Secondary literature sources for AIP3
The following references were automatically generated.
- Rida PC, Nishikawa A, Won GY, Dean N
- Yeast-to-hyphal transition triggers formin-dependent Golgi localization to the growing tip in Candida albicans.
- Mol Biol Cell. 2006; 17: 4364-78
- Display abstract
Rapid and long-distance secretion of membrane components is critical for hyphal formation in filamentous fungi, but the mechanisms responsible for polarized trafficking are not well understood. Here, we demonstrate that in Candida albicans, the majority of the Golgi complex is redistributed to the distal region during hyphal formation. Randomly distributed Golgi puncta in yeast cells cluster toward the growing tip during hyphal formation, remain associated with the distal portion of the filament during its extension, and are almost absent from the cell body. This restricted Golgi localization pattern is distinct from other organelles, including the endoplasmic reticulum, vacuole and mitochondria, which remain distributed throughout the cell body and hypha. Hyphal-induced positioning of the Golgi and the maintenance of its structural integrity requires actin cytoskeleton, but not microtubules. Absence of the formin Bni1 causes a hyphal-specific dispersal of the Golgi into a haze of finely dispersed vesicles with a sedimentation density no different from that of normal Golgi. These results demonstrate the existence of a hyphal-specific, Bni1-dependent cue for Golgi integrity and positioning at the distal portion of the hyphal tip, and suggest that filamentous fungi have evolved a novel strategy for polarized secretion, involving a redistribution of the Golgi to the growing tip.
- Castagnetti S, Behrens R, Nurse P
- End4/Sla2 is involved in establishment of a new growth zone in Schizosaccharomyces pombe.
- J Cell Sci. 2005; 118: 1843-50
- Display abstract
The rod-shaped Schizosaccharomyces pombe cell grows in a polarized fashion from opposing ends. Correct positioning of the growth zones is directed by the polarity marker Tea1 located at the cell ends where actin patches accumulate and cell growth takes place. We show that the S. pombe homologue of Saccharomyces cerevisiae SLA2, a protein involved in cortical actin organization and endocytosis, provides a link between the polarity marker and the growth machinery. In wild-type fission yeast cells, this homologue End4/Sla2 is enriched at cell ends during interphase and localizes to a medial ring at cell division, mirroring the actin localization pattern throughout the cell cycle. Proper localization relies on membrane trafficking and is independent of both the actin and microtubule cytoskeletons. End4/Sla2 is required for the establishment of new polarised growth zones, and deletion of its C-terminal talin-like domain prevents the establishment of a new growth zone after cell fission. We propose that End4/Sla2 acts downstream of the polarity marker Tea1 and is implicated in the recruitment of the actin cytoskeleton to bring about polarised cell growth.
- Moseley JB, Goode BL
- Differential activities and regulation of Saccharomyces cerevisiae formin proteins Bni1 and Bnr1 by Bud6.
- J Biol Chem. 2005; 280: 28023-33
- Display abstract
Formins are conserved proteins that nucleate actin assembly and tightly associate with the fast growing barbed ends of actin filaments to allow insertional growth. Most organisms express multiple formins, but it has been unclear whether they have similar or distinct activities and how they may be regulated differentially. We isolated and compared the activities of carboxyl-terminal fragments of the only two formins expressed in Saccharomyces cerevisiae, Bni1 and Bnr1. Bnr1 was an order of magnitude more potent than Bni1 in actin nucleation and processive capping, and unlike Bni1, Bnr1 bundled actin filaments. Profilin bound directly to Bni1 and Bnr1 and regulated their activities similarly. However, the cell polarity factor Bud6/Aip3 specifically bound to and stimulated Bni1, but not Bnr1. This was unexpected, since previous two-hybrid studies suggested Bud6 interacts with both formins. We mapped Bud6 binding activity to specific residues in the carboxyl terminus of Bni1 that are adjacent to its diaphanous autoregulatory domain (DAD). Fusion of the carboxyl terminus of Bni1 to Bnr1 conferred Bud6 stimulation to a Bnr1-Bni1 chimera. Thus, Bud6 differentially stimulates Bni1 and not Bnr1. We found that Bud6 is up-regulated during bud growth, when it is delivered to the bud tip on Bni1-nucleated actin cables. We propose that Bud6 stimulation of Bni1 promotes robust cable formation, which in turn delivers more Bud6 to the bud tip, reinforcing polarized cell growth through a positive feedback loop.
- Shih JL, Reck-Peterson SL, Newitt R, Mooseker MS, Aebersold R, Herskowitz I
- Cell polarity protein Spa2P associates with proteins involved in actin function in Saccharomyces cerevisiae.
- Mol Biol Cell. 2005; 16: 4595-608
- Display abstract
Spa2p is a nonessential protein that regulates yeast cell polarity. It localizes early to the presumptive bud site and remains at sites of growth throughout the cell cycle. To understand how Spa2p localization is regulated and to gain insight into its molecular function in cell polarity, we used a coimmunoprecipitation strategy followed by tandem mass spectrometry analysis to identify proteins that associate with Spa2p in vivo. We identified Myo1p, Myo2p, Pan1p, and the protein encoded by YFR016c as proteins that interact with Spa2p. Strikingly, all of these proteins are involved in cell polarity and/or actin function. Here we focus on the functional significance of the interactions of Spa2p with Myo2p and Myo1p. We find that localization of Spa2GFP to sites of polarized growth depends on functional Myo2p but not on Myo1p. We also find that Spa2p, like Myo2p, cosediments with F-actin in an ATP-sensitive manner. We hypothesize that Spa2p associates with actin via a direct or indirect interaction with Myo2p and that Spa2p may be involved in mediating polarized localization of polarity proteins via Myo2p. In addition, we observe an enhanced cell-separation defect in a myo1spa2 strain at 37 degrees C. This provides further evidence that Spa2p is involved in cytokinesis and cell wall morphogenesis.
- Martin R, Walther A, Wendland J
- Ras1-induced hyphal development in Candida albicans requires the formin Bni1.
- Eukaryot Cell. 2005; 4: 1712-24
- Display abstract
Formins are downstream effector proteins of Rho-type GTPases and are involved in the organization of the actin cytoskeleton and actin cable assembly at sites of polarized cell growth. Here we show using in vivo time-lapse microscopy that deletion of the Candida albicans formin homolog BNI1 results in polarity defects during yeast growth and hyphal stages. Deletion of the second C. albicans formin, BNR1, resulted in elongated yeast cells with cell separation defects but did not interfere with the ability of bnr1 cells to initiate and maintain polarized hyphal growth. Yeast bni1 cells were swollen, showed an increased random budding pattern, and had a severe defect in cytokinesis, with enlarged bud necks. Induction of hyphal development in bni1 cells resulted in germ tube formation but was halted at the step of polarity maintenance. Bni1-green fluorescent protein is found persistently at the hyphal tip and colocalizes with a structure resembling the Spitzenkorper of true filamentous fungi. Introduction of constitutively active ras1G13V in the bni1 strain or addition of cyclic AMP to the growth medium did not bypass bni1 hyphal growth defects. Similarly, these agents were not able to suppress hyphal growth defects in the wal1 mutant which is lacking the Wiskott-Aldrich syndrome protein (WASP) homolog. These results suggest that the maintenance of polarized hyphal growth in C. albicans requires coordinated regulation of two actin cytoskeletal pathways, including formin-mediated secretion and WASP-dependent endocytosis.
- Huisman SM, Bales OA, Bertrand M, Smeets MF, Reed SI, Segal M
- Differential contribution of Bud6p and Kar9p to microtubule capture and spindle orientation in S. cerevisiae.
- J Cell Biol. 2004; 167: 231-44
- Display abstract
In Saccharomyces cerevisiae, spindle orientation is controlled by a temporal and spatial program of microtubule (MT)-cortex interactions. This program requires Bud6p/Aip3p to direct the old pole to the bud and confine the new pole to the mother cell. Bud6p function has been linked to Kar9p, a protein guiding MTs along actin cables. Here, we show that Kar9p does not mediate Bud6p functions in spindle orientation. Based on live microscopy analysis, kar9Delta cells maintained Bud6p-dependent MT capture. Conversely, bud6Delta cells supported Kar9p-associated MT delivery to the bud. Moreover, additive phenotypes in bud6Delta kar9Delta or bud6Delta dyn1Delta mutants underscored the separate contributions of Bud6p, Kar9p, and dynein to spindle positioning. Finally, tub2C354S, a mutation decreasing MT dynamics, suppressed a kar9Delta mutation in a BUD6-dependent manner. Thus, Kar9p-independent capture at Bud6p sites can effect spindle orientation provided MT turnover is reduced. Together, these results demonstrate Bud6p function in MT capture at the cell cortex, independent of Kar9p-mediated MT delivery along actin cables.
- Kadota J, Yamamoto T, Yoshiuchi S, Bi E, Tanaka K
- Septin ring assembly requires concerted action of polarisome components, a PAK kinase Cla4p, and the actin cytoskeleton in Saccharomyces cerevisiae.
- Mol Biol Cell. 2004; 15: 5329-45
- Display abstract
Septins are filament-forming proteins that function in cytokinesis in a wide variety of organisms. In budding yeast, the small GTPase Cdc42p triggers the recruitment of septins to the incipient budding site and the assembly of septins into a ring. We herein report that Bni1p and Cla4p, effectors of Cdc42p, are required for the assembly of the septin ring during the initiation of budding but not for its maintenance after the ring converts to a septin collar. In bni1Delta cla4-75-td mutant, septins were recruited to the incipient budding site. However, the septin ring was not assembled, and septins remained at the polarized growing sites. Bni1p, a formin family protein, is a member of the polarisome complex with Spa2p, Bud6p, and Pea2p. All spa2Delta cla4-75-td, bud6Delta cla4-75-td, and pea2Delta cla4-75-td mutants showed defects in septin ring assembly. Bni1p stimulates actin polymerization for the formation of actin cables. Point mutants of BNI1 that are specifically defective in actin cable formation also exhibited septin ring assembly defects in the absence of Cla4p. Consistently, treatment of cla4Delta mutant with the actin inhibitor latrunculin A inhibited septin ring assembly. Our results suggest that polarisome components and Cla4p are required for the initial assembly of the septin ring and that the actin cytoskeleton is involved in this process.
- Feierbach B, Verde F, Chang F
- Regulation of a formin complex by the microtubule plus end protein tea1p.
- J Cell Biol. 2004; 165: 697-707
- Display abstract
The plus ends of microtubules have been speculated to regulate the actin cytoskeleton for the proper positioning of sites of cell polarization and cytokinesis. In the fission yeast Schizosaccharomyces pombe, interphase microtubules and the kelch repeat protein tea1p regulate polarized cell growth. Here, we show that tea1p is directly deposited at cell tips by microtubule plus ends. Tea1p associates in large "polarisome" complexes with bud6p and for3p, a formin that assembles actin cables. Tea1p also interacts in a separate complex with the CLIP-170 protein tip1p, a microtubule plus end-binding protein that anchors tea1p to the microtubule plus end. Localization experiments suggest that tea1p and bud6p regulate formin distribution and actin cable assembly. Although single mutants still polarize, for3Deltabud6Deltatea1Delta triple-mutant cells lack polarity, indicating that these proteins contribute overlapping functions in cell polarization. Thus, these experiments begin to elucidate how microtubules contribute to the proper spatial regulation of actin assembly and polarized cell growth.
- Evangelista M, Pruyne D, Amberg DC, Boone C, Bretscher A
- Formins direct Arp2/3-independent actin filament assembly to polarize cell growth in yeast.
- Nat Cell Biol. 2002; 4: 260-9
- Display abstract
Formins have been implicated in the regulation of cytoskeletal structure in animals and fungi. Here we show that the formins Bni1 and Bnr1 of budding yeast stimulate the assembly of actin filaments that function as precursors to tropomyosin-stabilized cables that direct polarized cell growth. With loss of formin function, cables disassemble,whereas increased formin activity causes the hyperaccumulation of cable-like filaments. Unlike the assembly of cortical actin patches, cable assembly requires profilin but not the Arp2/3 complex. Thus formins control a distinct pathway for assembling actin filaments that organize the overall polarity of the cell.
- Soulard A et al.
- Saccharomyces cerevisiae Bzz1p is implicated with type I myosins in actin patch polarization and is able to recruit actin-polymerizing machinery in vitro.
- Mol Cell Biol. 2002; 22: 7889-906
- Display abstract
In Saccharomyces cerevisiae, the WASP (Wiskott-Aldrich syndrome protein) homologue Las17p (also called Bee1p) is an important component of cortical actin patches. Las17p is part of a high-molecular-weight protein complex that regulates Arp2/3 complex-dependent actin polymerization at the cell cortex and that includes the type I myosins Myo3p and Myo5p and verprolin (Vrp1p). To identify other factors implicated with this complex in actin regulation, we isolated proteins that bind to Las17p by two-hybrid screening and affinity chromatography. Here, we report the characterization of Lsb7/Bzz1p (for Las seventeen binding protein 7), an Src homology 3 (SH3) domain protein that interacts directly with Las17p via a polyproline-SH3 interaction. Bzz1p coimmunoprecipitates in a complex with Las17p, Vrp1p, Myo3/5p, Bbc1p, Hsp70p, and actin. It colocalizes with cortical actin patches and with Las17p. This localization is dependent on Las17p, but not on F-actin. Bzz1p interacts physically and genetically with type I myosins. While deletion of BZZ1 shows no obvious phenotype, simultaneous deletion of the BZZ1, MYO3, and MYO5 genes is lethal. Overexpression of Bzz1p inhibits cell growth, and a bzz1Delta myo5Delta double mutant is unable to restore actin polarity after NaCl stress. Finally, Bzz1p in vitro is able to recruit a functional actin polymerization machinery through its SH3 domains. Its interactions with Las17p, Vrp1p, and the type I myosins are essential for this process. This suggests that Bzz1p could be implicated in the regulation of actin polymerization.
- Lee PR et al.
- Bni5p, a septin-interacting protein, is required for normal septin function and cytokinesis in Saccharomyces cerevisiae.
- Mol Cell Biol. 2002; 22: 6906-20
- Display abstract
In the budding yeast Saccharomyces cerevisiae, the Cdc3p, Cdc10p, Cdc11p, Cdc12p, and Sep7p/Shs1p septins assemble early in the cell cycle in a ring that marks the future cytokinetic site. The septins appear to be major structural components of a set of filaments at the mother-bud neck and function as a scaffold for recruiting proteins involved in cytokinesis and other processes. We isolated a novel gene, BNI5, as a dosage suppressor of the cdc12-6 growth defect. Overexpression of BNI5 also suppressed the growth defects of cdc10-1, cdc11-6, and sep7Delta strains. Loss of BNI5 resulted in a cytokinesis defect, as evidenced by the formation of connected cells with shared cytoplasms, and deletion of BNI5 in a cdc3-6, cdc10-1, cdc11-6, cdc12-6, or sep7Delta mutant strain resulted in enhanced defects in septin localization and cytokinesis. Bni5p localizes to the mother-bud neck in a septin-dependent manner shortly after bud emergence and disappears from the neck approximately 2 to 3 min before spindle disassembly. Two-hybrid, in vitro binding, and protein-localization studies suggest that Bni5p interacts with the N-terminal domain of Cdc11p, which also appears to be sufficient for the localization of Cdc11p, its interaction with other septins, and other critical aspects of its function. Our data suggest that the Bni5p-septin interaction is important for septin ring stability and function, which is in turn critical for normal cytokinesis.
- Seshan A, Bardin AJ, Amon A
- Control of Lte1 localization by cell polarity determinants and Cdc14.
- Curr Biol. 2002; 12: 2098-110
- Display abstract
BACKGROUND: The putative guanine nucleotide exchange factor Lte1 plays an essential role in promoting exit from mitosis at low temperatures. Lte1 is thought to activate a Ras-like signaling cascade, the mitotic exit network (MEN). MEN promotes the release of the protein phosphatase Cdc14 from the nucleolus during anaphase, and this release is a prerequisite for exit from mitosis. Lte1 is present throughout the cell during G1 but is sequestered in the bud during S phase and mitosis by an unknown mechanism. RESULTS: We show that anchorage of Lte1 in the bud requires septins, the cell polarity determinants Cdc42 and Cla4, and Kel1. Lte1 physically associates with Kel1 and requires Kel1 for its localization in the bud, suggesting a role for Kel1 in anchoring Lte1 at the bud cortex. Our data further implicate the PAK-like protein kinase Cla4 in controlling Lte1 phosphorylation and localization. CLA4 is required for Lte1 phosphorylation and bud localization. Furthermore, when overexpressed, CLA4 induces Lte1 phosphorylation and localization to regions of polarized growth. Finally, we show that Cdc14, directly or indirectly, controls Lte1 dephosphorylation and delocalization from the bud during exit from mitosis. CONCLUSION: Restriction of Lte1 to the bud cortex depends on the cortical proteins Cdc42 and Kel1 and the septin ring. Cla4 and Cdc14 promote and demote Lte1 localization at and from the bud cortex, respectively, suggesting not only that the phosphorylation status of Lte1 controls its localization but also indicating that Cla4 and Cdc14 are key regulators of the spatial asymmetry of Lte1.
- Routhier EL, Burn TC, Abbaszade I, Summers M, Albright CF, Prendergast GC
- Human BIN3 complements the F-actin localization defects caused by loss of Hob3p, the fission yeast homolog of Rvs161p.
- J Biol Chem. 2001; 276: 21670-7
- Display abstract
The BAR adaptor proteins encoded by the RVS167 and RVS161 genes from Saccharomyces cerevisiae form a complex that regulates actin, endocytosis, and viability following starvation or osmotic stress. In this study, we identified a human homolog of RVS161, termed BIN3 (bridging integrator-3), and a Schizosaccharomyces pombe homolog of RVS161, termed hob3+ (homolog of Bin3). In human tissues, the BIN3 gene was expressed ubiquitously except for brain. S. pombe cells lacking Hob3p were often multinucleate and characterized by increased amounts of calcofluor-stained material and mislocalized F-actin. For example, while wild-type cells localized F-actin to cell ends during interphase, hob3Delta mutants had F-actin patches distributed randomly around the cell. In addition, medial F-actin rings were rarely found in hob3Delta mutants. Notably, in contrast to S. cerevisiae rvs161Delta mutants, hob3Delta mutants showed no measurable defects in endocytosis or response to osmotic stress, yet hob3+ complemented the osmosensitivity of a rvs161Delta mutant. BIN3 failed to rescue the osmosensitivity of rvs161Delta, but the actin localization defects of hob3Delta mutants were completely rescued by BIN3 and partially rescued by RVS161. These findings suggest that hob3+ and BIN3 regulate F-actin localization, like RVS161, but that other roles for this gene have diverged somewhat during evolution.
- Jin H, Amberg DC
- Fission yeast Aip3p (spAip3p) is required for an alternative actin-directed polarity program.
- Mol Biol Cell. 2001; 12: 1275-91
- Display abstract
Aip3p is an actin-interacting protein that regulates cell polarity in budding yeast. The Schizosaccharomyces pombe-sequencing project recently led to the identification of a homologue of Aip3p that we have named spAip3p. Our results confirm that spAip3p is a true functional homologue of Aip3p. When expressed in budding yeast, spAip3p localizes similarly to Aip3p during the cell cycle and complements the cell polarity defects of an aip3Delta strain. Two-hybrid analysis shows that spAip3p interacts with actin similarly to Aip3p. In fission yeast, spAip3p localizes to both cell ends during interphase and later organizes into two rings at the site of cytokinesis. spAip3p localization to cell ends is dependent on microtubule cytoskeleton, its localization to the cell middle is dependent on actin cytoskeleton, and both patterns of localization require an operative secretory pathway. Overexpression of spAip3p disrupts the actin cytoskeleton and cell polarity, leading to morphologically aberrant cells. Fission yeast, which normally rely on the microtubule cytoskeleton to establish their polarity axis, can use the actin cytoskeleton in the absence of microtubule function to establish a new polarity axis, leading to the formation of branched cells. spAip3p localizes to, and is required for, branch formation, confirming its role in actin-directed polarized cell growth in both Schizosaccharomyces pombe and Saccharomyces cerevisiae.
- Drees BL et al.
- A protein interaction map for cell polarity development.
- J Cell Biol. 2001; 154: 549-71
- Display abstract
Many genes required for cell polarity development in budding yeast have been identified and arranged into a functional hierarchy. Core elements of the hierarchy are widely conserved, underlying cell polarity development in diverse eukaryotes. To enumerate more fully the protein-protein interactions that mediate cell polarity development, and to uncover novel mechanisms that coordinate the numerous events involved, we carried out a large-scale two-hybrid experiment. 68 Gal4 DNA binding domain fusions of yeast proteins associated with the actin cytoskeleton, septins, the secretory apparatus, and Rho-type GTPases were used to screen an array of yeast transformants that express approximately 90% of the predicted Saccharomyces cerevisiae open reading frames as Gal4 activation domain fusions. 191 protein-protein interactions were detected, of which 128 had not been described previously. 44 interactions implicated 20 previously uncharacterized proteins in cell polarity development. Further insights into possible roles of 13 of these proteins were revealed by their multiple two-hybrid interactions and by subcellular localization. Included in the interaction network were associations of Cdc42 and Rho1 pathways with proteins involved in exocytosis, septin organization, actin assembly, microtubule organization, autophagy, cytokinesis, and cell wall synthesis. Other interactions suggested direct connections between Rho1- and Cdc42-regulated pathways; the secretory apparatus and regulators of polarity establishment; actin assembly and the morphogenesis checkpoint; and the exocytic and endocytic machinery. In total, a network of interactions that provide an integrated response of signaling proteins, the cytoskeleton, and organelles to the spatial cues that direct polarity development was revealed.
- Smith MG, Swamy SR, Pon LA
- The life cycle of actin patches in mating yeast.
- J Cell Sci. 2001; 114: 1505-13
- Display abstract
Actin patches are core components of the yeast actin cytoskeleton that undergo redistribution during establishment of cell polarity. Using 4D imaging, we observe the life cycle of actin patches in living yeast for the first time. We observe assembly of actin patches at sites of polarized growth, and disassembly of actin patches concomitant with movement away from those sites. The total lifetime of an actin patch is 10.9+/-4.2 seconds. These findings indicate that actin patches are labile structures, and that the localization of actin patches during establishment of cell polarity occurs by assembly of these structures at sites of polarized cell surface growth. These findings were confirmed and extended by analysis of myosin I proteins and their receptor, verprolin, proteins implicated in actin assembly in yeast. Deletion of type I myosins or their receptor has no effect on the velocity of actin patch movement. However, these mutants show a 65% reduction in number of patch movements and a three-fold increase in patch lifetime. Finally, the actin patch resident proteins Abp1p, fimbrin, and Arp2p show normal association with actin patches in myosin I and verprolin mutants. However, cofilin accumulates in abnormal 'bars' of G-actin in myo3Delta,myo5Delta and vrp1Delta strains, and Las17p/Bee1p is not associated with actin patches in vrp1Delta strains. These findings imply a multi-step process for actin patch assembly. Early events in this process, including assembly of Abp1p, fimbrin and Arp2p with F-actin, can occur throughout the cell and do not require myosin I proteins or their receptor. Later events in this process are myosin I-dependent, and are required for assembly of actin patches at sites of polarized cell surface growth.
- Wu JQ, Bahler J, Pringle JR
- Roles of a fimbrin and an alpha-actinin-like protein in fission yeast cell polarization and cytokinesis.
- Mol Biol Cell. 2001; 12: 1061-77
- Display abstract
Eukaryotic cells contain many actin-interacting proteins, including the alpha-actinins and the fimbrins, both of which have actin cross-linking activity in vitro. We report here the identification and characterization of both an alpha-actinin-like protein (Ain1p) and a fimbrin (Fim1p) in the fission yeast Schizosaccharomyces pombe. Ain1p localizes to the actomyosin-containing medial ring in an F-actin-dependent manner, and the Ain1p ring contracts during cytokinesis. ain1 deletion cells have no obvious defects under normal growth conditions but display severe cytokinesis defects, associated with defects in medial-ring and septum formation, under certain stress conditions. Overexpression of Ain1p also causes cytokinesis defects, and the ain1 deletion shows synthetic effects with other mutations known to affect medial-ring positioning and/or organization. Fim1p localizes both to the cortical actin patches and to the medial ring in an F-actin-dependent manner, and several lines of evidence suggest that Fim1p is involved in polarization of the actin cytoskeleton. Although a fim1 deletion strain has no detectable defect in cytokinesis, overexpression of Fim1p causes a lethal cytokinesis defect associated with a failure to form the medial ring and concentrate actin patches at the cell middle. Moreover, an ain1 fim1 double mutant has a synthetical-lethal defect in medial-ring assembly and cell division. Thus, Ain1p and Fim1p appear to have an overlapping and essential function in fission yeast cytokinesis. In addition, protein-localization and mutant-phenotype data suggest that Fim1p, but not Ain1p, plays important roles in mating and in spore formation.
- Motegi F, Arai R, Mabuchi I
- Identification of two type V myosins in fission yeast, one of which functions in polarized cell growth and moves rapidly in the cell.
- Mol Biol Cell. 2001; 12: 1367-80
- Display abstract
We characterized the novel Schizosaccharomyces pombe genes myo4(+) and myo5(+), both of which encode myosin-V heavy chains. Disruption of myo4 caused a defect in cell growth and led to an abnormal accumulation of secretory vesicles throughout the cytoplasm. The mutant cells were rounder than normal, although the sites for cell polarization were still established. Elongation of the cell ends and completion of septation required more time than in wild-type cells, indicating that Myo4 functions in polarized growth both at the cell ends and during septation. Consistent with this conclusion, Myo4 was localized around the growing cell ends, the medial F-actin ring, and the septum as a cluster of dot structures. In living cells, the dots of green fluorescent protein-tagged Myo4 moved rapidly around these regions. The localization and movement of Myo4 were dependent on both F-actin cables and its motor activity but seemed to be independent of microtubules. Moreover, the motor activity of Myo4 was essential for its function. These results suggest that Myo4 is involved in polarized cell growth by moving with a secretory vesicle along the F-actin cables around the sites for polarization. In contrast, the phenotype of myo5 null cells was indistinguishable from that of wild-type cells. This and other data suggest that Myo5 has a role distinct from that of Myo4.
- Naqvi SN, Feng Q, Boulton VJ, Zahn R, Munn AL
- Vrp1p functions in both actomyosin ring-dependent and Hof1p-dependent pathways of cytokinesis.
- Traffic. 2001; 2: 189-201
- Display abstract
Vrp1p/verprolin/End5p is a Saccharomyces cerevisiae proline-rich protein, structurally and functionally related to human Wiskott-Aldrich syndrome protein-interacting protein. Vrp1p is required for viability at 37 degrees C, but not 24 degrees C. Here, we show that loss of Vrp1p (vrp1Delta) leads to a 3-4-fold delay in cytokinesis, wide bud necks, abnormal actomyosin rings, and aberrant septa even at 24 degrees C. Like other mutations affecting the actomyosin ring, vrp1Delta is synthetic lethal with deletion of HOF1 (or CYK2), which encodes a protein related to mammalian proline serine threonine phosphatase-interacting protein and Schizosaccharomyces pombe Cdc15p required for an actomyosin ring-independent pathway of cytokinesis in S. cerevisiae. At 37 degrees C, vrp1Delta cells rapidly cease dividing and exhibit a novel terminal phenotype: a single large bud, two well-separated nuclei, and an interphase microtubule array. The arrested cells have a persistent ring containing both actin and myosin at the bud neck. Many also exhibit some polarisation of cortical actin patches to the bud neck. Vrp1p binds an SH3-domain-containing fragment of Hof1p in vitro. Vrp1p is required in vivo for Hof1p relocalisation to a single ring at the bud neck prior to cytokinesis at 37 degrees C, but not at 24 degrees C. Vrp1p thus acts in both actomyosin ring formation and function, as well as in Hof1p localisation during cytokinesis.
- Ozaki-Kuroda K et al.
- Dynamic localization and function of Bni1p at the sites of directed growth in Saccharomyces cerevisiae.
- Mol Cell Biol. 2001; 21: 827-39
- Display abstract
Formin homology (FH) proteins are implicated in cell polarization and cytokinesis through actin organization. There are two FH proteins in the yeast Saccharomyces cerevisiae, Bni1p and Bnr1p. Bni1p physically interacts with Rho family small G proteins (Rho1p and Cdc42p), actin, two actin-binding proteins (profilin and Bud6p), and a polarity protein (Spa2p). Here we analyzed the in vivo localization of Bni1p by using a time-lapse imaging system and investigated the regulatory mechanisms of Bni1p localization and function in relation to these interacting proteins. Bni1p fused with green fluorescent protein localized to the sites of cell growth throughout the cell cycle. In a small-budded cell, Bni1p moved along the bud cortex. This dynamic localization of Bni1p coincided with the apparent site of bud growth. A bni1-disrupted cell showed a defect in directed growth to the pre-bud site and to the bud tip (apical growth), causing its abnormally spherical cell shape and thick bud neck. Bni1p localization at the bud tips was absolutely dependent on Cdc42p, largely dependent on Spa2p and actin filaments, and partly dependent on Bud6p, but scarcely dependent on polarized cortical actin patches or Rho1p. These results indicate that Bni1p regulates polarized growth within the bud through its unique and dynamic pattern of localization, dependent on multiple factors, including Cdc42p, Spa2p, Bud6p, and the actin cytoskeleton.
- Ho J, Bretscher A
- Ras regulates the polarity of the yeast actin cytoskeleton through the stress response pathway.
- Mol Biol Cell. 2001; 12: 1541-55
- Display abstract
Polarized growth in yeast requires cooperation between the polarized actin cytoskeleton and delivery of post-Golgi secretory vesicles. We have previously reported that loss of the major tropomyosin isoform, Tpm1p, results in cells sensitive to perturbations in cell polarity. To identify components that bridge these processes, we sought mutations with both a conditional defect in secretion and a partial defect in polarity. Thus, we set up a genetic screen for mutations that conferred a conditional growth defect, showed synthetic lethality with tpm1Delta, and simultaneously became denser at the restrictive temperature, a hallmark of secretion-defective cells. Of the 10 complementation groups recovered, the group with the largest number of independent isolates was functionally null alleles of RAS2. Consistent with this, ras2Delta and tpm1Delta are synthetically lethal at 35 degrees C. We show that ras2Delta confers temperature-sensitive growth and temperature-dependent depolarization of the actin cytoskeleton. Furthermore, we show that at elevated temperatures ras2Delta cells are partially defective in endocytosis and show a delocalization of two key polarity markers, Myo2p and Cdc42p. However, the conditional enhanced density phenotype of ras2Delta cells is not a defect in secretion. All the phenotypes of ras2Delta cells can be fully suppressed by expression of yeast RAS1 or RAS2 genes, human Ha-ras, or the double disruption of the stress response genes msn2Deltamsn4Delta. Although the best characterized pathway of Ras function in yeast involves activation of the cAMP-dependent protein kinase A pathway, activation of the protein kinase A pathway does not fully suppress the actin polarity defects, suggesting that there is an additional pathway from Ras2p to Msn2/4p. Thus, Ras2p regulates cytoskeletal polarity in yeast under conditions of mild temperature stress through the stress response pathway.
- Verde F
- Cell polarity: a tale of two Ts.
- Curr Biol. 2001; 11: 6002-6002
- Display abstract
The microtubule cytoskeleton plays an important role in cell polarity. Central to this process in fission yeast is tea1p, a marker of polarized cell growth that is delivered to the cell surface in a microtubule-dependent fashion. Recent studies suggest that the actin-binding protein bud6p may be a tea1p effector.
- Radcliffe PA, Vardy L, Toda T
- A conserved small GTP-binding protein Alp41 is essential for the cofactor-dependent biogenesis of microtubules in fission yeast.
- FEBS Lett. 2000; 468: 84-8
- Display abstract
The proper folding of tubulins and their incorporation into microtubules consist of a series of reactions, in which evolutionarily conserved proteins, cofactors A to E, play a vital role. We have cloned a fission yeast gene (alp41(+)) which encodes a highly conserved small GTP-binding protein homologous to budding yeast CIN4 and human ARF-like Arl2. alp41(+) is essential, disruption of which results in microtubule dysfunction and growth polarity defects. Genetic analysis indicates that Alp41 plays a crucial role in the cofactor-dependent pathway, in which it functions upstream of the cofactor D homologue Alp1(D) and possibly in concert with Alp21(E).
- Vallen EA, Caviston J, Bi E
- Roles of Hof1p, Bni1p, Bnr1p, and myo1p in cytokinesis in Saccharomyces cerevisiae.
- Mol Biol Cell. 2000; 11: 593-611
- Display abstract
Cytokinesis in Saccharomyces cerevisiae occurs by the concerted action of the actomyosin system and septum formation. Here we report on the roles of HOF1, BNI1, and BNR1 in cytokinesis, focusing on Hof1p. Deletion of HOF1 causes a temperature-sensitive defect in septum formation. A Hof1p ring forms on the mother side of the bud neck in G2/M, followed by the formation of a daughter-side ring. Around telophase, Hof1p is phosphorylated and the double rings merge into a single ring that contracts slightly and may colocalize with the actomyosin structure. Upon septum formation, Hof1p splits into two rings, disappearing upon cell separation. Hof1p localization is dependent on septins but not Myo1p. Synthetic lethality suggests that Bni1p and Myo1p belong to one functional pathway, whereas Hof1p and Bnr1p belong to another. These results suggest that Hof1p may function as an adapter linking the primary septum synthesis machinery to the actomyosin system. The formation of the actomyosin ring is not affected by bni1Delta, hof1Delta, or bnr1Delta. However, Myo1p contraction is affected by bni1Delta but not by hof1Delta or bnr1Delta. In bni1Delta cells that lack the actomyosin contraction, septum formation is often slow and asymmetric, suggesting that actomyosin contraction may provide directionality for efficient septum formation.
- Machesky LM
- The tails of two myosins.
- J Cell Biol. 2000; 148: 219-21
- Barral Y, Mermall V, Mooseker MS, Snyder M
- Compartmentalization of the cell cortex by septins is required for maintenance of cell polarity in yeast.
- Mol Cell. 2000; 5: 841-51
- Display abstract
Formation and maintenance of specialized plasma membrane domains are crucial for many biological processes, such as cell polarization and signaling. During isotropic bud growth, the yeast cell periphery is divided into two domains: the bud surface, an active site of exocytosis and growth, and the relatively quiescent surface of the mother cell. We found that cells lacking septins at the bud neck failed to maintain the exocytosis and morphogenesis factors Spa2, Sec3, Sec5, and Myo2 in the bud during isotropic growth. Furthermore, we found that septins were required for proper regulation of actin patch stability; septin-defective cells permitted to enter isotropic growth lost actin and growth polarity. We propose that septins maintain cell polarity by specifying a boundary between cortical domains.
- Wong KC, Naqvi NI, Iino Y, Yamamoto M, Balasubramanian MK
- Fission yeast Rng3p: an UCS-domain protein that mediates myosin II assembly during cytokinesis.
- J Cell Sci. 2000; 113: 2421-32
- Display abstract
Cell division in many eukaryotes, including the fission yeast Schizosaccharomyces pombe, utilizes a contractile actomyosin ring. In S. pombe, the actomyosin ring is assembled at the medial cortex upon entry into mitosis and constricts at the end of anaphase to guide the centripetal deposition of the septum. Despite identification of several structural components essential for actomyosin ring assembly, the interdependencies between these gene-products in the process of ring assembly are unknown. This study investigates the role of Rng3p, a member of the UCS-domain containing protein family (Unc-45p, Cro1p, She4p), in actomyosin ring assembly. Null mutants in rng3 resemble deletion mutants in the type II myosin heavy chain (myo2) and rng3(ts) mutants show strong negative interactions with the myo2-E1 mutant, suggesting that Rng3p is involved in modulating aspects of type II myosin function. Interestingly, a green fluorescent protein (GFP) tagged Rng3p fusion is detected at the division site in the myo2-E1 mutant, but not in other myo2-alleles, wild-type cells or in 18 other cytokinesis mutants. Assembly and maintenance of Rng3p at the division site in the myo2-E1 mutant requires F-actin. Rng3p is also required for the proper assembly of Myo2p and F-actin into a functional actomyosin ring but is not necessary for their accumulation at the division site. We conclude that Rng3p is a novel component of the F-actin cytoskeleton essential for a late step in actomyosin ring assembly and that it might monitor some aspect of type II myosin assembly during actomyosin ring construction.
- Jaquenoud M, Peter M
- Gic2p may link activated Cdc42p to components involved in actin polarization, including Bni1p and Bud6p (Aip3p).
- Mol Cell Biol. 2000; 20: 6244-58
- Display abstract
Gic2p is a Cdc42p effector which functions during cytoskeletal organization at bud emergence and in response to pheromones, but it is not understood how Gic2p interacts with the actin cytoskeleton. Here we show that Gic2p displayed multiple genetic interactions with Bni1p, Bud6p (Aip3p), and Spa2p, suggesting that Gic2p may regulate their function in vivo. In support of this idea, Gic2p cofractionated with Bud6p and Spa2p and interacted with Bud6p by coimmunoprecipitation and two-hybrid analysis. Importantly, localization of Bni1p and Bud6p to the incipient bud site was dependent on active Cdc42p and the Gic proteins but did not require an intact actin cytoskeleton. We identified a conserved domain in Gic2p which was necessary for its polarization function but dispensable for binding to Cdc42p-GTP and its localization to the site of polarization. Expression of a mutant Gic2p harboring a single-amino-acid substitution in this domain (Gic2p(W23A)) interfered with polarized growth in a dominant-negative manner and prevented recruitment of Bni1p and Bud6p to the incipient bud site. We propose that at bud emergence, Gic2p functions as an adaptor which may link activated Cdc42p to components involved in actin organization and polarized growth, including Bni1p, Spa2p, and Bud6p.
- Lee WL, Bezanilla M, Pollard TD
- Fission yeast myosin-I, Myo1p, stimulates actin assembly by Arp2/3 complex and shares functions with WASp.
- J Cell Biol. 2000; 151: 789-800
- Display abstract
Fission yeast myo1(+) encodes a myosin-I with all three tail homology domains (TH1, 2, 3) found in typical long-tailed myosin-Is. Myo1p tail also contains a COOH-terminal acidic region similar to the A-domain of WASp/Scar proteins and other fungal myosin-Is. Our analysis shows that Myo1p and Wsp1p, the fission yeast WASp-like protein, share functions and cooperate in controlling actin assembly. First, Myo1p localizes to cortical patches enriched at tips of growing cells and at sites of cell division. Myo1p patches partially colocalize with actin patches and are dependent on an intact actin cytoskeleton. Second, although deletion of myo1(+) is not lethal, Deltamyo1 cells have actin cytoskeletal defects, including loss of polarized cell growth, delocalized actin patches, and mating defects. Third, additional disruption of wsp1(+) is synthetically lethal, suggesting that these genes may share functions. In mapping the domains of Myo1p tail that share function with Wsp1p, we discovered that a Myo1p construct with just the head and TH1 domains is sufficient for cortical localization and to rescue all Deltamyo1 defects. However, it fails to rescue the Deltamyo1 Deltawsp1 lethality. Additional tail domains, TH2 and TH3, are required to complement the double mutant. Fourth, we show that a recombinant Myo1p tail binds to Arp2/3 complex and activates its actin nucleation activity.
- Karpova TS, Reck-Peterson SL, Elkind NB, Mooseker MS, Novick PJ, Cooper JA
- Role of actin and Myo2p in polarized secretion and growth of Saccharomyces cerevisiae.
- Mol Biol Cell. 2000; 11: 1727-37
- Display abstract
We examined the role of the actin cytoskeleton in secretion in Saccharomyces cerevisiae with the use of several quantitative assays, including time-lapse video microscopy of cell surface growth in individual living cells. In latrunculin, which depolymerizes filamentous actin, cell surface growth was completely depolarized but still occurred, albeit at a reduced level. Thus, filamentous actin is necessary for polarized secretion but not for secretion per se. Consistent with this conclusion, latrunculin caused vesicles to accumulate at random positions throughout the cell. Cortical actin patches cluster at locations that correlate with sites of polarized secretion. However, we found that actin patch polarization is not necessary for polarized secretion because a mutant, bee1Delta(las17Delta), which completely lacks actin patch polarization, displayed polarized growth. In contrast, a mutant lacking actin cables, tpm1-2 tpm2Delta, had a severe defect in polarized growth. The yeast class V myosin Myo2p is hypothesized to mediate polarized secretion. A mutation in the motor domain of Myo2p, myo2-66, caused growth to be depolarized but with only a partial decrease in the level of overall growth. This effect is similar to that of latrunculin, suggesting that Myo2p interacts with filamentous actin. However, inhibition of Myo2p function by expression of its tail domain completely abolished growth.
- Pruyne D, Bretscher A
- Polarization of cell growth in yeast.
- J Cell Sci. 2000; 113: 571-85
- Display abstract
The actin cytoskeleton provides the structural basis for cell polarity in Saccharomyces cerevisiae as well as most other eukaryotes. In Part I of this two-part commentary, presented in the previous issue of Journal of Cell Science, we discussed the basis by which yeast establishes and maintains different states of polarity through &Rgr; GTPases and cyclin-dependent protein kinase signaling. Here we discuss how, in response to those signals, the actin cytoskeleton guides growth of the yeast cell. A polarized array of actin cables at the cell cortex is the primary structural determinant of polarity. Motors such as class V myosins use this array to transport secretory vesicles, mRNA and organelles towards growth sites, where they are anchored by a cap of cytoskeletal and regulatory proteins. Cortical actin patches enhance and maintain this polarity, probably through endocytic recycling, which allows reuse of materials and prevents continued growth at old sites. The dynamic arrangement of targeting and recycling provides flexibility for the precise control of morphogenesis.
- Yin H, Pruyne D, Huffaker TC, Bretscher A
- Myosin V orientates the mitotic spindle in yeast.
- Nature. 2000; 406: 1013-5
- Display abstract
Coordination of spindle orientation with the axis of cell division is an essential process in all eukaryotes. In addition to ensuring accurate chromosomal segregation, proper spindle orientation also establishes differential cell fates and proper morphogenesis. In both animal and yeast cells, this process is dependent on cytoplasmic microtubules interacting with the cortical actin-based cytoskeleton, although the motive force was unknown. Here we show that yeast Myo2, a myosin V that translocates along polarized actin cables into the bud, orientates the spindle early in the cell cycle by binding and polarizing the microtubule-associated protein Kar9 (refs 7-9). The tail domain of Myo2 that binds Kar9 also interacts with secretory vesicles and vacuolar elements, making it a pivotal component of yeast cell polarization.
- Freedman T, Porter A, Haarer B
- Mutational and hyperexpression-induced disruption of bipolar budding in yeast.
- Microbiology. 2000; 146: 2833-43
- Display abstract
Analysis of bud-site selection in the yeast Saccharomyces cerevisiae has helped to identify many genes that are generally important for eukaryotic cell polarization. Colony morphology screens were used to identify factors relevant to the process of bipolar budding in yeast. Mutants defective in bipolar budding were identified by virtue of their inability to grow as pseudohyphae in a haploid bud3 background. A mutant allele of the MYO2 gene, encoding a class-V unconventional myosin was identified that perturbs bipolar budding without affecting axial budding and without grossly affecting the role of Myo2p in secretion and maintenance of the actin cytoskeleton. Several genes were also identified whose products, when overexpressed, are capable of disrupting bipolar budding. Among these are the actin-monomer-binding protein profilin and the Aip3p/Bud6p-interacting protein Atc1p. The results strongly support involvement of the actin cytoskeleton in the establishment of bipolar budding and in the maintenance of pseudohyphal growth.
- Schaerer-Brodbeck C, Riezman H
- Saccharomyces cerevisiae Arc35p works through two genetically separable calmodulin functions to regulate the actin and tubulin cytoskeletons.
- J Cell Sci. 2000; 113: 521-32
- Display abstract
Analysis of the arc35-1 mutant has revealed previously that this component of the Arp2/3 complex is involved in organization of the actin cytoskeleton. Further characterization uncovered a cell division cycle phenotype with arrest as large-budded cells. Cells with correctly positioned metaphase spindles accumulated at the restrictive temperature. The observed metaphase arrest most likely occurs by activation of the spindle assembly checkpoint, because arc35-1 was synthetically lethal with a deletion of BUB2. Arc35p activity is required late in G(1) for its cell cycle function. Both the actin and microtubule defects of arc35-1 can be suppressed by overexpression of calmodulin. Analysis of a collection of ts cmd1 mutants for their ability to suppress the actin and/or microtubule defect revealed that the two defects observed in arc35-1 are genetically separable. These data suggest that the actin defect is probably not the cause of the microtubule defect.
- Mulvihill DP, Win TZ, Pack TP, Hyams JS
- Cytokinesis in fission yeast: a myosin pas de deux.
- Microsc Res Tech. 2000; 49: 152-60
- Display abstract
Cytokinesis in the fission yeast, Schizosaccharomyces pombe consists of two distinct but overlapping events: the assembly and constriction of a cytokinetic actomyosin ring (CAR) and the formation of a cross wall or septum. These two processes must be spatially and temporally coordinated both with each other and with other cell cycle events, most notably spindle formation and anaphase chromosome segregation. In fission yeast, the CAR contains two unusual type II myosins, Myo2, encoded by the gene myo2(+), and Myp2, encoded by myp2(+). The relationship of these two proteins to each other and their relative contribution to CAR assembly and contraction is largely unknown. Here we review what is known about the role of each myosin in cytokinesis and present some new information concerning their regulation and possible physical interaction.
- Murray JM, Johnson DI
- Isolation and characterization of Nrf1p, a novel negative regulator of the Cdc42p GTPase in Schizosaccharomyces pombe.
- Genetics. 2000; 154: 155-65
- Display abstract
The Cdc42p GTPase and its regulators, such as the Saccharomyces cerevisiae Cdc24p guanine-nucleotide exchange factor, control signal-transduction pathways in eukaryotic cells leading to actin rearrangements. A cross-species genetic screen was initiated based on the ability of negative regulators of Cdc42p to reverse the Schizosaccharomyces pombe Cdc42p suppression of a S. cerevisiae cdc24(ts) mutant. A total of 32 S. pombe nrf (negative regulator of Cdc forty two) cDNAs were isolated that reversed the suppression. One cDNA, nrf1(+), encoded an approximately 15 kD protein with three potential transmembrane domains and 78% amino-acid identity to a S. cerevisiae gene, designated NRF1. A S. pombe Deltanrf1 mutant was viable but overexpression of nrf1(+) in S. pombe resulted in dose-dependent lethality, with cells exhibiting an ellipsoidal morphology indicative of loss of polarized cell growth along with partially delocalized cortical actin and large vacuoles. nrf1(+) also displayed synthetic overdose phenotypes with cdc42 and pak1 alleles. Green fluorescent protein (GFP)-Cdc42p and GFP-Nrf1p colocalized to intracellular membranes, including vacuolar membranes, and to sites of septum formation during cytokinesis. GFP-Nrf1p vacuolar localization depended on the S. pombe Cdc24p homolog Scd1p. Taken together, these data are consistent with Nrf1p functioning as a negative regulator of Cdc42p within the cell polarity pathway.
- Motegi F, Nakano K, Mabuchi I
- Molecular mechanism of myosin-II assembly at the division site in Schizosaccharomyces pombe.
- J Cell Sci. 2000; 113: 1813-25
- Display abstract
Schizosaccharomyces pombe cells divide by virtue of the F-actin-based contractile ring (F-actin ring). Two myosin-II heavy chains, Myo2 and Myp2/Myo3, have been localized to the F-actin ring. Here, we investigated the mechanism of myosin-II assembly at the division site in S. pombe cells. First, we showed that Cdc4, an EF-hand protein, appears to be a common myosin light chain associated with both Myo2 and Myo3. Loss of function of both Myo2 and Myo3 caused a defect in F-actin assembly at the division site, like the phenotype of cdc4 null cells. It is suggested that Myo2, Myo3 and Cdc4 function in a cooperative manner in the formation of the F-actin ring during mitosis. Next, we investigated the dynamics of myosin-II during mitosis in S. pombe cells. In early mitosis when accumulation of F-actin cables in the medial region was not yet observed, Myo2 was detected primarily as dots widely located in the medial cortex. Myo2 fibers also became visible following the appearance of the dots. The Myo2 dots and fibers then fused with each other to form a medial cortical network. Some Myo2 dots appeared to be localized with F-actin cables which are also accumulated in the medial region. Finally these structures were packed into a thin contractile ring. In mutant cells that cannot form the F-actin ring such as cdc3(ts), cdc8(ts) and cdc12(ts), Myo2 was able to accumulate as dots in the medial cortex, whereas no accumulation of Myo2 dots was detected in cdc4(ts) cells. Moreover, disruption of F-actin in the cell by applying latrunculin-A did not affect the accumulation of Myo2 dots, suggesting that F-actin is not required for their accumulation. A truncated Myo2 which lacks putative Cdc4-binding sites (Myo2dIQs) was able to rescue myo2 null cells, myo3 null cells, cdc4(ts) mutant cells and cdc4 null cells. The Myo2dIQs could assemble into a normal-shaped ring in these cells. Therefore, its assembly at the division site does not require the function of either Cdc4 or Myo3.
- Sawin KE, Hajibagheri MA, Nurse P
- Mis-specification of cortical identity in a fission yeast PAK mutant.
- Curr Biol. 1999; 9: 1335-8
- Display abstract
The regulation of cell polarity in the fission yeast Schizosaccharomyces pombe is apparent in the restriction of extensile growth to the two ends of a cylindrically shaped cell, and in a specific transition - termed 'new-end take-off' (NETO) - between monopolar and bipolar growth mid-way through the cell cycle [1]. Several genes have been identified that affect one or more aspects of cell polarity (reviewed in [2] [3]), and the molecular pathways regulating cell polarity in fission yeast appear to be conserved among eukaryotes [3] [4] [5] [6] [7] [8] [9], but it is less clear how the proteins involved organize polarity at the level of the entire cell. Here, we describe novel cytological markers of cell polarity in fission yeast and their unusual localization in the monopolar growth mutant orb2-34, which carries a non-lethal mutation in the essential gene shk1(+)/pak1(+)/orb2(+), which encodes a p21-activated kinase (PAK) family member [8] [9] [10] [11] [12]. Our results suggest that, in contrast to other monopolar-growing mutants, the monopolar phenotype of the orb2-34 mutant might not be due to a defect in activating end growth per se, but rather reflects a failure of one of the cell ends to maintain the molecular properties that identify an end. Thus, one role of the Shk1/Pak1 kinase in vivo might be to contribute to how a cell recognizes its ends as sites for growth.
- Zeng G, Cai M
- Regulation of the actin cytoskeleton organization in yeast by a novel serine/threonine kinase Prk1p.
- J Cell Biol. 1999; 144: 71-82
- Display abstract
Normal actin cytoskeleton organization in budding yeast requires the function of the Pan1p/ End3p complex. Mutations in PAN1 and END3 cause defects in the organization of actin cytoskeleton and endocytosis. By screening for mutations that can suppress the temperature sensitivity of a pan1 mutant (pan1-4), a novel serine/threonine kinase Prk1p is now identified as a new factor regulating the actin cytoskeleton organization in yeast. The suppression of pan1-4 by prk1 requires the presence of mutant Pan1p. Although viable, the prk1 mutant is unable to maintain an asymmetric distribution of the actin cytoskeleton at 37 degreesC. Consistent with its role in the regulation of actin cytoskeleton, Prk1p localizes to the regions of cell growth and coincides with the polarized actin patches. Overexpression of the PRK1 gene in wild-type cells leads to lethality and actin cytoskeleton abnormalities similar to those exhibited by the pan1 and end3 mutants. In vitro phosphorylation assays demonstrate that Prk1p is able to phosphorylate regions of Pan1p containing the LxxQxTG repeats, including the region responsible for binding to End3p. Based on these findings, we propose that the Prk1 protein kinase regulates the actin cytoskeleton organization by modulating the activities of some actin cytoskeleton-related proteins such as Pan1p/End3p.
- Naqvi NI, Eng K, Gould KL, Balasubramanian MK
- Evidence for F-actin-dependent and -independent mechanisms involved in assembly and stability of the medial actomyosin ring in fission yeast.
- EMBO J. 1999; 18: 854-62
- Display abstract
Cell division in a number of eukaryotes, including the fission yeast Schizosaccharomyces pombe, is achieved through a medially placed actomyosin-based contractile ring. Although several components of the actomyosin ring have been identified, the mechanisms regulating ring assembly are still not understood. Here, we show by biochemical and mutational studies that the S.pombe actomyosin ring component Cdc4p is a light chain associated with Myo2p, a myosin II heavy chain. Localization of Myo2p to the medial ring depended on Cdc4p function, whereas localization of Cdc4p at the division site was independent of Myo2p. Interestingly, the actin-binding and motor domains of Myo2p are not required for its accumulation at the division site although the motor activity of Myo2p is essential for assembly of a normal actomyosin ring. The initial assembly of Myo2p and Cdc4p at the division site requires a functional F-actin cytoskeleton. Once established, however, F-actin is not required for the maintenance of Cdc4p and Myo2p medial rings, suggesting that the attachment of Cdc4p and Myo2p to the division site involves proteins other than actin itself.
- Adamo JE, Rossi G, Brennwald P
- The Rho GTPase Rho3 has a direct role in exocytosis that is distinct from its role in actin polarity.
- Mol Biol Cell. 1999; 10: 4121-33
- Display abstract
Budding yeast grow asymmetrically by the polarized delivery of proteins and lipids to specific sites on the plasma membrane. This requires the coordinated polarization of the actin cytoskeleton and the secretory apparatus. We identified Rho3 on the basis of its genetic interactions with several late-acting secretory genes. Mutational analysis of the Rho3 effector domain reveals three distinct functions in cell polarity: regulation of actin polarity, transport of exocytic vesicles from the mother cell to the bud, and docking and fusion of vesicles with the plasma membrane. We provide evidence that the vesicle delivery function of Rho3 is mediated by the unconventional myosin Myo2 and that the docking and fusion function is mediated by the exocyst component Exo70. These data suggest that Rho3 acts as a key regulator of cell polarity and exocytosis, coordinating several distinct events for delivery of proteins to specific sites on the cell surface.
- Goode BL et al.
- Coronin promotes the rapid assembly and cross-linking of actin filaments and may link the actin and microtubule cytoskeletons in yeast.
- J Cell Biol. 1999; 144: 83-98
- Display abstract
Coronin is a highly conserved actin-associated protein that until now has had unknown biochemical activities. Using microtubule affinity chromatography, we coisolated actin and a homologue of coronin, Crn1p, from Saccharomyces cerevisiae cell extracts. Crn1p is an abundant component of the cortical actin cytoskeleton and binds to F-actin with high affinity (Kd 6 x 10(-9) M). Crn1p promotes the rapid barbed-end assembly of actin filaments and cross-links filaments into bundles and more complex networks, but does not stabilize them. Genetic analyses with a crn1Delta deletion mutation also are consistent with Crn1p regulating filament assembly rather than stability. Filament cross-linking depends on the coiled coil domain of Crn1p, suggesting a requirement for Crn1p dimerization. Assembly-promoting activity is independent of cross-linking and could be due to nucleation and/or accelerated polymerization. Crn1p also binds to microtubules in vitro, and microtubule binding is enhanced by the presence of actin filaments. Microtubule binding is mediated by a region of Crn1p that contains sequences (not found in other coronins) homologous to the microtubule binding region of MAP1B. These activities, considered with microtubule defects observed in crn1Delta cells and in cells overexpressing Crn1p, suggest that Crn1p may provide a functional link between the actin and microtubule cytoskeletons in yeast.
- Robinson NG, Guo L, Imai J, Toh-E A, Matsui Y, Tamanoi F
- Rho3 of Saccharomyces cerevisiae, which regulates the actin cytoskeleton and exocytosis, is a GTPase which interacts with Myo2 and Exo70.
- Mol Cell Biol. 1999; 19: 3580-7
- Display abstract
The Rho3 protein plays a critical role in the budding yeast Saccharomyces cerevisiae by directing proper cell growth. Rho3 appears to influence cell growth by regulating polarized secretion and the actin cytoskeleton, since rho3 mutants exhibit large rounded cells with an aberrant actin cytoskeleton. To gain insights into how Rho3 influences these events, we have carried out a yeast two-hybrid screen using an S. cerevisiae cDNA library to identify proteins interacting with Rho3. Two proteins, Exo70 and Myo2, were identified in this screen. Interactions with these two proteins are greatly reduced or abolished when mutations are introduced into the Rho3 effector domain. In addition, a type of mutation known to produce dominant negative mutants of Rho proteins abolished the interaction with both of these proteins. In contrast, Rho3 did not interact with protein kinase C (Pkc1), an effector of another Rho family protein, Rho1, nor did Rho1 interact with Exo70 or Myo2. Rho3 did interact with Bni1, another effector of Rho1, but less efficiently than with Rho1. The interaction between Rho3 and Exo70 and between Rho3 and Myo2 was also demonstrated with purified proteins. The interaction between Exo70 and Rho3 in vitro was dependent on the presence of GTP, since Rho3 complexed with guanosine 5'-O-(3-thiotriphosphate) interacted more efficiently with Exo70 than Rho3 complexed with guanosine 5'-O-(3-thiodiphosphate). Overlapping subcellular localization of the Rho3 and Exo70 proteins was demonstrated by indirect immunofluorescence. In addition, patterns of localization of both Exo70 and Rho3 were altered when a dominant active allele of RHO3, RHO3(E129,A131), which causes a morphological abnormality, was expressed. These results provide a direct molecular basis for the action of Rho3 on exocytosis and the actin cytoskeleton.
- Beach DL, Salmon ED, Bloom K
- Localization and anchoring of mRNA in budding yeast.
- Curr Biol. 1999; 9: 569-78
- Display abstract
BACKGROUND: Eukaryotic cells localize selected mRNAs to a region of the cell as a means to sequester proteins. Signals within the 3' untranslated region (3' UTR) facilitate mRNA localization by both actin and microtubule cytoskeletal systems. Recently, an mRNA in the yeast Saccharomyces cerevisiae, ASH1, was shown to coalesce into a discrete particle that is maintained at the bud tip. Mutations in five genes, SHE1-SHE5, cause defects in particle formation and/or localization of the ASH1 transcript. Factors at the destination of the mRNA transport remain to be identified. RESULTS: We have developed a system to label mRNA in living yeast with green fluorescent protein (GFP) and follow the dynamics of mRNA movement and localization. Constitutively expressing an ASH1 mRNA containing the bacteriophage MS2 coat-protein binding site adjacent to the ASH1 3' UTR allowed us to visualize ASH1 mRNA with an MS2-coat-protein-GFP fusion protein (together denoted 'gRNAASH1'). The gRNAASH1 was restricted to the bud tip in small to large budded cells, migrated to the bud neck prior to cell separation and then rapidly relocalized to the incipient site of bud growth. It also localized to regions of polarized growth during mating. In cells lacking Bud6p/Aip3p or Bnilp/She5p, which are involved in polarity establishment and actin organization, gRNAASH1 migrated to the bud but failed to remain at the bud tip. These studies reveal discrete transport and anchoring steps in mRNA localization. CONCLUSIONS: The ASH1 mRNA was maintained at sites of polarized growth throughout the vegetative and mating cell cycles. Bud6p/Aip3p and Bni1p/She5p are required to maintain the transcript at the cortical bud cap.
- Kikyo M et al.
- An FH domain-containing Bnr1p is a multifunctional protein interacting with a variety of cytoskeletal proteins in Saccharomyces cerevisiae.
- Oncogene. 1999; 18: 7046-54
- Display abstract
Proteins containing formin homology domains, FH1 and FH2, are involved in cytokinesis or establishment of cell polarity in a variety of organisms. Bni1p and Bnr1p are FH proteins and potential targets of the Rho family small GTP-binding proteins in S. cerevisiae. We have shown that Bnr1p is localized at the bud neck to interact with Hof1p, involved in cytokinesis. We report here that the overexpression of BNR1 causes a cytokinesis deficiency which is similar to the phenotypes of the septin mutants, including cdc3, cdc10, cdc11, and cdc12. The region required for the septin mutant phenotypes was mapped to Bnr1p (35-500), which coincided with the region required for the bud-neck localization. To further isolate a gene interacting with BNI1 or BNR1, a multicopy suppressor of the bni1 bnr1 mutant was isolated. This gene encoded Smy1p, a kinesin-related protein. Bnr1p, but not Bni1p, directly interacted with the C-terminal region of Smy1p. The Smy1p-interacting region of Bnr1p was mapped to a region containing the FH2 domain. Bnr1p also directly interacted with Bud6p, a novel actin-binding protein. Bnr1p is thus a multifunctional protein which interacts with the septin system, a microtubule-dependent motor protein, and the actin system, to regulate cytoskeletal functions in S. cerevisiae.
- Vaduva G et al.
- The human WASP-interacting protein, WIP, activates the cell polarity pathway in yeast.
- J Biol Chem. 1999; 274: 17103-8
- Display abstract
WIP, the Wiskott-Aldrich syndrome protein-interacting protein, is a human protein involved in actin polymerization and redistribution in lymphoid cells. The mechanism by which WIP reorganizes actin cytoskeleton is unknown. WIP is similar to yeast verprolin, an actin- and myosin-interacting protein required for polarized morphogenesis. To determine whether WIP and verprolin are functional homologues, we analyzed the function of WIP in yeast. WIP suppresses the growth defects of VRP1 missense and null mutations as well as the defects in cytoskeletal organization and endocytosis observed in vrp1-1 cells. The ability of WIP to replace verprolin is dependent on its WH2 actin binding domain and a putative profilin binding domain. Immunofluorescence localization of WIP in yeast cells reveals a pattern consistent with its function at the cortical sites of growth. Thus, like verprolin, WIP functions in yeast to link the polarity development pathway and the actin cytoskeleton to generate cytoskeletal asymmetry. A role for WIP in cell polarity provides a framework for unifying, under a common paradigm, distinct molecular defects associated with immunodeficiencies like Wiskott-Aldrich syndrome.
- Pruyne DW, Schott DH, Bretscher A
- Tropomyosin-containing actin cables direct the Myo2p-dependent polarized delivery of secretory vesicles in budding yeast.
- J Cell Biol. 1998; 143: 1931-45
- Display abstract
The actin cytoskeleton in budding yeast consists of cortical patches and cables, both of which polarize toward regions of cell growth. Tropomyosin localizes specifically to actin cables and not cortical patches. Upon shifting cells with conditionally defective tropomyosin to restrictive temperatures, actin cables disappear within 1 min and both the unconventional class V myosin Myo2p and the secretory vesicle-associated Rab GTPase Sec4p depolarize rapidly. Bud growth ceases and the mother cell grows isotropically. When returned to permissive temperatures, tropomyosin-containing cables reform within 1 min in polarized arrays. Cable reassembly permits rapid enrichment of Myo2p at the focus of nascent cables as well as the Myo2p- dependent recruitment of Sec4p and the exocyst protein Sec8p, and the initiation of bud emergence. With the loss of actin cables, cortical patches slowly assume an isotropic distribution within the cell and will repolarize only after restoration of cables. Therefore, actin cables respond to polarity cues independently of the overall distribution of cortical patches and are able to directly target the Myo2p-dependent delivery of secretory vesicles and polarization of growth.
- Finger FP, Hughes TE, Novick P
- Sec3p is a spatial landmark for polarized secretion in budding yeast.
- Cell. 1998; 92: 559-71
- Display abstract
Exocytosis in yeast occurs at plasma membrane subdomains whose locations vary with the cell cycle, but the primary protein determinants of these sites are unknown. A functional fusion of Sec3 protein with green fluorescent protein (Sec3-GFP) localizes to the site of polarized exocytosis for each cell-cycle stage, where it colocalizes with Sec4p and Sec8p. Sec3-GFP localization is independent of secretory pathway function, of the actin and septin cytoskeletons, and of the polarity establishment proteins. We propose that Sec3p is a spatial landmark defining sites of exocytosis. Polarized secretion would result from the coupling of actin-dependent vesicle targeting with Sec3p-dependent establishment of the vesicle fusion site.
- Palmieri SJ, Haarer BK
- Polarity and division site specification in yeast.
- Curr Opin Microbiol. 1998; 1: 678-86
- Display abstract
A significant component of polarization in budding yeast involves the regulated restructuring of the actin cytoskeleton in response to defined cellular signals. Recent evidence suggests that such cytoskeletal organization arises through the action of large protein complexes that form in response to signals from small GTP-binding proteins, such as Cdc42, Rho, and Ras. These actin-organizing complexes may be fairly diverse, but generally consist of one or more central scaffold proteins, such as those of the formin class, that bind to signaling molecules and recruit actin-binding proteins to bring about desired polarizing events.
- Rethinaswamy A, Birnbaum MJ, Glover CV
- Temperature-sensitive mutations of the CKA1 gene reveal a role for casein kinase II in maintenance of cell polarity in Saccharomyces cerevisiae.
- J Biol Chem. 1998; 273: 5869-77
- Display abstract
Casein kinase II (CKII) of Saccharomyces cerevisiae contains two distinct catalytic subunits, alpha and alpha', that are encoded by the CKA1 and -2 genes, respectively. We have constructed conditional alleles of the CKA1 gene. In contrast to cka1 cka2(ts) strains, which exhibit a defect in both G1 and G2/M cell cycle progression, cka1(ts) cka2 strains continue to divide for three cell cycles after a shift to restrictive temperature and then arrest as a mixture of budded and unbudded cells with a spherical morphology. Arrested cells exhibit continued growth, a nonpolarized actin cytoskeleton, delocalized chitin deposition, and a significant fraction of multinucleate cell bodies, confirming the presence of a cell polarity defect in cka1(ts) strains. The presence of budded as well as unbudded cells in the arrested population suggests that CKII is required for maintenance rather than establishment of cell polarity, although a role in both processes is also possible. The terminal phenotype of cka1(ts) strains bears a strong resemblance to that of orb5 strains of Schizosaccharomyces pombe, which carry a temperature-sensitive CKII catalytic subunit mutation, but the underlying mechanism appears to be different in the two cases. These results establish a requirement for CKII in cell polarity in S. cerevisiae and provide the first evidence for functional specialization of CKA1 and -2.
- Sheu YJ, Santos B, Fortin N, Costigan C, Snyder M
- Spa2p interacts with cell polarity proteins and signaling components involved in yeast cell morphogenesis.
- Mol Cell Biol. 1998; 18: 4053-69
- Display abstract
The yeast protein Spa2p localizes to growth sites and is important for polarized morphogenesis during budding, mating, and pseudohyphal growth. To better understand the role of Spa2p in polarized growth, we analyzed regions of the protein important for its function and proteins that interact with Spa2p. Spa2p interacts with Pea2p and Bud6p (Aip3p) as determined by the two-hybrid system; all of these proteins exhibit similar localization patterns, and spa2Delta, pea2Delta, and bud6Delta mutants display similar phenotypes, suggesting that these three proteins are involved in the same biological processes. Coimmunoprecipitation experiments demonstrate that Spa2p and Pea2p are tightly associated with each other in vivo. Velocity sedimentation experiments suggest that a significant portion of Spa2p, Pea2p, and Bud6p cosediment, raising the possibility that these proteins form a large, 12S multiprotein complex. Bud6p has been shown previously to interact with actin, suggesting that the 12S complex functions to regulate the actin cytoskeleton. Deletion analysis revealed that multiple regions of Spa2p are involved in its localization to growth sites. One of the regions involved in Spa2p stability and localization interacts with Pea2p; this region contains a conserved domain, SHD-II. Although a portion of Spa2p is sufficient for localization of itself and Pea2p to growth sites, only the full-length protein is capable of complementing spa2 mutant defects, suggesting that other regions are required for Spa2p function. By using the two-hybrid system, Spa2p and Bud6p were also found to interact with components of two mitogen-activated protein kinase (MAPK) pathways important for polarized cell growth. Spa2p interacts with Ste11p (MAPK kinase [MEK] kinase) and Ste7p (MEK) of the mating signaling pathway as well as with the MEKs Mkk1p and Mkk2p of the Slt2p (Mpk1p) MAPK pathway; for both Mkk1p and Ste7p, the Spa2p-interacting region was mapped to the N-terminal putative regulatory domain. Bud6p interacts with Ste11p. The MEK-interacting region of Spa2p corresponds to the highly conserved SHD-I domain, which is shown to be important for mating and MAPK signaling. spa2 mutants exhibit reduced levels of pheromone signaling and an elevated level of Slt2p kinase activity. We thus propose that Spa2p, Pea2p, and Bud6p function together, perhaps as a complex, to promote polarized morphogenesis through regulation of the actin cytoskeleton and signaling pathways.
- Lillie SH, Brown SS
- Smy1p, a kinesin-related protein that does not require microtubules.
- J Cell Biol. 1998; 140: 873-83
- Display abstract
We have previously reported that a defect in Myo2p, a myosin in budding yeast (Saccharomyces cerevisiae), can be partially corrected by overexpression of Smy1p, which is by sequence a kinesin-related protein (Lillie, S.H., and S.S. Brown. 1992. Nature. 356:358- 361). Such a functional link between putative actin- and microtubule-based motors is surprising, so here we have tested the prediction that Smy1p indeed acts as a microtubule-based motor. Unexpectedly, we found that abolition of microtubules by nocodazole does not interfere with the ability of Smy1p to correct the mutant Myo2p defect, nor does it interfere with the ability of Smy1p to localize properly. In addition, other perturbations of microtubules, such as treatment with benomyl or introduction of tubulin mutations, do not exacerbate the Myo2p defect. Furthermore, a mutation in SMY1 strongly predicted to destroy motor activity does not destroy Smy1p function. We have also observed a genetic interaction between SMY1 and two of the late SEC mutations, sec2 and sec4. This indicates that Smy1p can play a role even when Myo2p is wild type, and that Smy1p acts at a specific step of the late secretory pathway. We conclude that Smy1p does not act as a microtubule-based motor to localize properly or to compensate for defective Myo2p, but that it must instead act in some novel way.
- Mata J, Nurse P
- Discovering the poles in yeast.
- Trends Cell Biol. 1998; 8: 163-7
- Display abstract
How cells generate and orientate polarized growth is of fundamental importance to understanding cell morphogenesis. The budding yeast Saccharomyces cerevisiae and the distantly related fission yeast Schizosaccharomyces pombe have both been used for genetic analysis of cell morphogenesis. Generation and maintenance of their cell shape require the formation of polarized growth sites and the correct localization of these growth sites on the cell surface with respect to other cellular structures. In this review, the authors discuss and compare the mechanisms used by the two yeasts to achieve polarized growth.
- Vaduva G, Martin NC, Hopper AK
- Actin-binding verprolin is a polarity development protein required for the morphogenesis and function of the yeast actin cytoskeleton.
- J Cell Biol. 1997; 139: 1821-33
- Display abstract
Yeast verprolin, encoded by VRP1, is implicated in cell growth, cytoskeletal organization, endocytosis and mitochondrial protein distribution and function. We show that verprolin is also required for bipolar bud-site selection. Previously we reported that additional actin suppresses the temperature-dependent growth defect caused by a mutation in VRP1. Here we show that additional actin suppresses all known defects caused by vrp1-1 and conclude that the defects relate to an abnormal cytoskeleton. Using the two-hybrid system, we show that verprolin binds actin. An actin-binding domain maps to the LKKAET hexapeptide located in the first 70 amino acids. A similar hexapeptide in other acting-binding proteins was previously shown to be necessary for actin-binding activity. The entire 70- amino acid motif is conserved in novel higher eukaryotic proteins that we predict to be actin-binding, and also in the actin-binding proteins, WASP and N-WASP. Verprolin-GFP in live cells has a cell cycle-dependent distribution similar to the actin cortical cytoskeleton. In fixed cells hemagglutinin-tagged Vrp1p often co-localizes with actin in cortical patches. However, disassembly of the actin cytoskeleton using Latrunculin-A does not alter verprolin's location, indicating that verprolin establishes and maintains its location independent of the actin cytoskeleton. Verprolin is a new member of the actin-binding protein family that serves as a polarity development protein, perhaps by anchoring actin. We speculate that the effects of verprolin upon the actin cytoskeleton might influence mitochondrial protein sorting/function via mRNA distribution.
- Mitchell A
- Cell biology. Explorers deliver tea to the pole.
- Nature. 1997; 387: 858-858
- Evangelista M et al.
- Bni1p, a yeast formin linking cdc42p and the actin cytoskeleton during polarized morphogenesis.
- Science. 1997; 276: 118-22
- Display abstract
The Saccharomyces cerevisiae BNI1 gene product (Bni1p) is a member of the formin family of proteins, which participate in cell polarization, cytokinesis, and vertebrate limb formation. During mating pheromone response, bni1 mutants showed defects both in polarized morphogenesis and in reorganization of the underlying actin cytoskeleton. In two-hybrid experiments, Bni1p formed complexes with the activated form of the Rho-related guanosine triphosphatase Cdc42p, with actin, and with two actin-associated proteins, profilin and Bud6p (Aip3p). Both Bni1p and Bud6p (like Cdc42p and actin) localized to the tips of mating projections. Bni1p may function as a Cdc42p target that links the pheromone response pathway to the actin cytoskeleton.
- Amberg DC, Zahner JE, Mulholland JW, Pringle JR, Botstein D
- Aip3p/Bud6p, a yeast actin-interacting protein that is involved in morphogenesis and the selection of bipolar budding sites.
- Mol Biol Cell. 1997; 8: 729-53
- Display abstract
A search for Saccharomyces cerevisiae proteins that interact with actin in the two-hybrid system and a screen for mutants that affect the bipolar budding pattern identified the same gene, AIP3/BUD6. This gene is not essential for mitotic growth but is necessary for normal morphogenesis. MATa/alpha daughter cells lacking Aip3p place their first buds normally at their distal poles but choose random sites for budding in subsequent cell cycles. This suggests that actin and associated proteins are involved in placing the bipolar positional marker at the division site but not at the distal tip of the daughter cell. In addition, although aip3 mutant cells are not obviously defective in the initial polarization of the cytoskeleton at the time of bud emergence, they appear to lose cytoskeletal polarity as the bud enlarges, resulting in the formation of cells that are larger and rounder than normal. aip3 mutant cells also show inefficient nuclear migration and nuclear division, defects in the organization of the secretory system, and abnormal septation, all defects that presumably reflect the involvement of Aip3p in the organization and/or function of the actin cytoskeleton. The sequence of Aip3p is novel but contains a predicted coiled-coil domain near its C terminus that may mediate the observed homo-oligomerization of the protein. Aip3p shows a distinctive localization pattern that correlates well with its likely sites of action: it appears at the presumptive bud site prior to bud emergence, remains near the tips of small bund, and forms a ring (or pair of rings) in the mother-bud neck that is detectable early in the cell cycle but becomes more prominent prior to cytokinesis. Surprisingly, the localization of Aip3p does not appear to require either polarized actin or the septin proteins of the neck filaments.
- Ayscough KR, Stryker J, Pokala N, Sanders M, Crews P, Drubin DG
- High rates of actin filament turnover in budding yeast and roles for actin in establishment and maintenance of cell polarity revealed using the actin inhibitor latrunculin-A.
- J Cell Biol. 1997; 137: 399-416
- Display abstract
We report that the actin assembly inhibitor latrunculin-A (LAT-A) causes complete disruption of the yeast actin cytoskeleton within 2-5 min, suggesting that although yeast are nonmotile, their actin filaments undergo rapid cycles of assembly and disassembly in vivo. Differences in the LAT-A sensitivities of strains carrying mutations in components of the actin cytoskeleton suggest that tropomyosin, fimbrin, capping protein, Sla2p, and Srv2p act to increase actin cytoskeleton stability, while End3p and Sla1p act to decrease stability. Identification of three LAT-A resistant actin mutants demonstrated that in vivo effects of LAT-A are due specifically to impairment of actin function and implicated a region on the three-dimensional actin structure as the LAT-A binding site. LAT-A was used to determine which of 19 different proteins implicated in cell polarity development require actin to achieve polarized localization. Results show that at least two molecular pathways, one actin-dependent and the other actin-independent, underlie polarity development. The actin-dependent pathway localizes secretory vesicles and a putative vesicle docking complex to sites of cell surface growth, providing an explanation for the dependence of polarized cell surface growth on actin function. Unexpectedly, several proteins that function with actin during cell polarity development, including an unconventional myosin (Myo2p), calmodulin, and an actin-interacting protein (Bud6/Aip3p), achieved polarized localization by an actin-independent pathway, revealing interdependence among cell polarity pathways. Finally, transient actin depolymerization caused many cells to abandon one bud site or mating projection and to initiate growth at a second site. Thus, actin filaments are also required for maintenance of an axis of cell polarity.
- Xia G, Ramachandran S, Hong Y, Chan YS, Simanis V, Chua NH
- Identification of plant cytoskeletal, cell cycle-related and polarity-related proteins using Schizosaccharomyces pombe.
- Plant J. 1996; 10: 761-9
- Display abstract
The fission yeast Schizosaccharomyces pombe has been used to identify Arabidopsis thaliana proteins that may play a role in cell shape maintenance or cell cycle regulation. An Arabidopsis thaliana cDNA library was constructed in pREP5N vector under the control of the inducible nmt1 promoter and transformed into S. pombe. Expression of the A. thaliana sequences was induced and clones showing severe morphological changes were identified and analysed. Comparison of the sequences of the inserts with the sequence data bases revealed that several cDNAs encode proteins known to play a role in function of the cytoskeleton, the cell cycle and establishment of cell polarity. These include alpha-1, alpha-2, alpha-6 and beta-6 tubulins, myosin heavy chain-like protein, ubiquitin conjugating enzymes UBC9 (E2), 26S protease subunits, Ranbinding protein, myb protein, PRL1 gene product and rho protein. Approximately 30% of the clones encode novel sequences. The results suggest that S. pombe phenotypic screening can be used to identify plant proteins involved in cell shape maintenance and regulation during cell cycle and development.
- Ishiguro J, Kobayashi W
- An actin point-mutation neighboring the 'hydrophobic plug' causes defects in the maintenance of cell polarity and septum organization in the fission yeast Schizosaccharomyces pombe.
- FEBS Lett. 1996; 392: 237-41
- Display abstract
The fission yeast cps8 mutation gives rise to abnormally enlarged and dispolarized cells, each of which contains several nuclei with aberrant multisepta. Molecular cloning and sequence analysis of the cps8 gene indicated that it encodes an actin with an amino acid substitution of aspartic acid for glycine at residue 273 in the hydrophobic loop that is located between actin subdomains 3 and 4. Fluorescence microscopy using phalloidin and anti-actin antibody revealed changes in the F-actin structure and distribution in the mutant cells. These results indicate that the hydrophobic loop plays an essential role for creating normal F-actin structure, only by which cell polarity and the late mitotic events can be maintained properly.
- Lillie SH, Brown SS
- Immunofluorescence localization of the unconventional myosin, Myo2p, and the putative kinesin-related protein, Smy1p, to the same regions of polarized growth in Saccharomyces cerevisiae.
- J Cell Biol. 1994; 125: 825-42
- Display abstract
Myo2 protein (Myo2p), an unconventional myosin in the budding yeast Saccharomyces cerevisiae, has been implicated in polarized growth and secretion by studies of the temperature-sensitive myo2-66 mutant. Overexpression of Smy1p, which by sequence is a kinesin-related protein, can partially compensate for defects in the myo2 mutant (Lillie, S. H. and S. S. Brown, 1992. Nature (Lond.). 356:358-361). We have now immunolocalized Smy1p and Myo2p. Both are concentrated in regions of active growth, as caps at incipient bud sites and on small buds, at the mother-bud neck just before cell separation, and in mating cells as caps on shmoo tips and at the fusion bridge of zygotes. Double labeling of cells with either Myo2p or Smy1p antibody plus phalloidin was used to compare the localization of Smy1p and Myo2p to actin, and by extrapolation, to each other. These studies confirmed that Myo2p and Smy1p colocalize, and are concentrated in the same general regions of the cell as actin spots. However, neither colocalizes with actin. We noted a correlation in the behavior of Myo2p, Smy1p, and actin, but not microtubules, under a number of circumstances. In cdc4 and cdc11 mutants, which produce multiple buds, Myo2p and Smy1p caps were found only in the subset of buds that had accumulations of actin. Mutations in actin or secretory genes perturb actin, Smy1p and Myo2p localization. The rearrangements of Myo2p and Smy1p correlate temporally with those of actin spots during the cell cycle, and upon temperature and osmotic shift. In contrast, microtubules are not grossly affected by these perturbations. Although wild-type Myo2p localization does not require Smy1p, Myo2p staining is brighter when SMY1 is overexpressed. The myo2 mutant, when shifted to restrictive temperature, shows a permanent loss in Myo2p localization and actin polarization, both of which can be restored by SMY1 overexpression. However, the lethality of MYO2 deletion is not overcome by SMY1 overexpression. We noted that the myo2 mutant can recover from osmotic shift (unlike actin mutants; Novick, P., and D. Botstein. 1985. Cell. 40:405-416). We have also determined that the myo2-66 allele encodes a Lys instead of a Glu at position 511, which lies at an actin-binding face in the motor domain.
- Welch MD, Holtzman DA, Drubin DG
- The yeast actin cytoskeleton.
- Curr Opin Cell Biol. 1994; 6: 110-9
- Display abstract
Budding and fission yeast present significant advantages for studies of the actin cytoskeleton. The application of classical and molecular genetic techniques provides a facile route for the analysis of structure/function relationships, for the isolation of novel proteins involved in cytoskeletal function, and for deciphering the signals that regulate actin assembly in vivo. This review focuses on the budding yeast Saccharomyces cerevisiae and also identifies some recent advances from studies on the fission yeast Schizosaccharomyces pombe, for which studies on the actin cytoskeleton are still in their infancy.