydrogenases, redox proteins, various ferredoxin-linked oxidoreductases, dehydrogenases, and DNA polymerases, some of which are active up to 140 degrees C. However, complete amino acid sequences are known for only a handful of these proteins, and the three-dimensional structure of only one hyperthermophilic protein has been determined. Potential mechanisms by which proteins and various biological cofactors and organic intermediates are stabilized at extreme temperatures are only now beginning to emerge.
- Mukund S, Adams MW
- Characterization of a novel tungsten-containing formaldehyde ferredoxin oxidoreductase from the hyperthermophilic archaeon, Thermococcus litoralis. A role for tungsten in peptide catabolism.
- J Biol Chem. 1993; 268: 13592-600
- Display abstract
Thermococcus litoralis is a strictly anaerobic archaeon (archaebacterium) that grows at temperatures up to 98 degrees C by fermenting peptides. Its growth is stimulated by tungsten, and a tungsten-containing iron-sulfur protein that has formaldehyde ferredoxin oxidoreductase (FOR) activity has been purified. FOR is a homotetramer with a subunit M(r) of 70,000. It contains approximately four irons, four acid-labile sulfides, and one tungsten atom per subunit. The tungsten appears to be present as a pterin cofactor, and the Fe/S seems to comprise an unusual [4Fe-4S] cluster that in the reduced state exists in a pH-independent S = 3/2 form and a pH-dependent S = 1/2 form. FOR catalyzed the oxidation of C1-C3 aldehydes with a temperature optimum > or = 90 degrees C and used T. litoralis ferredoxin as an electron acceptor. It did not oxidize aldehyde phosphates, utilize CoASH, or reduce NAD(P). The N-terminal sequence of FOR shows homology with the tungsto-iron-sulfur aldehyde ferredoxin oxidoreductase previously purified from the saccharolytic, hyperthermophilic archaeon Pyrococcus furiosus, in which it is proposed to function in a novel pyroglycolytic pathway (Mukund, S., and Adams, M. W. W. (1991) J. Biol. Chem. 266, 14208-14216). We show here that P. furiosus, which will also grow on peptides, albeit poorly, contains a second aldehyde-oxidizing enzyme analogous to FOR. Similarly, T. litoralis, which utilizes saccharides if limited for peptides, contains low concentrations of an enzyme analogous to AOR. It is proposed that formaldehyde (apparent Km, 62 mM) is not the true substrate for FOR; rather, the enzyme has an as yet unknown role in peptide fermentation in hyperthermophilic archaea.
- Sauter M, Tshisuaka B, Fetzner S, Lingens F
- Microbial metabolism of quinoline and related compounds. XX. Quinaldic acid 4-oxidoreductase from Pseudomonas sp. AK-2 compared to other procaryotic molybdenum-containing hydroxylases.
- Biol Chem Hoppe Seyler. 1993; 374: 1037-46
- Display abstract
Quinaldic acid 4-oxidoreductase from Pseudomonas sp. AK-2 catalyses the hydroxylation of quinoline 2-carboxylic (quinaldic acid) to 4-hydroxyquinoline 2-carboxylic acid (kynurenic acid) with concomitant reduction of a suitable electron acceptor. An analogous hydroxylation in para-position relative to the N-heteroatom was only recently described for quinaldine 4-oxidoreductase (de Beyer & Lingens, 1993, Biol. Chem. Hoppe-Seyler 374, 101-110) and for quinaldic acid 4-oxidoreductase from Serratia marcescens 2CC-1 (Fetzner & Lingens, 1993, Biol. Chem. Hoppe-Seyler 374, 363-376). Quinaldic acid 4-oxidoreductase from Pseudomonas putida AK-2 was purified 78-fold to electrophoretic homogeneity with a recovery of 22%. The native enzyme (300 kDa) was composed of three subunits with molecular masses of 90, 34 and 20 kDa, indicating an alpha 2 beta 2 gamma 2 structure. Quinaldic acid 4-oxidoreductase contained FAD, molybdenum, iron and acid-labile sulfur in a ratio of 2:2:8:8. Molybdenum is probably associated with molybdopterin cytosine dinucleotide as organic part of the pterin molybdenum cofactor. The absorption spectrum of quinaldic acid 4-oxido-reductase exhibited the typical features of a molybdo-iron/sulfur-flavoprotein, namely, maxima at 274 nm, 340 nm and 450 nm, a shoulder at 550 nm, a ratio A280/A450 of 4.7 and a ratio A450/A550 of 3.5. The enzyme was susceptible to inactivation by methanol, sodium m-arsenite, p-hydroxymercuribenzoate, and potassium cyanide. Cyanide caused an alteration at 320 nm in the absorption spectrum, typical for the change in the coordination sphere of the molybdenum. Enzyme inactivated with cyanide was reactivated to 74% by incubation with sulfide. Thus, quinaldic acid 4-oxidoreductase possesses a monooxo-monosulfido-type molybdenum center.
- Schmitz RA, Albracht SP, Thauer RK
- Properties of the tungsten-substituted molybdenum formylmethanofuran dehydrogenase from Methanobacterium wolfei.
- FEBS Lett. 1992; 309: 78-81
- Display abstract
In Methanobacterium wolfei two formylmethanofuran dehydrogenases are present, one of which is a molybdenum- and the other a tungsten enzyme. We report here that also the 'molybdenum' enzyme contained tungsten when the archaeon was grown on molybdenum-deprived medium supplemented with tungstate (1 microM). Unexpectedly the tungsten-substituted molybdenum enzyme was catalytically active and displayed a rhombic EPR signal which was attributed to tungsten by the characteristic 183W splitting.
- Schmitz RA, Albracht SP, Thauer RK
- A molybdenum and a tungsten isoenzyme of formylmethanofuran dehydrogenase in the thermophilic archaeon Methanobacterium wolfei.
- Eur J Biochem. 1992; 209: 1013-8
- Display abstract
We have recently reported that the thermophilic archaeon Methanobacterium wolfei contains two formylmethanofuran dehydrogenases, I and II. Formylmethanofuran dehydrogenase II, which is preferentially expressed in tungsten-grown cells, has been purified and shown to be a tungsten-iron-sulfur protein. We have now purified and characterized formylmethanofuran dehydrogenase I from molybdenum-grown cells and shown that it is a molybdenum-iron-sulfur protein. The purified enzyme, with a specific activity of 27 U/mg protein, was found to be composed of three subunits of apparent molecular mass 64 kDa, 51 kDa, and 31 kDa and to contain per mol 146-kDa molecule approximately 0.23 mol molybdenum, 0.46 mol molybdopterin guanine dinucleotide, and 6.6 mol non-heme iron but no tungsten (< 0.01 mol). The molybdenum enzyme differed from the tungsten enzyme (8 U/mg) in that it catalyzed the oxidation of N-furfurylformamide and formate and was inactivated by cyanide. The two enzymes also differed significantly in the pH optimum, in the apparent Km for the electron acceptor, and in the chromatographic behaviour. The molybdenum enzyme and the tungsten enzyme were similar, however, in that the N-terminal amino acid sequences determined for the alpha and beta subunits were identical up to residue 23, indicating that the two proteins are isoenzymes. The molybdenum enzyme, as isolated, was found to display an EPR signal derived from molybdenum as evidenced by isotope substitution.
- Schmitz RA, Richter M, Linder D, Thauer RK
- A tungsten-containing active formylmethanofuran dehydrogenase in the thermophilic archaeon Methanobacterium wolfei.
- Eur J Biochem. 1992; 207: 559-65
- Display abstract
Methanobacterium wolfei is a thermophilic methanogenic archaeon which requires tungsten or molybdenum for growth. We have found that the organism contains two formylmethanofuran dehydrogenases, one of which is a tungsten enzyme. Indirect evidence indicates that the other formylmethanofuran dehydrogenase is a molybdenum enzyme. The tungsten enzyme was purified and characterized. The native enzyme had an apparent molecular mass of 130 kDa. SDS/PAGE revealed a composition of three subunits of apparent molecular mass 35, 51 and 64 kDa, the N-terminal amino acid sequences of two of which were determined. 0.3-0.4 mol tungsten/mol enzyme was found but no molybdenum. The pterin cofactor was identified as molybdopterin guanine dinucleotide. The purified enzyme exhibited a specific activity of 8.3 mumol.min-1.mg protein-1 and an apparent Km for formylmethanofuran and methylviologen of 13 microM and 0.4 mM, respectively. The optimum temperature for activity was 65 degrees C. At 40-60 degrees C, the rate increased with a Q10 of 1.9; the activation energy of the reaction was 45 kJ/mol. The enzyme was found to require potassium ions for thermostability. The oxygen-sensitive enzyme was not inactivated by cyanide.
- White H, Simon H
- The role of tungstate and/or molybdate in the formation of aldehyde oxidoreductase in Clostridium thermoaceticum and other acetogens; immunological distances of such enzymes.
- Arch Microbiol. 1992; 158: 81-4
- Display abstract
Besides Clostridium thermoaceticum and C. formicoaceticum other resting acetogenic clostridia such as C. aceticum and C. thermoautotrophicum and to a lesser extent non-clostridial acetogens such as Butyribacterium methylotrophicum and Eubacterium limosum were able to reduce propionate to propanol at the expense of carbon monoxide or formate. Methylviologen usually increased the reduction rate. Ten microM molybdate in the growth medium decreased this capability for C. thermoaceticum but increased it or had no effect for the other organisms. Ten microM tungstate in the growth medium increased the aldehyde oxidoreductase activity in all organisms. Crude extracts of C. thermoaceticum cells grown in the presence of 10 microM or 1 mM molybdate showed by ELISA the same or even a 4 fold concentration of aldehyde oxidoreductase in the latter case. However, the enzymic activity was very low in both cases. Omission of dithionite in the growth medium diminished the antigen by a factor of about 8. The immunological distance between the enzyme from C. thermoaceticum and C. thermoautotrophicum was rather low but very large to C. formicoaceticum and undeterminably large to the other organisms.
- Strobl G, Feicht R, White H, Lottspeich F, Simon H
- The tungsten-containing aldehyde oxidoreductase from Clostridium thermoaceticum and its complex with a viologen-accepting NADPH oxidoreductase.
- Biol Chem Hoppe Seyler. 1992; 373: 123-32
- Display abstract
Purification of aldehyde oxidoreductase from C. thermoaceticum, the first detected enzyme able to reduce reversibly non-activated carboxylic acids to the corresponding aldehydes (White, H., Strobl, G., Feicht, R. & Simon, H. (1989) Eur. J. Biochem. 184, 89-96), results in the generation of multiple forms of the enzyme. The specific activities for the viologen-mediated dehydrogenation of butyraldehyde for the two main forms of the purification procedure are 530 and 450 U/mg. Two forms of the enzyme composed of alpha,beta- and alpha,beta,gamma-subunits, can be differentiated. The latter binds to red-Sepharose and can be eluted very specifically with NADPH. In contrast to the alpha,beta-types the trimeric forms also catalyse the reversible reduction of oxidised viologen with NADPH (VAPOR activity). The dimer alpha,beta can oligomerize and the alpha,beta,gamma-trimer can easily form various oligomers or split off the gamma-subunit. The apparent molecular masses of the subunits alpha,beta and gamma are 64, 14 and 43 kDa. The alpha,beta-form reveals an apparent molecular mass of 86 kDa containing about 29 iron, 25 acid-labile sulphur, 0.8 tungsten and forms about 1 mol pterine-6-carboxylic acid by permanganate oxidation. The corresponding values of the trimer showing a mass of 300 kDa, are about 82 Fe, 54 S, 3.4 W and 2.5 pterine-6-carboxylic acid. In addition, 1.7 mol of FAD could be found which seems to be a component of the gamma-subunit. The aldehyde oxidoreductase from C. thermoaceticum and that from C. formicoaceticum (White, H., Feicht, R., Huber, C., Lottspeich, F. & Simon, H. (1991) Biol. Chem. Hoppe-Seyler 372, 999-1005) show qualitative similarities as far as the Fe, S, W and pterin content and the broad substrate specificity are concerned. However, there are also surprisingly marked differences with respect to composition and amino-acid sequence.
- Hughes RK, Doyle WA, Chovnick A, Whittle JR, Burke JF, Bray RC
- Use of rosy mutant strains of Drosophila melanogaster to probe the structure and function of xanthine dehydrogenase.
- Biochem J. 1992; 285: 507-13
- Display abstract
The usefulness in structure/function studies of molybdenum-containing hydroxylases in work with rosy mutant strains of Drosophila melanogaster has been investigated. At least 23 such strains are available, each corresponding to a single known amino acid change in the xanthine dehydrogenase sequence. Sequence comparisons permit identification, with some certainty, of regions associated with the iron-sulphur centres and the pterin molybdenum cofactor of the enzyme. Procedures have been developed and rigorously tested for the assay in gel-filtered extracts of the flies, of different catalytic activities of xanthine dehydrogenase by the use of various oxidizing and reducing substrates. These methods have been applied to 11 different rosy mutant strains that map to different regions of the sequence. All the mutations studied cause characteristic activity changes in the enzyme. In general these are consistent with the accepted assignment of the cofactors to the different domains and with the known reactivities of the molybdenum, flavin and iron-sulphur centres. Most results are interpretable in terms of the mutation affecting electron transfer to or from one redox centre only. The activity data provide evidence that FAD and the NAD+/NADH binding sites are retained in mutants mapping to the flavin domain. Therefore, despite some indications from sequence comparisons, it is concluded that the structure of this domain of xanthine dehydrogenase cannot be directly related to that of other flavoproteins for which structural data are available. The data also indicate that the artificial electron acceptor phenazine methosulphate acts at the iron-sulphur centres and suggest that these centres may not be essential for electron transfer between molybdenum and flavin. The work emphasizes the importance of combined genetic and biochemical study of rosy mutant xanthine dehydrogenase variants in probing the structure and function of enzymes of this class.
- Weiner JH, Rothery RA, Sambasivarao D, Trieber CA
- Molecular analysis of dimethylsulfoxide reductase: a complex iron-sulfur molybdoenzyme of Escherichia coli.
- Biochim Biophys Acta. 1992; 1102: 1-18
- Hughes RK, Bennett B, Doyle WA, Burke JF, Chovnick A, Bray RC
- Roles of molybdenum, FAD and iron-sulphur domains in molybdenum-containing hydroxylases: molecular genetic, kinetic and spectroscopic studies.
- Biochem Soc Trans. 1991; 19: 260-260
- Mukund S, Adams MW
- The novel tungsten-iron-sulfur protein of the hyperthermophilic archaebacterium, Pyrococcus furiosus, is an aldehyde ferredoxin oxidoreductase. Evidence for its participation in a unique glycolytic pathway.
- J Biol Chem. 1991; 266: 14208-16
- Display abstract
The anaerobic archaebacterium, Pyrococcus furiosus, grows optimally at 100 degrees C by a fermentative-type metabolism in which H2, CO2, and organic acids are end products. The growth of this organism is stimulated by tungsten, and, from it, a novel, red-colored, tungsten-iron-sulfur protein, abbreviated RTP, has been purified (Mukund, S., and Adams, M. W. W. (1990) J. Biol. Chem. 265, 11508-11516). RTP (Mr approximately 85,000) contained approximately 1W, 7Fe, and 5 acid-labile sulfide atoms/molecule and exhibited unique EPR properties. The physiological function of the protein, however, was unknown. We show here that RTP is an inactive form of an aldehyde ferredoxin oxidoreductase (AOR). The active enzyme was obtained by rapid purification under anaerobic conditions using buffers containing dithiothreitol and glycerol. AOR catalyzed the oxidation of a range of aliphatic aldehydes with an optimum temperature for activity above 90 degrees C, but it did not oxidize glucose or glyceraldehyde 3-phosphate, nor reduce NAD(P), and its activity was independent of CoA. The active (AOR) and inactive (RTP) forms of the enzyme were indistinguishable in their contents of metals and acid-labile sulfide and in their EPR properties. The latter are though to originate from two nonidentical and spin-coupled iron-sulfur clusters, whereas the tungsten in this enzyme, which was not detectable by EPR, appears to be present as a novel pterin cofactor. Inhibition and activation studies indicated that AOR contains a catalytically essential W-SH group that is not present in RTP, the inactive form. AOR is a new type of aldehyde-oxidizing enzyme and is the first aldehyde oxidoreductase to be purified from an archaebacterium or a nonactogenic anaerobic bacterium. Its physiological role in P. furiosus is proposed as the oxidation of glyceraldehyde to glycerate in a unique, partially nonphosphorylated, glycolytic pathway that generates acetyl-CoA from glucose without the participation of nicotinamide nucleotides.
- McEwan AG, Ferguson SJ, Jackson JB
- Purification and properties of dimethyl sulphoxide reductase from Rhodobacter capsulatus. A periplasmic molybdoenzyme.
- Biochem J. 1991; 274: 305-7
- Display abstract
Dimethyl sulphoxide reductase was purified from the photosynthetic bacterium Rhodobacter capsulatus. The enzyme is composed of a single polypeptide of Mr 82,000 and contains a pterin-type molybdenum cofactor as the only detectable prosthetic group. The oxidized molybdenum cofactor of dimethyl sulphoxide reductase is a weak chromophore and exhibits broad absorption bands in the u.v.-visible-absorption spectral region. A distinct spectrum was generated upon addition of dithionite.
- White H, Feicht R, Huber C, Lottspeich F, Simon H
- Purification and some properties of the tungsten-containing carboxylic acid reductase from Clostridium formicoaceticum.
- Biol Chem Hoppe Seyler. 1991; 372: 999-1005
- Display abstract
Judged by properties observed during the purification and based on the sequence of the first 25 amino acids, the enzyme from Clostridium formicoaceticum catalysing the reversible reduction of non-activated carboxylic acids to aldehydes at the expense of reduced viologens, is astonishingly different from that found by us in C. thermoaceticum. According to native and SDS gel electrophoresis the reductase is nearly homogeneous after only 26-fold purification. The specificity for various substrates and artificial electron carriers is also broad, but V of the purified aldehyde dehydrogenase activity (54 U/mg enzyme for butanal) is about 1 order of magnitude lower than that of the enzyme from C. thermoaceticum. The reductase is a dimer of two identical subunits with an Mr of 67,000 each. Increased enzyme concentrations seem to lead to higher oligomers. Per dimer 11 +/- 1 iron, 16 +/- 1 acid labile sulphur, 1.4 tungsten and after permanganate oxidation 1.6 mol pterin-6-carboxylic acid have been found.
- Borner G, Karrasch M, Thauer RK
- Molybdopterin adenine dinucleotide and molybdopterin hypoxanthine dinucleotide in formylmethanofuran dehydrogenase from Methanobacterium thermoautotrophicum (Marburg).
- FEBS Lett. 1991; 290: 31-4
- Display abstract
Formylmethanofuran dehydrogenase from Methanobacterium thermoautotrophicum was purified to apparent homogeneity and found to contain per mol (apparent molecular mass 110 kDa) 0.6 mol molybdenum, 4 mol non-heme iron, 4 mol acid-labile sulfur, and in addition, 0.7 mol of a pterin-containing co-factor (apparent molecular mass 800 Da) which has been characterized. The pterin material was extracted after alkylation by iodoacetamide and the extract subjected to HPLC on Lichrospher 100 RP-18. Three pterin compounds were resolved. On the basis of their UV/visible spectra and of the products formed after cleavage by nucleotide pyrophosphatase and alkaline phosphatase they were identified as the [di(carboxamidomethyl)]-derivatives of molybdopterin guanine dinucleotide (MGD), of molybdopterin adenine dinucleotide (MAD), and of molybdopterin hypoxanthine dinucleotide (MHD). The three pterin dinucleotides were present in the proportions 1:0.4:0.1.
- Wootton JC et al.
- Enzymes depending on the pterin molybdenum cofactor: sequence families, spectroscopic properties of molybdenum and possible cofactor-binding domains.
- Biochim Biophys Acta. 1991; 1057: 157-85
- Karrasch M, Borner G, Enssle M, Thauer RK
- The molybdoenzyme formylmethanofuran dehydrogenase from Methanosarcina barkeri contains a pterin cofactor.
- Eur J Biochem. 1990; 194: 367-72
- Display abstract
Recently formylmethanofuran dehydrogenase from the archaebacterium Methanosarcina barkeri has been shown to be a novel molybdo-iron-sulfur protein. We report here that the enzyme contains one mol of a bound pterin cofactor/mol molybdenum, similar but not identical to the molybdopterin of milk xanthine oxidase. The two pterins, after oxidation with I2 at pH 2.5, showed identical fluorescence spectra and, after oxidation with permanganate at pH 13, yielded pterin 6-carboxylic acid. They differed, however, in their apparent molecular mass: the pterin of formylmethanofuran dehydrogenase was 400 Da larger than that of milk xanthine oxidase, a property also exhibited by the pterin cofactor of eubacterial molybdoenzymes. A homogeneous formylmethanofuran dehydrogenase preparation was used for these investigations. The enzyme, with a molecular mass of 220 kDa, contained 0.5-0.8 mol molybdenum, 0.6-0.9 mol pterin, 28 +/- 2 mol non-heme iron and 28 +/- 2 mol acid-labile sulfur/mol based on a protein determination with bicinchoninic acid. The specific activity was 175 mumol.min-1.mg-1 (kcat = 640 s-1) assayed with methylviologen (app. Km = 0.02 mM) as artificial electron acceptor. The apparent Km for formylmethanofuran was 0.02 mM.
- Blumentals II, Brown SH, Schicho RN, Skaja AK, Costantino HR, Kelly RM
- The hyperthermophilic archaebacterium, Pyrococcus furiosus. Development of culturing protocols, perspectives on scaleup, and potential applications.
- Ann N Y Acad Sci. 1990; 589: 301-14
- Display abstract
From this brief discussion, it is clear that there are many obstacles to overcome before hyperthermophilic archaebacteria will be an important aspect of biotechnology. Nevertheless, the prospects are intriguing. The nature of the environments that harbor these organisms and the consequent requirements for their controlled culture suggest that chemical and biochemical engineers can play an important role in elucidating their scientific and technological aspects.
- Bauder R, Tshisuaka B, Lingens F
- Microbial metabolism of quinoline and related compounds. VII. Quinoline oxidoreductase from Pseudomonas putida: a molybdenum-containing enzyme.
- Biol Chem Hoppe Seyler. 1990; 371: 1137-44
- Display abstract
The quinoline oxidoreductase from Pseudomonas putida was purified 50-fold to homogeneity with 21% recovery, using ammonium sulfate precipitation, hydrophobic interaction-, anion exchange-, and gel chromatography. The Mr of the native enzyme was calculated to be 300,000 by gel filtration. SDS-polyacrylamide gel electrophoresis of the enzyme revealed three protein bands corresponding to Mr 85,000, 30,000 and 20,000. The enzyme contained 8 atoms of iron, 8 atoms of acid-labile sulfide, 2 molecules of FAD, and the molybdenum cofactor, molybdopterin. Besides quinoline, the quinoline oxidoreductase also catalysed the conversion of 5-, 6-, 7- and 8-hydroxyquinoline and 8-chloroquinoline to the corresponding 2-oxo compounds. The incorporated oxygen atom was derived from water. Cyanide and methanol were effective inhibitors.
- Johnson JL, Rajagopalan KV, Meyer O
- Isolation and characterization of a second molybdopterin dinucleotide: molybdopterin cytosine dinucleotide.
- Arch Biochem Biophys. 1990; 283: 542-5
- Display abstract
The pterin cofactor (bactopterin) in the molybdoenzyme CO dehydrogenase isolated from Pseudomonas carboxydoflava has previously been shown to differ from molybdopterin in molecular mass, phosphate content, stability, and other properties, implying a novel structure. The structure of the CO dehydrogenase pterin has been investigated in the present studies by alkylation and isolation of the carboxamidomethyl derivative. The alkylated pterin was identified as [di-(carboxamidomethyl)]molybdopterin cytosine dinucleotide on the basis of its absorption properties and by degradation with nucleotide pyrophosphatase yielding carboxamidomethylmolybdopterin and CMP. Further treatment of these products with alkaline phosphatase produced species with absorption and chromatographic properties identical to those of the corresponding dephospho compounds. Molybdopterin cytosine dinucleotide is the second molybdopterin variant to be structurally characterized. The fact that molybdopterin cytosine dinucleotide and molybdopterin guanine dinucleotide contain molybdopterin in their structure shows that the pterin moiety, with its unique dithiolene-containing sidechain, is a structural element which is common to the organic portion of the molybdenum cofactors of many molybdoenzymes.
- Mukund S, Adams MW
- Characterization of a tungsten-iron-sulfur protein exhibiting novel spectroscopic and redox properties from the hyperthermophilic archaebacterium Pyrococcus furiosus.
- J Biol Chem. 1990; 265: 11508-16
- Display abstract
The archaebacterium, Pyrococcus furiosus, is a strict anaerobe that grows optimally at 100 degrees C by a fermentative-type metabolism in which H2 and CO2 are the only detectable products. Tungsten is known to stimulate the growth of this organism. A red-colored tungsten-containing protein (abbreviated RTP) that is redox-active and extremely thermostable has been purified. RTP is a monomer of Mr = 85,000 and contains approximately 6 iron, 1 tungsten, and 4 acid-labile sulfide atoms/molecule. Titrations using visible spectroscopy were consistent with the oxidation and reduction of the protein each requiring two electrons/molecule, suggesting that these metals and the sulfide are arranged in two redox active centers. P. furiosus ferredoxin served as an electron acceptor for the protein. Dithionite-reduced RTP exhibited a remarkable and complex EPR spectrum at 6 K with g values ranging from 1.3 to 10.0. This was shown to arise from the spin-coupling interaction of two paramagnetic centers. One (center A) has a S = 3/2 spin system (effective g values: gx = 3.33, gy = 4.75, and gz = 1.92, where D = 4.3 cm-1 and lambda = 0.135), whereas the EPR properties of the other (center B) could not be deduced. Nevertheless, theoretical analyses show how the redox properties of both centers may be determined using EPR spectroscopy. Their midpoint potentials (Em) at 20 degrees C and pH 8.0 are -410 mV (center A) and -500 mV (center B) with an effective potential for the spin coupled system (Em, A + B) of -505 mV. The Em values are dependent on temperature (delta Em/delta T = -2 mV/degrees C between 20 and 70 degrees C) and pH with pK alpha values of 8.0 (A) and approximately 8.5 (B). The Em values at 100 degrees C, the growth temperature, were estimated at -590, -650, and -660 mV for centers A, B, and A + B, respectively. These data indicate that RTP catalyzes a dehydrogenase-type reaction of extremely low potential, which involves the transfer of two protons and of two electrons, to and from two adjacent and interacting but nonidentical metal centers.
- Karrasch M, Borner G, Thauer RK
- The molybdenum cofactor of formylmethanofuran dehydrogenase from Methanosarcina barkeri is a molybdopterin guanine dinucleotide.
- FEBS Lett. 1990; 274: 48-52
- Display abstract
The molybdenum cofactor of formylmethanofuran dehydrogenase from methanol-grown Methanosarcina barkeri was isolated as the [di(carboxamidomethyl)]-derivative. The alkylated factor showed an absorption spectrum and chemical properties identical to those recently reported for the molybdenum cofactor of dimethyl sulfoxide reductase from Rhodobacter sphaeroides. By treatment with nucleotide pyrophosphatase the factor was resolved into two components, which were identified as [di(carboxamidomethyl)]-molybdopterin and GMP by their absorption spectra, their retention times on Lichrospher RP-18, and by their conversion to dephospho-[di(carboxamidomethyl)]-molybdopterin and guanosine, respectively, in the presence of alkaline phosphatase. The GMP-moiety was sensitive to periodate, identifying it as the 5'-isomer. These results demonstrate that the molybdenum cofactor isolated from formylmethanofuran dehydrogenase contains the phosphoric anhydride of molybdopterin and 5'-GMP.
- Bryant FO, Adams MW
- Characterization of hydrogenase from the hyperthermophilic archaebacterium, Pyrococcus furiosus.
- J Biol Chem. 1989; 264: 5070-9
- Display abstract
The archaebacterium, Pyrococcus furiosus, grows optimally at 100 degrees C by a fermentative type metabolism in which H2 and CO2 are the only detectable products. The organism also reduces elemental sulfur (S0) to H2S. Cells grown in the absence of S0 contain a single hydrogenase, located in the cytoplasm, which has been purified 350-fold to apparent homogeneity. The yield of H2 evolution activity from reduced methyl viologen at 80 degrees C was 40%. The hydrogenase has a Mr value of 185,000 +/- 15,000 and is composed of three subunits of Mr 46,000 (alpha), 27,000 (beta), and 24,000 (gamma). The enzyme contains 31 +/- 3 g atoms of iron, 24 +/- 4 g atoms of acid-labile sulfide, and 0.98 +/- 0.05 g atoms of nickel/185,000 g of protein. The H2-reduced hydrogenase exhibits an electron paramagnetic resonance (EPR) signal at 70 K typical of a single [2Fe-2S] cluster, while below 15 K, EPR absorption is observed from extremely fast relaxing iron-sulfur clusters. The oxidized enzyme is EPR silent. The hydrogenase is reversibly inhibited by O2 and is remarkably thermostable. Most of its H2 evolution activity is retained after a 1-h incubation at 100 degrees C. Reduced ferredoxin from P. furiosus also acts as an electron donor to the enzyme, and a 350-fold increase in the rate of H2 evolution is observed between 45 and 90 degrees C. The hydrogenase also catalyzes H2 oxidation with methyl viologen or methylene blue as the electron acceptor. The temperature optimum for both H2 oxidation and H2 evolution is greater than 95 degrees C. Arrhenius plots show two transition points at approximately 60 and approximately 80 degrees C independent of the mode of assay. That occurring at 80 degrees C is associated with a dramatic increase in H2 production activity. The enzyme preferentially catalyzes H2 production at all temperatures examined and appears to represent a new type of "evolution" hydrogenase.
- Meinecke B, Bertram J, Gottschalk G
- Purification and characterization of the pyruvate-ferredoxin oxidoreductase from Clostridium acetobutylicum.
- Arch Microbiol. 1989; 152: 244-50
- Display abstract
The pyruvate-ferredoxin oxidoreductase from Clostridium acetobutylicum was purified to homogeneity and partially characterized. A 9.2-fold purification was achieved in a three step purification procedure: ammonium sulfate fractionation, chromatography on Phenyl Sepharose and on Procion Blue H-EGN12. The pure enzyme exhibited a specific activity of 25 U/mg of protein. Homogeneity of the pyruvate-ferredoxin oxidoreductase was confirmed by native polyacrylamide gel electrophoresis and sodium dodecylsulfate (SDS)-polyacrylamide gel electrophoresis. The molecular weight was determined to be 123,000/monomer. The subunit composition of the native enzyme could not be determined because of the instability of the pure enzyme. The pyruvate-ferredoxin oxidoreductase is sensitive to oxygen and dilution during purification. The dilution inactivation could be partially overcome by the addition of 300 microM coenzyme A or 50% ethyleneglycol. A thiamine pyrophosphate content of 0.39 mol per mol of enzyme monomer was found, the iron and sulfur content was 4.23 and 0.91, respectively. The pH-optimum was at pH 7.5 and the temperature optimum was at 60 degrees C. Kinetic constants were measured in the forward reaction. The apparent Km for pyruvate and coenzyme A were 322 microM and 3.7 microM, respectively. With 2-ketobutyrate the pyruvate-ferredoxin oxidoreductase showed 12.5% of the activity compared to pyruvate. No activity was found with 2-ketoglutarate. Ferredoxin from Clostridium pasteurianum could be used as physiological electron acceptor.
- Johnson JL, Wuebbens MM, Rajagopalan KV
- The structure of a molybdopterin precursor. Characterization of a stable, oxidized derivative.
- J Biol Chem. 1989; 264: 13440-7
- Display abstract
An oxidized pterin species, termed compound Z, has been isolated from molybdenum cofactor-deficient mutants of Escherichia coli and shown to be the direct product of oxidation of a molybdopterin precursor which accumulates in these mutants. The complete structural characterization of compound Z has been accomplished. A carbonyl function at C-1' of the 6-alkyl side chain can be reacted with 2,4-dinitrophenylhydrazine to yield a phenylhydrazone and can be reduced with borohydride, producing a mixture of two enantiomers, each with a hydroxyl group on C-1'. Compound Z contains one phosphate/pterin and no sulfur. The phosphate group is insensitive to alkaline phosphatase and to a number of phosphodiesterases but is quantitatively released as inorganic phosphate by mild acid hydrolysis. From 31P and 1H NMR of compound Z it was inferred that the phosphate is bound to C-2' and C-4' of a 4-carbon side chain, forming a 6-membered cyclic structure. Mass spectral analysis showed an MH+ ion with an exact mass of 344.0401 corresponding to the molecular formula C10H11N5O7P, confirming the proposed structure.
- Johnson JL
- Molybdenum.
- Methods Enzymol. 1988; 158: 371-82
- van Spanning RJ, Wansell-Bettenhaussen CW, Oltmann LF, Stouthamer AH
- The oxidation product of molybdenum cofactor from milk xanthine oxidase.
- Biochem Int. 1987; 15: 185-96
- Display abstract
In extracts of acid treated molybdenum cofactor containing xanthine oxidase, fluorescence is maximally developed upon a three hours incubation. Analysis by means of reversed phase HPLC revealed the presence of several fluorescent compounds, the main one being a blue fluorescent compound with an emission maximum of 465 nm when maximal excited at 395 nm at a neutral pH. Definite proof is presented that this compound is the oxidation product of the molybdenum cofactor. The remaining fluorescent products are shown to be pterin-derivatives, yielding predominantly pterin-6-carboxylic acid upon permanganate oxidation. Purified oxidation product of molybdenum cofactor however, didn's yield a fluorescent derivative at all upon treatment with permanganate.
- Folkers G, Krug M, Trumpp S
- Computer graphic study on models of the molybdenum cofactor of xanthine oxidase.
- J Comput Aided Mol Des. 1987; 1: 87-94
- Display abstract
Within the scope of our molecular modeling studies on xanthine oxidase (XOD) inhibition by purine analogs we were interested to build up a three-dimensional model of the molybdenum active site. Spectroscopic data indicated that a Mo (VI)atom which is coordinated to sulfur, oxygen and/or nitrogen is clearly involved in substrate binding. In the present study, those data and X-ray crystallography data were used to reconstruct molybdenum-organic complexes from models proposed in the literature. The computer graphic-assisted modeling and evaluation of the model complexes show that the description of the molybdenum center needs further refinement.
- Kramer SP, Johnson JL, Ribeiro AA, Millington DS, Rajagopalan KV
- The structure of the molybdenum cofactor. Characterization of di-(carboxamidomethyl)molybdopterin from sulfite oxidase and xanthine oxidase.
- J Biol Chem. 1987; 262: 16357-63
- Display abstract
A di-(carboxamidomethyl) derivative of molybdopterin, the organic component of the molybdenum cofactor, has been prepared under conditions favoring retention of all of the structural features of the molecule. The specific radioactivity of [1-14C]iodoacetamide incorporated relative to the amount of phosphate indicated two alkylation sites per pterin. Energy-dispersive x-ray analysis of the derivative showed the presence of 2 sulfurs in the derivative. An exact mass corresponding to the molecular formula C14H18N7O5S2 was obtained for the MH+ ion of the alkylated, dephosphorylated compound by fast atom bombardment mass spectroscopy. 1H NMR spectra of the phosphorylated and dephosphorylated forms of alkylated molybdopterin, in conjunction with the other data, have provided strong corroboration of the validity of the proposed structure of molybdopterin (Johnson, J. L., and Rajagopalan, K. V. (1982) Proc. Natl. Acad. Sci. U. S. A. 79, 6856-6860) as a 6-alkylpterin with a 4-carbon side chain containing an enedithiol on C-1' and C-2', a secondary alcohol on C-3', and a phosphorylated primary alcohol on C-4'. As isolated, the di-(carboxamido-methyl)molybdopterin was found to be a 5,6,7,8-tetrahydropterin.
- Satoh T, Kurihara FN
- Purification and properties of dimethylsulfoxide reductase containing a molybdenum cofactor from a photodenitrifier, Rhodopseudomonas sphaeroides f.s. denitrificans.
- J Biochem (Tokyo). 1987; 102: 191-7
- Display abstract
Dimethylsulfoxide (DMSO) reductase was purified to electrophoretic homogeneity from the periplasmic fraction of a photodenitrifier, Rhodopseudomonas sphaeroides f.s. denitrificans. The enzyme had a molecular weight of 82,000 and had no subunit. It contained 1 mol of molybdenum per mol of enzyme, but iron and acid-labile sulfur were not present. The UV-visible spectrum showed only one absorption maximum at 280 nm. Denaturation of the enzyme released a molybdopterin cofactor, the fluorescence spectra of which were almost the same as those of a form B derivative of molybdopterin found in formate dehydrogenase. The Km value for DMSO was 15 microM, which was much lower than that for trimethylamin-N-oxide (TMAO), whereas Vmax with TMAO was larger than that with DMSO.
- Kruger B, Meyer O
- Structural elements of bactopterin from Pseudomonas carboxydoflava carbon monoxide dehydrogenase.
- Biochim Biophys Acta. 1987; 912: 357-64
- Display abstract
Bactopterin is a novel pterin occurring in bacterial molybdoenzymes as the organic portion of the molybdenum cofactor. Its structure is investigated here. The compound contains a single pterin ring and carries a side chain at carbon atom 6 of the pterin nucleus as indicated by the formation of pterin-6-carboxylic acid upon alkaline permanganate oxidation. Studies with phosphate-cleaving enzymes revealed the presence of two monophosphoric acid monoesters. The affinity of reduced bactopterin for thiol-Sepharose points to the presence of thiol(s) in active bactopterin.
- Williams K, Lowe PN, Leadlay PF
- Purification and characterization of pyruvate: ferredoxin oxidoreductase from the anaerobic protozoon Trichomonas vaginalis.
- Biochem J. 1987; 246: 529-36
- Display abstract
The pyruvate: ferredoxin oxidoreductase from the anaerobic protozoon Trichomonas vaginalis is an extrinsic protein bound to the hydrogenosomal membrane. It has been solubilized and purified to homogeneity, principally by salting-out chromatography on Sepharose 4B. Low recoveries of active enzyme were caused by inactivation by O2 and the irreversible loss of thiamin pyrophosphate. It is a dimeric enzyme of overall Mr 240,000 and subunit Mr 120,000. The enzyme contains, per mol of dimer, 7.3 +/- 0.3 mol of iron and 5.9 +/- 0.9 mol of acid-labile sulphur, suggesting the presence of two [4Fe-4S] centres, and 0.47 mol of thiamin pyrophosphate. The absorption spectrum of the enzyme is characteristic of a non-haem iron protein. The pyruvate: ferredoxin oxidoreductase from T. vaginalis is therefore broadly similar to the 2-oxo acid: ferredoxin (flavodoxin) oxidoreductases purified from bacterial sources, except that it is membrane-bound.
- Yamamoto I, Okubo N, Ishimoto M
- Further characterization of trimethylamine N-oxide reductase from Escherichia coli, a molybdoprotein.
- J Biochem (Tokyo). 1986; 99: 1773-9
- Display abstract
Escherichia coli trimethylamine N-oxide (TMAO) reductase I, the major enzyme among inducible TMAO reductases, was purified to homogeneity by an improved method including heat treatment, ammonium sulfate precipitation, and chromatographies on Bio-Gel A-1.5m, DEAE-cellulose, and Reactive blue-agarose. The molecular weight was estimated by gel filtration to be approximately 200,000. A single subunit peptide with a molecular weight of 95,000 was found by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. This enzyme contained 1.96 atoms of molybdenum, 0.96 atoms of iron, 1.52 atoms of zinc, and less than 0.4 atoms of acid-labile sulfur per molecular weight of 200,000. The absorption spectrum of the enzyme showed a peak at 278 nm and a shoulder at 288 nm, but no characteristic absorption was found from 350 to 700 nm. A fluorescent derivative of molybdenum cofactor was found when the enzyme was boiled with iodine in acidic solution; its fluorescence spectra were almost the same as those of the form A derivative of molybdopterin found in sulfite oxidase. The molybdenum cofactor released from heated TMAO reductase I reconstituted nitrate reductase in the extracts of Neurospora crassa mutant strain nit-1 lacking molybdenum cofactor. Thus, TMAO reductase I contains molybdopterin, which is a common constituent of some molybdenum-containing enzymes. Some kinetic properties were also determined.
- Hinton SM, Merritt B
- Purification and characterization of a molybdenum-pterin-binding protein (Mop) in Clostridium pasteurianum W5.
- J Bacteriol. 1986; 168: 688-93
- Display abstract
A large-scale fractionation scheme purified the major molybdenum(Mo)-binding protein (Mop) from crude extracts of Clostridium pasteurianum, with a 10 and 0.2% yield of Mo and protein, respectively. The apparent molecular weight of the purified molybdoprotein is 5,700, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The protein contains 0.7 mol of Mo per mol of protein with a molecular weight of 5,700. Mop, as isolated, has a peak absorbency at 293 nm. Denaturation and oxidation of the molybdoprotein released multiple pterin like fluorescent compounds. Mop appears to contain a pterin derivative and Mo, but phosphate analysis indicated that the pterin at the very least is not phosphorylated; phosphorylation is required for functional molybdenum cofactor. All treatments used to release the putative Mo-pterin species from Mop failed to yield a molybdopterin that had detectable molybdenum cofactor activity.
- May HD, Schauer NL, Ferry JG
- Molybdopterin cofactor from Methanobacterium formicicum formate dehydrogenase.
- J Bacteriol. 1986; 166: 500-4
- Display abstract
The molybdopterin cofactor from the formate dehydrogenase of Methanobacterium formicicum was studied. The cofactor was released by guanidine denaturation of homogeneous enzyme, which also released greater than 80% of the molybdenum present in the enzyme. The anoxically isolated cofactor was nonfluorescent, but after exposure to air it fluoresced with spectra similar to those of described molybdopterin cofactors. Aerobic release from acid-denatured formate dehydrogenase in the presence of I2 and potassium iodide produced a mixture of fluorescent products. Alkaline permanganate oxidation of the mixture yielded pterin-6-carboxylic acid as the only detectable fluorescent product. The results showed that the cofactor from formate dehydrogenase contained a pterin nucleus with a 6-alkyl side chain of unknown structure. Covalently bound phosphate was also present. The isolated cofactor was unable to complement the cofactor-deficient nitrate reductase of the Neurospora crassa nit-1 mutant.
- Kruger B, Meyer O
- The pterin (bactopterin) of carbon monoxide dehydrogenase from Pseudomonas carboxydoflava.
- Eur J Biochem. 1986; 157: 121-8
- Display abstract
Radioactively labeled carbon monoxide (CO) dehydrogenase has been obtained in good yield and purity from Pseudomonas carboxydoflava grown in the presence of [32P]phosphate. One enzyme molecule contained an average of 8.32 molecules of phosphate. The entire phosphate content was confined to 2 molecules of FAD and 2 molecules of a pterin. These were noncovalently bound. Molybdoenzyme cofactors could be extracted into N-methyl formamide; pterins were isolated by thin-layer chromatography. CO dehydrogenase contained a novel pterin, different from molybdopterin, which was also resolved in other bacterial molybdoenzymes. Therefore, it was tentatively named bactopterin. The characteristic features of bactopterin were as follows. A relative molecular mass, Mr, of 730 which was much greater than that of molybdopterin (330) (Mr values refer to molybdenum-free forms of the cofactors; presumably, the latter were also devoid of the sulfhydryl groups contained in the native compounds). A content of 2 molecules of phosphate/molecule compared to only 1 phosphate in molybdopterin. Bactopterin was three times less susceptible to air oxidation than molybdopterin. Native bactopterin was cleaved by perchloric acid into two phosphorous-containing fragments with Mr of 330 and 420. The smaller one is believed to be very similar to molybdopterin, the larger one was not a pterin but probably contained an aromatic structure.
- Newton WE, Gheller SF, Hedman B, Hodgson KO, Lough SM, McDonald JW
- Elicitation of thiomolybdates from the iron-molybdenum cofactor of nitrogenase. Comparison with synthetic Fe-Mo-S complexes.
- Eur J Biochem. 1986; 159: 111-5
- Display abstract
Aerial oxidation of the iron-molybdenum cofactor (FeMoco) of Azotobacter vinelandii nitrogenase has been shown to yield either the tetrathiomolybdate ion ([MoS4]2-) or the oxotrithiomolybdate ion ([MoOS3]2-), depending on the reaction conditions. Thus, when N-methylformamide (NMF) solutions of FeMoco either were titrated with measured aliquots of air or were diluted with air-saturated NMF, [MoOS3]2- was found to be the predominant product while dilution of NMF solutions of FeMoco with air-saturated methanol produced [MoS4]2- almost exclusively. Similar aerial oxidation of solutions of chemically synthesized Fe-Mo-S clusters showed that significant information about the molybdenum environment in these species could be deduced from the nature of the elicited thiomolybdates. The differences in decomposition products as a function of solvent are postulated to be due to the loss through precipitation of the reducing agent sodium dithionite on addition of methanol but not NMF. These overall decomposition results are discussed in the context of recent X-ray absorption spectroscopic data which suggest the presence of an 'MoS3' core in FeMoco. A possible mechanism whereby [MoS4]2- might be rapidly formed from this core is presented.
- Ushio K, Ishizuka M, Kogushi M, Fukui S, Toraya T
- Identification of a dephosphorylated oxidation product of the molybdenum cofactor as 2-(1,2-dihydroxyethyl)thieno[3,2-g]pterin.
- Biochem Biophys Res Commun. 1986; 135: 256-61
- Display abstract
A new method was developed for the synthesis of 2-(1,2-dihydroxyethyl)thieno[3,2-g]pterin and related 2-substituted thienopterins. A dephosphorylated fluorescent oxidation product of the molybdenum cofactor isolated from xanthine oxidase (EC 1.2.3.2) was identified as 2-(1,2-dihydroxyethyl)thieno[3,2-g]pterin by comparison of electronic and fluorescence spectra and TLC behaviors with those of the synthetic compound.
- Hageman RV, Rajagopalan KV
- Assay and detection of the molybdenum cofactor.
- Methods Enzymol. 1986; 122: 399-412
- Hinton SM, Mortenson LE
- Identification of molybdoproteins in Clostridium pasteurianum.
- J Bacteriol. 1985; 162: 477-84
- Display abstract
Cells of Clostridium pasteurianum whose N source is switched from NH3 to N2 accumulate large amounts of molybdenum beginning 1.5 h before the detection of nitrogenase activity. Anaerobic multiphasic gel electrophoresis and anion-exchange chromatography were used to identify the molybdoproteins and molybdenum-containing components present in N2-fixing cells. In addition to molybdate, six distinct 99Mo-labeled species were detected, i.e., a membrane fragment, the MoFe protein of nitrogenase, formate dehydrogenase, a Mo "binding-storage" protein, a 30-kilodalton molybdoprotein, and a low-molecular-weight molybdenum species. Of these, the MoFe protein, formate dehydrogenase, and the Mo binding-storage protein were present in more than one zone because of complex formation with other proteins, partial denaturation, and variation in the amount of Mo bound to the protein, respectively. In addition to the six proteins, a soluble "free" Mo cofactor in the cytosol was detected by showing that it reconstituted nitrate reductase activity in crude extracts of the Neurospora crassa mutant nit-1.
- Rajagopalan KV
- Chemistry and biology of the molybdenum cofactor.
- Biochem Soc Trans. 1985; 13: 401-3
- Simon H, Gunther H, Bader J, Neumann S
- Chiral products from non-pyridine nucleotide-dependent reductases and methods for NAD(P)H regeneration.
- Ciba Found Symp. 1985; 111: 97-111
- Display abstract
Enoate reductase (EC 1.3.1.31) from a Clostridium tyrobutyricum strain catalyses the stereospecific reduction of many different alpha, beta-unsaturated carboxylates, aldehydes and even some ketones. The enzyme accepts electrons from NADH and, 1.5 times faster, from reduced methyl viologen (1,1'-dimethyl-4,4'-bipyridinium). Another new type of non-pyridine nucleotide-dependent reductase has an extremely broad substrate specificity for 2-oxo-carboxylates and 2-oxo-dicarboxylates. In crude extracts from Proteus mirabilis and Proteus vulgaris, specific activities of 2-12 mumol product formed per mg protein per min can be found when reduced methyl or benzyl viologen is used as electron donor. The products are (2R)-hydroxy acids. Enoate reductase and 2-oxo-carboxylate reductase are suitable for electro-enzymic reductions in which catalytic amounts of viologens are continuously reduced in an electrochemical cell. This procedure has three advantages: (1) regeneration of NAD(P)H by a second enzyme and substrate is not required, (2) the unstable pyridine nucleotides are not required in the reaction mixture, and (3) the rate of the reaction can be observed continuously by measuring an electric current. Several yeasts, as well as aerobic and anaerobic bacteria, catalyse the reduction of NAD(P)+ by reduced methyl viologen. Such cells can be used for electro-microbial reductions when only pyridine nucleotide-dependent reductases are present. Information about the enzymes which catalyse the reduction of NAD(P)+ at the expense of reduced methyl viologen is given.
- Clark JE, Ljungdahl LG
- Purification and properties of 5,10-methylenetetrahydrofolate reductase, an iron-sulfur flavoprotein from Clostridium formicoaceticum.
- J Biol Chem. 1984; 259: 10845-9
- Display abstract
Methylenetetrahydrofolate reductase in Clostridium formicoaceticum has been purified to a specific activity of 140 mumol min-1 mg-1 when assayed at 37 degrees C, pH 7.2, in the direction of oxidation of 5-methyltetrahydrofolate with benzyl viologen as electron acceptor. The purified enzyme is judged to be homogeneous by polyacrylamide disc-gel electrophoresis and gel filtration. The enzyme which is an octamer has a molecular weight of about 237,000 and consists of four each of two different subunits having the molecular weights 26,000 and 35,000. The octameric enzyme contains per mol 15.2 +/- 0.3 iron, 2.3 +/- 0.2 zinc, 19.5 +/- 1.3 acid-labile sulfur, and 1.7 FAD. The UV-visible absorbance spectrum has a peak at 385 nm and a shoulder at 430 nm and is that of a flavoprotein containing iron-sulfur centers. The reductase, which is sensitive to oxygen, must be handled anaerobically and is stabilized by 2 mM dithionite. It catalyzes the reduction of methylene blue, menadione, benzyl viologen, rubredoxin, and FAD with 5-methyltetrahydrofolate and the oxidation of reduced ferredoxin and FADH2 with 5,10-methylenetetrahydrofolate. No activity was observed with pyridine nucleotides. It is suggested that the physiologically important reaction catalyzed by the enzyme is the reduced ferredoxin-dependent reduction of 5,10-methylenetetrahydrofolate to 5-methyltetrahydrofolate.
- Liu CL, Mortenson LE
- Formate dehydrogenase of Clostridium pasteurianum.
- J Bacteriol. 1984; 159: 375-80
- Display abstract
Formate dehydrogenase was purified to electrophoretic homogeneity from N2-fixing cells of Clostridium pasteurianum W5. The purified enzyme has a minimal Mr of 117,000 with two nonidentical subunits with molecular weights of 76,000 and 34,000, respectively. It contains 2 mol of molybdenum, 24 mol of nonheme iron, and 28 mol of acid-labile sulfide per mol of enzyme; no other metal ions were detected. Analysis of its iron-sulfur centers by ligand exchange techniques showed that 20 iron atoms of formate dehydrogenase can be extruded as Fe4S4 centers. Fluorescence analysis of its isolated molybdenum centers suggests it is a molybdopterin. The clostridial formate dehydrogenase has a pH optimum between 8.3 and 8.5 and a temperature optimum of 52 degrees C. The Km for formate is 1.72 mM with a Vmax of 551 mumol of methyl viologen reduced per min per mg of protein. Sodium azide competes competitively with formate (K1 = 3.57 microM), whereas the inactivation by cyanide follows pseudo-first-order kinetics with K = 5 X 10(2) M-1 s-1.
- Deaton JC, Solomon EI, Durfor CN, Wetherbee PJ, Burgess BK, Jacobs DB
- Activation of nit-1 nitrate reductase by W-formate dehydrogenase.
- Biochem Biophys Res Commun. 1984; 121: 1042-7
- Display abstract
Formate dehydrogenase ( FDH ) from Clostridium thermoaceticum is a known tungsten enzyme. FDH was tested for the presence of nitrogenase-type cofactor and nitrate reductase-type cofactor by the Azotobacter vinelandii UW-45 and Neurospora crassa nit-1 reconstitution assays, respectively. Tungsten formate dehydrogenase (W- FDH ), containing only a small Mo impurity, activated the nit-1 nitrate reductase extracts when molybdate was also added, but not when tungstate was added. These results show W- FDH contains the cofactor common to all known Mo-enzymes except nitrogenase. The difference between the redox chemistries of W- FDH and W-substituted sulfite oxidase appears to relate to differences in tungsten ligation other than that donated by the cofactor or to variations in the protein environment surrounding the tungsten active site.
- Meyer O, Rajagopalan KV
- Molybdopterin in carbon monoxide oxidase from carboxydotrophic bacteria.
- J Bacteriol. 1984; 157: 643-8
- Display abstract
The carbon monoxide oxidases (COXs) purified from the carboxydotrophic bacteria Pseudomonas carboxydohydrogena and Pseudomonas carboxydoflava were found to be molybdenum hydroxylases, identical in cofactor composition and spectral properties to the recently characterized enzyme from Pseudomonas carboxydovorans (O. Meyer, J. Biol. Chem. 257:1333-1341, 1982). All three enzymes exhibited a cofactor composition of two flavin adenine dinucleotides, two molybdenums, eight irons and eight labile sulfides per dimeric molecule, typical for molybdenum-containing iron-sulfur flavoproteins. The millimolar extinction coefficient of the COXs at 450 nm was 72 (per two flavin adenine dinucleotides), a value similar to that of milk xanthine oxidase and chicken liver xanthine dehydrogenase at 450 nm. That molybdopterin, the novel prosthetic group of the molybdenum cofactor of a variety of molybdoenzymes (J. Johnson and K. V. Rajagopalan, Proc. Natl. Acad. Sci. U.S.A. 79:6856-6860, 1982) is also a constituent of COXs from carboxydotrophic bacteria is indicated by the formation of identical fluorescent cofactor derivatives, by complementation of the nitrate reductase activity in extracts of Neurospora crassa nit-l, and by the presence of organic phosphate additional to flavin adenine dinucleotides. Molybdopterin is tightly but noncovalently bound to the protein. COX, sulfite oxidase, xanthine oxidase, and xanthine dehydrogenase each contains 2 mol of molybdopterin per mol of enzyme. The presence of a trichloroacetic acid-releasable, so-far-unidentified, phosphorous-containing moiety in COX is suggested by the results of phosphate analysis.
- Johnson JL, Hainline BE, Rajagopalan KV, Arison BH
- The pterin component of the molybdenum cofactor. Structural characterization of two fluorescent derivatives.
- J Biol Chem. 1984; 259: 5414-22
- Display abstract
Two stable fluorescent derivatives of molybdopterin have been structurally characterized. Form A is an oxidized pterin with a 6-alkyl substituent. Results of chemical, mass spectral, and NMR studies are consistent with the side chain formulation -C identical to C--CH-OHCH2OPO2-3. Similar studies on the Form B derivative indicate that it is the phosphorylated analog of urothione but lacks the 3-methylthio function. Form B (dephospho) can be synthesized from urothione by desulfuration with Raney nickel and oxidation with SeO2. Chicken liver sulfite oxidase (sulfite:ferricytochrome c oxidoreductase, EC 1.8.2.1) contains one phosphate residue (as molybdopterin) per subunit. The phosphate is noncovalently bound but is not released by trichloroacetic acid at 4 degrees C. The yield of Form A and Form B from sulfite oxidase is 0.50 and 0.27/subunit, respectively. The phosphate ester bond in isolated molybdopterin (Form B) is partially hydrolyzed by 1 N HCl at 100 degrees C (33% in 1 h). The release of inorganic phosphate from sulfite oxidase was more rapid (35% in 10 min) due to the presence of molybdate in the denatured enzyme mixture but slower than expected from a high energy phosphate bond. The presence of molybdopterin in a wide variety of molybdenum- and tungsten-containing enzymes has been demonstrated. Glucose oxidase and the iron and manganese superoxide dismutases are devoid of molybdopterin.
- Dilworth GL
- Occurrence of molybdenum in the nicotinic acid hydroxylase from Clostridium barkeri.
- Arch Biochem Biophys. 1983; 221: 565-9
- Display abstract
Molybdenum, assayed by atomic absorption spectrometry, copurifies with the selenium-containing nicotinic acid hydroxylase from Clostridium barkeri. Fluorescence spectral studies on the enzyme indicate the presence, along with flavin, of another component. The fluorescence spectra of this component obtained after the aerobic denaturation of the nicotinic acid hydroxylase are similar to the fluorescence properties reported for the "pterin-like" cofactor from xanthine oxidase and several other molybdoproteins. Nicotinic acid hydroxylase from C. barkeri contains molybdenum, selenium, iron, acid-labile sulfur, and flavin with the occurrence of a "pterin-like" cofactor also a likely component.
- Nelson MJ, Levy MA, Orme-Johnson WH
- Metal and sulfur composition of iron-molybdenum cofactor of nitrogenase.
- Proc Natl Acad Sci U S A. 1983; 80: 147-50
- Display abstract
The sulfur content of N-methylformamide solutions of cofactor from Clostridium pasteurianum nitrogenase has been determined to be 11.9 (+/- 0.9) mol per mol of molybdenum. This number was determined radiochemically, using iron-molybdenum cofactor isolated from molybdenum-iron protein from bacteria grown on 35SO4. A total of 3.2 (+/- 0.2) mol of sulfur per mol of molybdenum was found to be present in cysteine and methionine, probably arising from contaminating proteins not intrinsic to the cofactor. Combined with accumulated evidence that is discussed, these results lead to an updated stoichiometry of MoFe6S8 or 9, not MoFe6S4 as previously thought, for this cluster.
- Yamamoto I, Saiki T, Liu SM, Ljungdahl LG
- Purification and properties of NADP-dependent formate dehydrogenase from Clostridium thermoaceticum, a tungsten-selenium-iron protein.
- J Biol Chem. 1983; 258: 1826-32
- Display abstract
NADP-dependent formate dehydrogenase (NADP+) (EC 1.2.1.43) from Clostridium thermoaceticum has been purified to a specific activity of about 1100 mumol min-1 mg-1 when assayed at 55 degrees C and pH 7.5. The enzyme is extremely oxygen-sensitive and 7.6 microM of O2 causes 50% inhibition of initial velocity under assay conditions. Purification was done in an atmosphere at 95% N2 and 5% H2 and by including azide, dithionite, and glycerol as stabilizing agents in all buffer solutions. The enzyme contains, in molar ratios, 2 tungsten, 2 selenium, 36 iron, and about 50 inorganic sulfur. It has a molecular weight of about 340,000 and consist of two each of two different subunits giving the composition alpha 2 beta 2. The molecular weight of the alpha-subunit is 96,000 and that of the beta-subunit is 76,000. The selenium resides in the two alpha-subunits. Tungsten is released from the protein on denaturation and may exist as a tungsten cofactor. The enzyme catalyzes a reduction of CO2 with NADPH at pH 7.5 and 55 degrees C and Keq at these conditions is (2.35 +/- 0.49) x 10(-2) if CO2 is considered the active species and (1.48 +/- 0.31) x 10(-3) if HCO3- is the active species.
- Rajagopalan KV, Johnson JL, Hainline BE
- The pterin of the molybdenum cofactor.
- Fed Proc. 1982; 41: 2608-12
- Display abstract
The molybdenum cofactor common to a variety of molybdoenzymes has been shown to contain a novel pterin. The pterin has been isolated from sulfite oxidase from several sources, xanthine-oxidizing enzymes from milk and chicken liver, and nitrate reductase of Chlorella vulgaris after denaturation of the proteins in the presence of I2. Investigation of the anionic nature of the isolated pterin has revealed that it is a monophosphate ester susceptible to cleavage by alkaline phosphatase. Quantitative analyses have shown that one molecule of the pterin phosphate is associated with each molybdenum atom in sulfite oxidase. Studies to date have shown that the pterin is present in a reduced form in sulfite oxidase and xanthine dehydrogenase, and that in situ oxidation of the pterin leads to inactivation of sulfite oxidase.
- Johnson JL, Rajagopalan KV
- Structural and metabolic relationship between the molybdenum cofactor and urothione.
- Proc Natl Acad Sci U S A. 1982; 79: 6856-60
- Display abstract
The molybdenum cofactor isolated from sulfite oxidase (sulfite: ferricytochrome c oxidoreductase, EC 1.8.2.1) and xanthine dehydrogenase (xanthine:NAD+ oxidoreductase, EC 1.2.1.37) in the presence of iodine and KI (form A) has been shown to contain a pterin nucleus with an unidentified substituent in the 6 position [Johnson, J. L., Hainline, B. E. & Rajagopalan, K. V. (1980) J. Biol. Chem. 255, 1783-1786]. A second inactive form of the cofactor was isolated aerobically but in the absence of iodine and KI. The latter cofactor derivative (form B) is highly fluorescent, has a visible absorption band at 395 nm and, like form A, contains a phosphate group. Cleavage of the phosphate ester bond with alkaline phosphatase exposes a glycol function that is sensitive to periodate. Oxidation of form B with alkaline permanganate yields a highly polar compound with properties of a sulfonic acid, suggesting that the active molybdenum cofactor might contain sulfur. The sulfur-containing pterin urothione characterized by Goto et al. [Goto, M., Sakurai, A., Ohta, K. & Yamakami, H. (1969) J. Biochem. 65, 611-620] had been isolated from human urine. The permanganate oxidation product of urothione, characterized by Goto et al. as pterin-6-carboxylic-7-sulfonic acid, is identical to that obtained from form B. Because urothione also contains a periodate-sensitive glycol substituent, a structural relationship is suggested. The finding that urine samples from patients deficient in the molybdenum cofactor are devoid of urothione demonstrates a metabolic link between the two molecules.
- Claassen VP, Oltmann LF, Vader CE, van 't Riet J, Stouthamer AH
- Molybdenum cofactor from the cytoplasmic membrane of Proteus mirabilis.
- Arch Microbiol. 1982; 133: 283-8
- Display abstract
Molybdenum cofactor was extracted from membranes of Proteus mirabilis by three methods: acidification, heat treatment and heat treatment in the presence of sodium-dodecylsulphate (SDS). Extracts prepared by the latter method contained the highest concentration of molybdenum cofactor. In these extracts molybdenum cofactor was present in a low molecular weight form. It could not penetrate an YM-2 membrane during ultrafiltration suggesting a molecular weight above 1000. During aerobic incubation of cofactor extracts from membranes at least four fluorescent species were formed as observed in a reversed-phase high performance liquid chromatography (HPLC) system. The species in the first peak was inhomogeneous while the species in the others seem to be homogeneous. In water, all fluorescent products had an excitation maximum at 380 nm and an emission maximum at 455 nm. Their absorption spectra showed maxima at around 270 nm and 400 nm. Fluorescent compounds present in the first peak could penetrate an YM-2 membrane during ultrafiltration, whereas the compounds in the other peaks hardly did. Using xanthine oxidase from milk as source of molybdenum cofactor apparently identical cofactor species were found. Cytoplasmic nor membrane extracts of the chlorate resistant mutant chl S 556 of P. mirabilis could complement nitrate reductase of Neurospora crassa nit-1 in the presence of 20 mM molybdate. However, fluorescent species with identical properties as found for the wild-type were formed during aerobic incubation of extracts from membranes of this mutant.
- Bochner BR, Ames BN
- Selective precipitation orthophosphate from mixtures containing labile phosphorylated metabolites.
- Anal Biochem. 1982; 122: 100-7
- Claassen VP, Oltmann LF, Van't Riet J, Brinkman UA, Stouthamer AH
- Purification of molybdenum cofactor and its fluorescent oxidation products.
- FEBS Lett. 1982; 142: 133-7
- Morowitz HJ
- The odd couple.
- Hosp Pract (Hosp Ed). 1982; 17: 169-70
- Warner CK, Finnerty V
- Molybdenum hydroxylases in Drosophila. II. Molybdenum cofactor in xanthine dehydrogenase, aldehyde oxidase and pyridoxal oxidase.
- Mol Gen Genet. 1981; 184: 92-6
- Display abstract
The molybdenum hydroxylases are a ubiquitous class of enzymes which contain molybdenum in association with a low molecular weight cofactor. Genetic evidence suggests that the Drosophila loci, ma--1, cin and lxd are concerned with this cofactor because mutants for any one of these loci simultaneously interrupt activity for two molybdenum hydroxylases, XDH and A0. A third enzyme activity, P0, is also absent in each of the three mutants but evidence classifying P0 as a molybdoenzyme has been lacking. This study utilizes the known tungsten sensitivity of molybdoenzymes to demonstrate directly that pyridoxal oxidase is also molybdoenzyme. The low molecular weight molybdenum cofactor is found to be severely reduced in extracts of the 1xd and cin mutants but ma--1 mutants have high levels of cofactor. A partially purified preparation of XDH crossreacting material from ma--1 was also shown to contain the molybdenum cofactor. These results, considered with data from other workers are taken to indicate that the functions of all three of the loci examined could be concerned with some aspect of cofactor biosynthesis.
- Johnson JL, Hainline BE, Rajagopalan KV
- Characterization of the molybdenum cofactor of sulfite oxidase, xanthine, oxidase, and nitrate reductase. Identification of a pteridine as a structural component.
- J Biol Chem. 1980; 255: 1783-6
- Display abstract
The molybdenum cofactor has been isolated in an oxidized inactive form from purified molybdoenzymes. The isolated material is shown to be a novel pterin. The active cofactor is presumably composed of molybdenum and a reduced form of the pterin.
- Ljungdahl LG, Andreesen JR
- Formate dehydrogenase, a selenium--tungsten enzyme from Clostridium thermoaceticum.
- Methods Enzymol. 1978; 53: 360-72
- Wagner R, Andreesen JR
- Differentiation between Clostridium acidiurici and Clostridium cylindrosporum on the basis of specific metal requirements for formate dehydrogenase formation.
- Arch Microbiol. 1977; 114: 219-24
- Display abstract
The formate dehydrogenases of Clostridium acidiurici and of C. cylindrosporum coupled the oxidation of formate with the reduction of viologen dyes. The basal activity level was about 0.85 mumoles/min X mg of protein for both species. The level of formate dehydrogenase of C. acidiurici increased 12-fold when 10(-7) M tungstate and selenite were present during growth. Molybdate exerted no effect. On the other hand, molybdate and selenite were required to increase the formate dehydrogenase of C. cylindrosporum, and tungstate exhibitedan antagonistic effect in this organism. Growth on hypoxanthine generally depended on the addition of bicarbonate. Supplementation with tungstate and selenite accellerated growth of C. acidiurici and increased again the level of formate dehydrogenase. The addition of both, molybdate and selenite was necessary to initiate growth of C. cyclindrosporum and to form an active formate dehydrogenase. The differences in the requirement for metal ion supplementation to form high levels of formate dehydrogenase and their involvement in hypoxanthine degradation can be used to differentiate between C. acidiurici and C. cylindrosporum.
- Leonhardt U, Andreesen JR
- Some properties of formate dehydrogenase, accumulation and incorporation of 185W-tungsten into proteins of Clostridium formicoaceticum.
- Arch Microbiol. 1977; 115: 277-84
- Display abstract
Formate dehydrogenase of Clostridium formicoaceticum used only methyl and benzyl viologen, but not NAD as electron acceptor. The S0.5 values were 0.9 X 10(-4) M for formate and 5.8 X 10(-3) M for methyl viologen. Using potassium phosphate buffer a pH-optimum of 7.9 was observed. The initial velocity of the formate dehydrogenase activity reached a maximum at 70 degrees C, whereas the activity was stable only up to 50 degrees C. The level of formate dehydrogenase in C. formicoaceticum was increased to its maximum when 10(-6) M selenite and 10(-7) M tungstate were added to a synthetic medium. Addition of molybdate instead of tungstate did not increase the level of formate dehydrogenase. 185W-tungsten was concentrated about 100-fold by C. formicoaceticum; molybdate had no major effect on the uptake of tungsten. 185W-tungsten was found almost exclusively in the soluble fluid and was predominantly recovered after chromatography in a protein of about 88000 molecular weight. Occasionally a labelled protein of low molecular weight was observed. Again molybdate added even in high molar excess did not influence the labelling pattern. No radioactivity peak could be obtained at the elution peak of formate dehydrogenase activity. The extreme instability of formate dehydrogenase prevented further purification.
- Ljungdahl LG, Sherod DW, Moore MR, Andreesen JR
- Properties of enzymes from Clostridium thermoaceticum and Clostridium formicoaceticum.
- Experientia Suppl. 1976; 26: 237-48
- Display abstract
Methylenetetrahydrofolate dehydrogenase from C. thermoaceticum and C. formicoaceticum have been purified to homogeneity and compared. The two enzymes are very similar physically, chemically, and kinetically, but he C. thermoaceticum enzyme has a higher thermostablility, which is an intrinsic property of the protein. Formate dehydrogenase enzymes from both bacteria require selenite and tungstate for formation and these enzymes also appear to have similar properties, although the C. thermoaceticum is stable at 70 degrees C for more than one hour. Acetate kinase from C. thermoaceticum appears to be under metabolic control. It can be concluded that enzymes from C. thermoaceticum, although they are more thermostable, are very similar to corresponding enzymes from mesophilic organisms.
- Ljungdahl LG, Andreesen JR
- Tungsten, a component of active formate dehydrogenase from Clostridium thermoacetium.
- FEBS Lett. 1975; 54: 279-82
- Fuchs G, Thauer R
- Proceedings: CO2 fixation via direct CO2 reduction: a molybdenum dependent reaction.
- Hoppe Seylers Z Physiol Chem. 1974; 355: 1194-1194
- Johnson JL, Cohen HJ, Rajagopalan KV
- Molecular basis of the biological function of molybdenum. Molybdenum-free sulfite oxidase from livers of tungsten-treated rats.
- J Biol Chem. 1974; 249: 5046-55
- Andreesen JR, Ljungdahl LG
- Formate dehydrogenase of Clostridium thermoaceticum: incorporation of selenium-75, and the effects of selenite, molybdate, and tungstate on the enzyme.
- J Bacteriol. 1973; 116: 867-73
- Amon I, Scheler W, Peters R
- [The influence of sulfur on the intestinal excretion of molybdenum]
- Acta Biol Med Ger. 1967; 19: 985-90
- Liaci L
- [Localization of a substance with pterin nucleus in the skin of Rana esculenta L.]
- Boll Soc Ital Biol Sper. 1964; 40: 1607-10
- Warner AH
- A Comparison of the Thermionic and Photoelectric Work Functions for Clean Tungsten.
- Proc Natl Acad Sci U S A. 1927; 13: 56-60