Secondary literature sources for ArfGap
The following references were automatically generated.
- Liu X, Zhang C, Xing G, Chen Q, He F
- Functional characterization of novel human ARFGAP3.
- FEBS Lett. 2001; 490: 79-83
- Display abstract
ADP ribosylation factors (ARFs) are critical in the vesicular trafficking pathway. ARF activity is controlled by GTPase-activating proteins (GAPs). We have identified recently a novel tentative ARF GAP derived from human fetal liver, ARFGAP3 (originally named as ARFGAP1). In the present study, we demonstrated that ARFGAP3 had GAP activity in vitro and remarked that the GAP activity of ARFGAP3 was regulated by phospholipids, i.e. phosphatidylinositol 4,5-diphosphate as agonist and phosphatidylcholine as antagonist. ARFGAP3 is a predominantly cytosolic protein, and concentrated in the perinuclear region. Its transient ectopic overexpression in cultured mammalian cells reduced the constitutive secretion of secreted alkaline phosphatase, indicating that ectopic overexpression of ARFGAP3 inhibits the early secretory pathway of proteins in vivo. These results demonstrated that ARFGAP3 is a novel GAP for ARF1 and might be involved in intracellular traffic of proteins and vesicular transport as predicted.
- Randazzo PA, Miura K, Jackson TR
- Assay and purification of phosphoinositide-dependent ADP-ribosylation factor (ARF) GTPase activating proteins.
- Methods Enzymol. 2001; 329: 343-54
- Puertollano R, Randazzo PA, Presley JF, Hartnell LM, Bonifacino JS
- The GGAs promote ARF-dependent recruitment of clathrin to the TGN.
- Cell. 2001; 105: 93-102
- Display abstract
The GGAs constitute a family of modular adaptor-related proteins that bind ADP-ribosylation factors (ARFs) and localize to the trans-Golgi network (TGN) via their GAT domains. Here, we show that binding of the GAT domain stabilizes membrane-bound ARF1.GTP due to interference with the action of GTPase-activating proteins. We also show that the hinge and ear domains of the GGAs interact with clathrin in vitro, and that the GGAs promote recruitment of clathrin to liposomes in vitro and to TGN membranes in vivo. These observations suggest that the GGAs could function to link clathrin to membrane-bound ARF.GTP.
- Dubois T et al.
- Casein kinase I associates with members of the centaurin-alpha family of phosphatidylinositol 3,4,5-trisphosphate-binding proteins.
- J Biol Chem. 2001; 276: 18757-64
- Display abstract
Mammalian casein kinases I (CKI) belong to a family of serine/threonine protein kinases involved in diverse cellular processes including cell cycle progression, membrane trafficking, circadian rhythms, and Wnt signaling. Here we show that CKIalpha co-purifies with centaurin-alpha(1) in brain and that they interact in vitro and form a complex in cells. In addition, we show that the association is direct and occurs through the kinase domain of CKI within a loop comprising residues 217-233. These residues are well conserved in all members of the CKI family, and we show that centaurin-alpha(1) associates in vitro with all mammalian CKI isoforms. To date, CKIalpha represents the first protein partner identified for centaurin-alpha(1). However, our data suggest that centaurin-alpha(1) is not a substrate for CKIalpha and has no effect on CKIalpha activity. Centaurin-alpha(1) has been identified as a phosphatidylinositol 3,4,5-trisphosphate-binding protein. Centaurin-alpha(1) contains a cysteine-rich domain that is shared by members of a newly identified family of ADP-ribosylation factor guanosine trisphosphatase-activating proteins. These proteins are involved in membrane trafficking and actin cytoskeleton rearrangement, thus supporting a role for CKIalpha in these biological events.
- Vitale N, Moss J, Vaughan M
- Purification and properties of ARD1, an ADP-ribosylation factor (ARF)-related protein with GTPase-activating domain.
- Methods Enzymol. 2001; 329: 324-34
- Fritz F, Chen J, Hayes P, Sirotnak FM
- Molecular cloning of the murine cMOAT ATPase.
- Biochim Biophys Acta. 2000; 1492: 531-6
- Display abstract
cMOAT encodes an ATPase within the family of cMOAT/MRP ATPases that functions as an ATP dependent, multispecific anion transporter within the canalicular surface of hepatocytes that has pharmacologic significance. We describe here the cloning of a murine cMOAT cDNA isolated from mouse liver. The open reading frame of this cDNA incorporates 4627 nucleotides encoding 1309 amino acids with 77.5% and 86.7% identity with the human and rat encoded amino acids, respectively. Northern blotting showed that the expression of cMOAT mRNA occurs primarily in mouse liver in the form of two variants with approximately 5.6 and 7.8 kb of sequence each. cMOAT mRNA was also detected in mouse kidney at a low level but was not detected in other mouse organs or tumors except the Hep 1-6 murine hepatoma where expression was also in the form of the same two mRNA variants.
- Zhu X, Boman AL, Kuai J, Cieplak W, Kahn RA
- Effectors increase the affinity of ADP-ribosylation factor for GTP to increase binding.
- J Biol Chem. 2000; 275: 13465-75
- Display abstract
The stoichiometry of the binding of GTP to ADP-ribosylation factor (ARF) proteins, normally quite low at approximately 0.05 mol/mol protein, was found to increase to a maximum of 1 mol/mol in the presence of effectors. The mechanism of this action was found to result from the ability of these effectors to increase the affinity of ARF for activating guanine nucleotide triphosphates. The existence of a conformation of ARF with low affinity (>100 micrometer) for GTP is proposed. The actions of effectors to increase the equilibrium binding of GTP is interpreted as evidence that these same effectors interact with and modulate the affinity of the inactive ARF for GTP. A new model for these interactions among ARF, effectors, and GTP is proposed, and a preliminary test in cells is supportive of these observations with relevance to signaling in cells.
- Szafer E, Pick E, Rotman M, Zuck S, Huber I, Cassel D
- Role of coatomer and phospholipids in GTPase-activating protein-dependent hydrolysis of GTP by ADP-ribosylation factor-1.
- J Biol Chem. 2000; 275: 23615-9
- Display abstract
The binding of the coat protein complex, coatomer, to the Golgi is mediated by the small GTPase ADP-ribosylation factor-1 (ARF1), whereas the dissociation of coatomer, requires GTP hydrolysis on ARF1, which depends on a GTPase-activating protein (GAP). Recent studies demonstrate that when GAP activity is assayed in a membrane-free environment by employing an amino-terminal truncation mutant of ARF1 (Delta17-ARF1) and a catalytic fragment of the ARF GTPase-activating protein GAP1, GTP hydrolysis is strongly stimulated by coatomer (Goldberg, J., (1999) Cell 96, 893-902). In this study, we investigated the role of coatomer in GTP hydrolysis on ARF1 both in solution and in a phospholipid environment. When GTP hydrolysis was assayed in solution using Delta17-ARF1, coatomer stimulated hydrolysis in the presence of the full-length GAP1 as well as with a Saccharomyces cerevisiae ARF GAP (Gcs1) but had no effect on hydrolysis in the presence of the phosphoinositide dependent GAP, ASAP1. Using wild-type myristoylated ARF1 loaded with GTP in the presence of phospholipid vesicles, GAP1 by itself stimulated GTP hydrolysis efficiently, and coatomer had no additional effect. Disruption of the phospholipid vesicles with detergent resulted in reduced GAP1 activity that was stimulated by coatomer, a pattern that resembled Delta17-ARF1 activity. Our findings suggest that in the biological membrane, the proximity between ARF1 and its GAP, which results from mutual binding to membrane phospholipids, may be sufficient for stimulation of ARF1 GTPase activity.
- Jensen RB et al.
- Promiscuous and specific phospholipid binding by domains in ZAC, a membrane-associated Arabidopsis protein with an ARF GAP zinc finger and a C2 domain.
- Plant Mol Biol. 2000; 44: 799-814
- Display abstract
Arabidopsis proteins were predicted which share an 80 residue zinc finger domain known from ADP-ribosylation factor GTPase-activating proteins (ARF GAPs). One of these is a 37 kDa protein, designated ZAC, which has a novel domain structure in which the N-terminal ARF GAP domain and a C-terminal C2 domain are separated by a region without homology to other known proteins. Zac promoter/beta-glucuronidase reporter assays revealed highest expression levels in flowering tissue, rosettes and roots. ZAC protein was immuno-detected mainly in association with membranes and fractionated with Golgi and plasma membrane marker proteins. ZAC membrane association was confirmed in assays by a fusion between ZAC and the green fluorescence protein and prompted an analysis of the in vitro phospholipid-binding ability of ZAC. Phospholipid dot-blot and liposome-binding assays indicated that fusion proteins containing the ZAC-C2 domain bind anionic phospholipids non-specifically, with some variance in Ca2+ and salt dependence. Similar assays demonstrated specific affinity of the ZAC N-terminal region (residues 1-174) for phosphatidylinositol 3-monophosphate (PI-3-P). Binding was dependent in part on an intact zinc finger motif, but proteins containing only the zinc finger domain (residues 1-105) did not bind PI-3-P. Recombinant ZAC possessed GTPase-activating activity on Arabidopsis ARF proteins. These data identify a novel PI-3-P-binding protein region and thereby provide evidence that this phosphoinositide is recognized as a signal in plants. A role for ZAC in the regulation of ARF-mediated vesicular transport in plants is discussed.
- Lin X, Mattjus P, Pike HM, Windebank AJ, Brown RE
- Cloning and expression of glycolipid transfer protein from bovine and porcine brain.
- J Biol Chem. 2000; 275: 5104-10
- Display abstract
Glycolipid transfer protein (GLTP) is a small (23-24 kDa), basic protein (pI congruent with 9.0) that accelerates the intermembrane transfer of various glycolipids. Here, we report the first cloning of cDNAs that encode the bovine and porcine GLTPs. The cDNA open reading frame for bovine GLTP was constructed by bridge-overlapping extension polymerase chain reaction (PCR) after obtaining partial coding cDNA clones by hot start, seminested, and rapid amplification of cDNA ends-PCR. The cDNA open reading frame for porcine GLTP was constructed by reverse transcriptase-PCR. The encoded amino acid sequences in the full-length bovine and porcine cDNAs were identical, consisting of 209 amino acid residues, and were nearly the same as the published sequence determined by Edman degradation. The cDNA encoded one additional amino acid at the N terminus (methionine), arginine at positions 10 and 200 instead of lysine, and threonine at position 65 instead of alanine. Expression of GLTP-cDNA in Escherichia coli using pGEX-6P-1 vector resulted in glutathione S-transferase (GST)-GLTP fusion protein. Regulation of growth and induction conditions led to approximately 50% of expressed fusion protein being soluble and active. Proteolytic cleavage of GST-GLTP fusion protein (bound to GST-Sepharose) and affinity purification resulted in fully active GLTP. Northern blot analyses of bovine tissues showed a single transcript of approximately 2.2 kilobases and the following hierarchy of mRNA levels: cerebrum > kidney > spleen congruent with lung congruent with cerebellum > liver > heart muscle. Reverse transcriptase-PCR analyses of mRNA levels supported the Northern blot results.
- Shin OH, Ross AH, Mihai I, Exton JH
- Identification of arfophilin, a target protein for GTP-bound class II ADP-ribosylation factors.
- J Biol Chem. 1999; 274: 36609-15
- Display abstract
Yeast two-hybrid screening of a human kidney cDNA library using the GTP-bound form of a class II ADP-ribosylation factor (ARF5) identified a novel ARF5-binding protein with a calculated molecular mass of 82.4 kDa, which was named arfophilin. Northern hybridization analysis showed high level arfophilin mRNA expression in human heart and skeletal muscle. Arfophilin bound only to the active, GTP-bound form of ARF5 and did not bind to GTP-ARF3, which is a class I ARF. The N terminus of ARF5 (1-17 amino acids) was essential for binding to arfophilin. The GTP-bound form of ARF5 with amino acid residues in the N terminus mutated to those in ARF4 (another class II ARF) also bound to arfophilin, suggesting it is a target protein for GTP-bound forms of class II ARFs. The binding site for ARF on arfophilin was localized to the C terminus (residues 612-756), which contains putative coiled-coil structures. Recombinant arfophilin overexpressed in CHO-K1 cells was localized in the cytosol and translocated to a membrane fraction in association with GTP-bound ARF5. ARF5 containing the N terminus of ARF3 did not promote translocation indicating that class II ARFs are specific carriers for arfophilin.
- Sharer JD, Kahn RA
- The ARF-like 2 (ARL2)-binding protein, BART. Purification, cloning, and initial characterization.
- J Biol Chem. 1999; 274: 27553-61
- Display abstract
ARF-like proteins (ARLs) comprise a functionally distinct group of incompletely characterized members in the ARF family of RAS-related GTPases. We took advantage of the GTP binding characteristics of human ARL2 to develop a specific, high affinity binding assay that allowed the purification of a novel ARL2-binding protein. A 19-kDa protein (BART, Binder of Arl Two) was identified and purified from bovine brain homogenate. BART binding is specific to ARL2.GTP with high affinity but does not interact with ARL2.GDP or activated ARF or RHO proteins. Based on peptide sequences of purified bovine BART, the human cDNA sequence was determined. The 489-base pair BART open reading frame encodes a novel 163-amino acid protein with a predicted molecular mass of 18,822 Da. Recombinant BART was found to bind ARL2.GTP in a manner indistinguishable from native BART. Northern and Western analyses indicated BART is expressed in all tissues sampled. The lack of detectable membrane association of ARL2 or BART upon activation of ARL2 is suggestive of actions quite distinct from those of the ARFs. The lack of ARL2 GTPase-activating protein activity in BART led us to conclude that the specific interaction with ARL2.GTP is most consistent with BART being the first identified ARL2-specific effector.
- Gaschet J, Hsu VW
- Distribution of ARF6 between membrane and cytosol is regulated by its GTPase cycle.
- J Biol Chem. 1999; 274: 20040-5
- Display abstract
The ADP-ribosylation factor (ARF) subfamily of small GTPases regulates intracellular transport. Although much is known about how ARF1 regulates transport in the secretory pathways, regulation of the endocytic pathways by ARF6 remains less understood. In particular, whereas cycling of ARF1 between membrane and cytosol represents a major mechanism of regulating its function, this regulation has been questioned for ARF6. In this study, we found that ARF6 is distributed both on membranes and in the cytosol. Cytosolic ARF6 is recruited to membranes in a GTP-dependent manner that is fundamentally similar to ARF1. However, unlike ARF1, release of membrane-bound ARF6 to the cytosol requires hydrolysis of GTP that is sensitive to the level of magnesium. These findings suggest that the GTPase cycle of ARF6 also regulates its distribution between membrane and cytosol and that this form of regulation will also likely be important for the function of ARF6. Moreover, as ARF6 has little intrinsic ability to hydrolyze GTP, magnesium concentration most likely affects the release of membrane-bound ARF6 by altering the activity of its GTPase-activating protein.
- Togawa A, Morinaga N, Ogasawara M, Moss J, Vaughan M
- Purification and cloning of a brefeldin A-inhibited guanine nucleotide-exchange protein for ADP-ribosylation factors.
- J Biol Chem. 1999; 274: 12308-15
- Display abstract
Activation of ADP-ribosylation factors (ARFs), approximately 20-kDa guanine nucleotide-binding proteins that play an important role in intracellular vesicular trafficking, depends on guanine nucleotide-exchange proteins (GEPs), which accelerate replacement of bound GDP with GTP. Two major families of ARF GEPs are known: approximately 200-kDa molecules that are inhibited by brefeldin A (BFA), a fungal metabolite that blocks protein secretion and causes apparent disintegration of Golgi structure, and approximately 50-kDa GEPs that are insensitive to BFA. We describe here two human brain cDNAs that encode BFA-inhibited GEPs. One is a approximately 209-kDa protein 99.5% identical in deduced amino acid sequence (1, 849 residues) to a BFA-inhibited ARF GEP (p200) from bovine brain. The other smaller protein, which is approximately 74% identical (1, 785 amino acids), represents a previously unknown gene. We propose that the former, p200, be named BIG1 for (brefeldin A-inhibited GEP1) and the second, which encodes a approximately 202-kDa protein, BIG2. A protein containing sequences found in BIG2 had been purified earlier from bovine brain. Human tissues contained a 7.5-kilobase BIG1 mRNA and a 9.4-kilobase BIG2 transcript. The BIG1 and BIG2 genes were localized, respectively, to chromosomes 8 and 20. BIG2, synthesized as a His6 fusion protein in Sf9 cells, accelerated guanosine 5'-3-O-(thio)triphosphate binding by recombinant ARF1, ARF5, and ARF6. It activated native ARF (mixture of ARF1 and ARF3) more effectively than it did any of the nonmyristoylated recombinant ARFs. BIG2 activity was inhibited by BFA in a concentration-dependent manner but not by B17, a structural analog without effects on Golgi function. Although several clones for approximately 50-kDa BFA-insensitive ARF GEPs are known, these new clones for the approximately 200-kDa BIG1 and BIG2 should facilitate characterization of this rather different family of proteins as well as the elucidation of mechanisms of regulation of BFA-sensitive ARF function in Golgi transport.
- Dogic D et al.
- The ADP-ribosylation factor GTPase-activating protein Glo3p is involved in ER retrieval.
- Eur J Cell Biol. 1999; 78: 305-10
- Display abstract
Retrograde transport of proteins from the Golgi to the endoplasmic reticulum (ER) has been the subject of some interest in the recent past. Here a new thermosensitive yeast mutant defective in retrieval of dilysine-tagged proteins from the Golgi back to the endoplasmic reticulum was characterized. The ret4-1 mutant also exhibited a selective defect in forward ER-to-Golgi transport of some secreted proteins at the non-permissive temperature. The corresponding RET4 gene was found to encode Glo3p, a GTPase-activating protein (GAP) specific for ADP-ribosylation factor (ARF). In vitro, the Glo3 thermosensitive mutant showed a reduced ARF1-GAP activity. The Glo3 protein belongs to a family of zinc finger proteins that may include additional ARF-GAPs. Gene deletion experiments of other family members showed that only GLO3 deletion resulted in impaired retrieval of dilysine-tagged proteins back to the ER. These results demonstrate that Glo3p is the main ARF-GAP specifically involved in ER retrieval.
- Ryu SW, Chae SK, Lee KJ, Kim E
- Identification and characterization of human Fas associated factor 1, hFAF1.
- Biochem Biophys Res Commun. 1999; 262: 388-94
- Display abstract
We have identified and characterized a cDNA encoding human Fas associated factor 1 (hFAF1) cDNA and a shorter form of hFAF1 cDNA [hFAF1(s)] with a 456 bp internal in-frame deletion from a human HeLa cDNA library. The nucleotide sequences of hFAF1 and hFAF1(s) were identical except for the deletion. GST-hFAF1 fusion protein bound to the in vitro translation product of Fas. The N-terminal region (amino acid 1 approximately 201) including the upstream ubiquitin homology domain of hFAF1 could bind with the death domain of Fas unlike that of qFAF1 whose binding region with Fas could not be determined. However hFAF1 did not bind to the death domain of Fas mutant, lpr(cg). hFAF1 was expressed abundantly in testis, skeletal muscle, and heart as 2.8 kb mRNA. Polyclonal antibody against hFAF1 detected 74 kD protein, a deduced protein size from the ORF and 40 kD protein in some cell lines.
- Venkateswarlu K, Cullen PJ
- Molecular cloning and functional characterization of a human homologue of centaurin-alpha.
- Biochem Biophys Res Commun. 1999; 262: 237-44
- Display abstract
We report here the molecular cloning, expression, and characterisation of a human homologue of rat centaurin-alpha, which we have termed centaurin-alpha(1). The cDNA contains a single open reading frame, which encodes a 373-amino-acid protein with a calculated molecular weight of 43,429 Daltons. Centaurin-alpha(1) shows high identity at the amino acid level with the other centaurin-alpha homologues, p42(IP4) and PIP(3)BP. Northern analysis revealed that centaurin-alpha(1) expresses as a single 2.5-kb transcript, mainly in the brain. Recombinant centaurin-alpha(1) binds the inositol head group of PtdIns(3,4,5)P(3) and Ins(1,3,4, 5)P(4), with high affinity (K(d) 139.7 +/- 10.5 nM) and inositol phosphate specificity, consistent with it functioning as a putative PtdIns(3,4,5)P(3) receptor. In keeping with this conclusion, we have shown that GFP-tagged centaurin-alpha(1) recruits to the plasma membrane in a PI 3-kinase-dependent manner and the recruitment is inhibited by the PI 3-kinase inhibitor wortmannin. These results suggest that centaurin-alpha(1) can function as an in vivo PtdIns(3, 4,5)P(3) receptor.
- Bucci C, Chiariello M, Lattero D, Maiorano M, Bruni CB
- Interaction cloning and characterization of the cDNA encoding the human prenylated rab acceptor (PRA1).
- Biochem Biophys Res Commun. 1999; 258: 657-62
- Display abstract
Rab proteins are small GTPases involved in the regulation of intracellular membrane traffic in mammalian cells. In order to find Rab-interacting proteins we performed a two-hybrid screening using a human brain cDNA library. Here we report the isolation of a full-length human cDNA clone coding for a protein of 185 amino acids. This protein interacts strongly with the Rab4b, Rab5a, and Rab5c proteins and weakly with Rab4a, Rab6, Rab7, Rab17, and Rab22 in the two-hybrid assay. Comparison with the Data Bank revealed that this clone represents the human homolog of the previously isolated rat Prenylated Rab Acceptor (rPRA1). Analysis of mRNA expression shows a single abundant mRNA of about 0.8 kb ubiquitously expressed. Western blot analysis of the overexpressed protein shows a band of the expected size equally distributed between cytosol and membranes.
- Morinaga N, Adamik R, Moss J, Vaughan M
- Brefeldin A inhibited activity of the sec7 domain of p200, a mammalian guanine nucleotide-exchange protein for ADP-ribosylation factors.
- J Biol Chem. 1999; 274: 17417-23
- Display abstract
A brefeldin A (BFA)-inhibited guanine nucleotide-exchange protein (GEP) for ADP-ribosylation factors (ARF) was purified earlier from bovine brain cytosol. Cloning and expression of the cDNA confirmed that the recombinant protein (p200) is a BFA-sensitive ARF GEP. p200 contains a domain that is 50% identical in amino acid sequence to a region in yeast Sec7, termed the Sec7 domain. Sec7 domains have been identified also in other proteins with ARF GEP activity, some of which are not inhibited by BFA. To identify structural elements that influence GEP activity and its BFA sensitivity, several truncated mutants of p200 were made. Deletion of sequence C-terminal to the Sec7 domain did not affect GEP activity. A protein lacking 594 amino acids at the N terminus, as well as sequence following the Sec7 domain, also had high activity. The mutant lacking 630 N-terminal amino acids was, however, only 1% as active, as was the Sec7 domain itself (mutant lacking 697 N-terminal residues). It appears that the Sec7 domain of p200 contains the catalytic site but additional sequence (perhaps especially that between positions 595 and 630) modifies activity dramatically. Myristoylated recombinant ARFs were better than non-myristoylated as substrates; ARFs 1 and 3 were better than ARF5, and no activity was detected with ARF6. Physical interaction of the Sec7 domain with an ARF1 mutant was demonstrated, but it was much weaker than that of the cytohesin-1 Sec7 domain with the same ARF protein. Effects of BFA on p200 and all mutants with high activity were similar with approximately 50% inhibition at =50 microM. The inactive BFA analogue B36 did not inhibit the Sec7 domain or p200. Thus, the Sec7 domain of p200, like that of Sec7 itself (Sata, M., Donaldson, J. G., Moss, J., and Vaughan, M. (1998) Proc. Natl. Acad. Sci. U. S. A. 95, 4204-4208), plays a role in BFA inhibition as well as in GEP activity, although the latter is markedly modified by other structural elements.
- Jacobs S et al.
- ADP-ribosylation factor (ARF)-like 4, 6, and 7 represent a subgroup of the ARF family characterization by rapid nucleotide exchange and a nuclear localization signal.
- FEBS Lett. 1999; 456: 384-8
- Display abstract
The novel ARF-like GTPase ARL7 is a close relative of ARL4 and ARL6 (71% and 59%) identical amino acids). A striking characteristic of these GTPases is their basic C-terminus which, when fused to the C-terminus of green fluorescent protein (GFP), targets the constructs to the nucleus of transfected COS-7 cells. Full length ARL4 was detected in both nuclear and extranuclear compartments, whereas a construct of ARL4 lacking its C-terminus was excluded from the nucleus. Nucleotide exchange rates of recombinant ARL4, ARL6 and ARL7 were similar and appeared considerably higher than those of other members of the ARF family (ARF1, ARP). It is concluded that ARL4, ARL6 and ARL7 form a subgroup within the ARF family with similar, possibly nuclear, function.
- Aggensteiner M, Stricker R, Reiser G
- Identification of rat brain p42(IP4), a high-affinity inositol(1,3,4, 5)tetrakisphosphate/phosphatidylinositol(3,4,5)trisphosphate binding protein.
- Biochim Biophys Acta. 1998; 1387: 117-28
- Display abstract
Inositol(1,3,4,5)tetrakisphosphate (InsP4) and phosphatidylinositol(3,4,5)trisphosphate (PtdInsP3) are two potential second messengers with a still largely unknown mode of action. We recently cloned the 42 kDa protein p42IP4 previously purified from pig cerebellum, which binds InsP4 (Kd approximately 2 nM) and PtdInsP3 with comparable affinities (Stricker et al., FEBS Lett. 405 (1997) 229). The protein p42IP4 (pig) is highly homologous to centaurin-alpha, a larger protein of 46 kDa, derived from a rat brain cDNA library clone (Hammonds-Odie et al., J. Biol. Chem. 271 (1996) 18859). Here we investigated whether also p42IP4 is expressed in rat brain and how it might be related to centaurin-alpha. When we carried out RT-PCR using mRNA from brain of rats of different ages we obtained several clones corresponding to p42IP4, but not to centaurin-alpha. The existence of p42IP4 in rat brain is supported by the following findings: (1) biochemical analysis of the purified rat brain protein shows inositol phosphate ligand affinities identical to those of the protein from other species; (2) Western blot analysis of rat brain membrane fractions using a peptide-specific antiserum revealed only the 42 kDa protein (p42IP4), but did not give evidence for the occurrence of a larger 46 kDa centaurin-alpha-like protein in rat brain; and (3) the amino acid sequences deduced from p42IP4 cDNA are highly homologous in several species and are confirmed by protein fragment microsequences. Thus, p42IP4 from rat brain which has two pleckstrin homology domains is a protein largely conserved between different species and most likely has an important function in inositol phosphate or inositol lipid signal transduction.
- Frank S, Upender S, Hansen SH, Casanova JE
- ARNO is a guanine nucleotide exchange factor for ADP-ribosylation factor 6.
- J Biol Chem. 1998; 273: 23-7
- Display abstract
ADP-ribosylation factors (ARFs) constitute a family of small monomeric GTPases. ARFs 1 and 3 function in the recruitment of coat proteins to membranes of the Golgi apparatus, whereas ARF6 is localized to the plasma membrane, where it appears to modulate both the assembly of the actin cytoskeleton and endocytosis. Like other GTPases, ARF activation is facilitated by specific guanine nucleotide exchange factors (GEFs). ARNO (ARF nucleotide-binding site opener) is a member of a growing family of ARF-GEFs that share a common, tripartite structure consisting of an N-terminal coiled-coil domain, a central domain with homology to the yeast protein Sec7p, and a C-terminal pleckstrin homology domain. Recently, ARNO and its close homologue cytohesin-1 were found to catalyze in vitro nucleotide exchange on ARF1 and ARF3, respectively, raising the possibility that these GEFs function in the Golgi. However, the actual function of these proteins may be determined in part by their ability to interact with specific ARFs and in part by their subcellular localization. We report here that in vitro ARNO can stimulate nucleotide exchange on both ARF1 and ARF6. Furthermore, based on subcellular fractionation and immunolocalization experiments, we find that ARNO is localized to the plasma membrane in mammalian cells rather than the Golgi. It is therefore likely that ARNO functions in plasma membrane events by modulating the activity of ARF6 in vivo. These findings are consistent with the previous observation that cytohesin-1 regulates the adhesiveness of alphaLbeta2 integrins at the plasma membrane of lymphocytes.
- Kim JH et al.
- Activation of phospholipase D1 by direct interaction with ADP-ribosylation factor 1 and RalA.
- FEBS Lett. 1998; 430: 231-5
- Display abstract
Phospholipase D1 (PLD1) is known to be activated by ADP-ribosylation factor 1 (ARF1). We report here that ARF1 co-immunoprecipitates with PLD1 and that the ARF1-dependent PLD activation is induced by the direct interaction between ARF1 and PLD1. We found that RalA, another member of the small GTP-binding proteins, synergistically enhances the ARF1-dependent PLD activity with an EC50 of about 30 nM. Using in vitro binding assay, we show that ARF1 and RalA directly interact with different sites of PLD1. The results suggest that the independent interactions of RalA and ARF1 with PLD1 are responsible for the synergistic activation.
- Franco M et al.
- ARNO3, a Sec7-domain guanine nucleotide exchange factor for ADP ribosylation factor 1, is involved in the control of Golgi structure and function.
- Proc Natl Acad Sci U S A. 1998; 95: 9926-31
- Display abstract
Budding of transport vesicles in the Golgi apparatus requires the recruitment of coat proteins and is regulated by ADP ribosylation factor (ARF) 1. ARF1 activation is promoted by guanine nucleotide exchange factors (GEFs), which catalyze the transition to GTP-bound ARF1. We recently have identified a human protein, ARNO (ARF nucleotide-binding-site opener), as an ARF1-GEF that shares a conserved domain with the yeast Sec7 protein. We now describe a human Sec7 domain-containing GEF referred to as ARNO3. ARNO and ARNO3, as well as a third GEF called cytohesin-1, form a family of highly related proteins with identical structural organization that consists of a central Sec7 domain and a carboxy-terminal pleckstrin homology domain. We show that all three proteins act as ARF1 GEF in vitro, whereas they have no effect on ARF6, an ARF protein implicated in the early endocytic pathway. Substrate specificity of ARNO-like GEFs for ARF1 depends solely on the Sec7 domain. Overexpression of ARNO3 in mammalian cells results in (i) fragmentation of the Golgi apparatus, (ii) redistribution of Golgi resident proteins as well as the coat component beta-COP, and (iii) inhibition of SEAP transport (secreted form of alkaline phosphatase). In contrast, the distribution of endocytic markers is not affected. This study indicates that Sec7 domain-containing GEFs control intracellular membrane compartment structure and function through the regulation of specific ARF proteins in mammalian cells.
- Sata M, Donaldson JG, Moss J, Vaughan M
- Brefeldin A-inhibited guanine nucleotide-exchange activity of Sec7 domain from yeast Sec7 with yeast and mammalian ADP ribosylation factors.
- Proc Natl Acad Sci U S A. 1998; 95: 4204-8
- Display abstract
The Saccharomyces cerevisiae Sec7 protein (ySec7p), which is an important component of the yeast secretory pathway, contains a sequence of approximately 200 amino acids referred to as a Sec7 domain. Similar Sec7 domain sequences have been recognized in several guanine nucleotide-exchange proteins (GEPs) for ADP ribosylation factors (ARFs). ARFs are approximately 20-kDa GTPases that regulate intracellular vesicular membrane trafficking and activate phospholipase D. GEPs activate ARFs by catalyzing the replacement of bound GDP with GTP. We, therefore, undertook to determine whether a Sec7 domain itself could catalyze nucleotide exchange on ARF and found that it exhibited brefeldin A (BFA)-inhibitable ARF GEP activity. BFA is known to inhibit ARF GEP activity in Golgi membranes, thereby causing reversible apparent dissolution of the Golgi complex in many cells. The His6-tagged Sec7 domain from ySec7p (rySec7d) synthesized in Escherichia coli enhanced binding of guanosine 5'-[gamma-[35S]thio]triphosphate by recombinant yeast ARF1 (ryARF1) and ryARF2 but not by ryARF3. The effects of rySec7d on ryARF2 were inhibited by BFA in a concentration-dependent manner but not by inactive analogues of BFA (B-17, B-27, and B-36). rySec7d also promoted BFA-sensitive guanosine 5'-[gamma-thio]triphosphate binding by nonmyristoylated recombinant human ARF1 (rhARF1), rhARF5, and rhARF6, although the effect on rhARF6 was very small. These results are consistent with the conclusion that the yeast Sec7 domain itself contains the elements necessary for ARF GEP activity and its inhibition by BFA.
- Goldberg J
- Structural basis for activation of ARF GTPase: mechanisms of guanine nucleotide exchange and GTP-myristoyl switching.
- Cell. 1998; 95: 237-48
- Display abstract
Ras-related GTPases are positively regulated by guanine nucleotide exchange factors (GEFs) that promote the exchange of GDP for GTP. The crystal structure of the Sec7 domain GEF bound to nucleotide-free ARF1 GTPase has been determined at 2.8 A resolution and the structure of ARF1 in the GTP-analog form determined at 1.6 A resolution. The Sec7 domain binds to the switch regions of ARF1 and inserts residues directly into the GTPase active site. The interaction leaves the purine-binding site intact but perturbs the Mg2+ and phosphate groups to promote the dissociation of guanine nucleotides. The structure of ARF1 in the GTP-analog form closely resembles Ras, revealing a substantial rearrangement from the GDP conformation. The transition controls the exposure of the myristoylated N terminus, explaining how ARF GTPases couple the GDP-GTP conformational switch to membrane binding.
- Vitale N, Horiba K, Ferrans VJ, Moss J, Vaughan M
- Localization of ADP-ribosylation factor domain protein 1 (ARD1) in lysosomes and Golgi apparatus.
- Proc Natl Acad Sci U S A. 1998; 95: 8613-8
- Display abstract
ADP-ribosylation factor domain protein 1 (ARD1) is a member of the ADP ribosylation factor (ARF) family of guanine nucleotide-binding proteins that differs from other ARFs by the presence of a 46-kDa amino-terminal extension which acts as a GTPase-activating protein (GAP) for its ARF domain. Similar to ARF GAPs, the GAP domain of ARD1 contains a zinc finger motif and arginine residues that are critical for activity. It differs from other ARF GAPs in its covalent association with the GTP-binding domain and its specificity for the ARF domain of ARD1. ARFs are presumed to play a key role in the formation of intracellular transport vesicles and in their movement from one compartment to another. We report here that ARD1 overexpressed in cells, as a fusion or nonfusion protein, is localized in vesicular structures that are concentrated mainly in the perinuclear region, but are found also throughout the cytosol. Microscopic colocalization and subcellular fractionation studies showed that ARD1 was associated with the Golgi complex and lysosomal structures. ARD1 expressed as a green fluorescent fusion protein was initially associated with the Golgi network and subsequently localized to lysosomes. Lysosomal and Golgi membranes isolated from human liver by immunoaffinity contained native ARD1. Localization to these organelles, therefore, did not appear to be a result of overexpression. These observations suggest that the ARF-related protein ARD1 may play a role in the formation or function of lysosomes and in protein trafficking between Golgi and lysosomes.
- Becker KG et al.
- Molecular cloning and mapping of a novel developmentally regulated human C2H2-type zinc finger.
- Mamm Genome. 1997; 8: 287-9
- Vitale N, Moss J, Vaughan M
- Interaction of the GTP-binding and GTPase-activating domains of ARD1 involves the effector region of the ADP-ribosylation factor domain.
- J Biol Chem. 1997; 272: 3897-904
- Display abstract
ADP-ribosylation factors (ARFs) are a family of approximately 20-kDa guanine nucleotide-binding proteins and members of the Ras superfamily, originally identified and purified by their ability to enhance the ADP-ribosyltransferase activity of cholera toxin and more recently recognized as critical participants in vesicular trafficking pathways and phospholipase D activation. ARD1 is a 64-kDa protein with an 18-kDa carboxyl-terminal ARF domain (p3) and a 46-kDa amino-terminal extension (p5) that is widely expressed in mammalian tissues. Using recombinant proteins, we showed that p5, the amino-terminal domain of ARD1, stimulates the GTPase activity of p3, the ARF domain, and appears to be the GTPase-activating protein (GAP) component of this bifunctional protein, whereas in other members of the Ras superfamily a separate GAP molecule interacts with the effector region of the GTP-binding protein. p5 stimulated the GTPase activity of p3 but not of ARF1, which differs from p3 in several amino acids in the effector domain. After substitution of 7 amino acids from p3 in the appropriate position in ARF1, the chimeric protein ARF1(39-45p3) bound to p5, which increased its GTPase activity. Specifically, after Gly40 and Thr45 in the putative effector domain of ARF1 were replaced with the equivalent Asp and Pro, respectively, from p3, functional interaction of the chimeric ARF1 with p5 was increased. Thus, Asp25 and Pro30 of the ARF domain (p3) of ARD1 are involved in its functional and physical interaction with the GTPase-activating (p5) domain of ARD1. After deletion of the amino-terminal 15 amino acids from ARF1(39-45p3), its interaction with p5 was essentially equivalent to that of p3, suggesting that the amino terminus of ARF1(39-45p3) may interfere with binding to p5. These results are consistent with the conclusion that the GAP domain of ARD1 interacts with the effector region of the ARF domain and thereby stimulates GTP hydrolysis.
- Icard-Liepkalns C, Ravassard P, Liepkalns VA, Chatail F, Mallet J
- An ADP-ribosylation-factor(ARF)-like protein involved in regulated secretion.
- Eur J Biochem. 1997; 246: 388-93
- Display abstract
A rat ADP-ribosylation factor(ARF)-like protein named ARL184 was identified by cDNA cloning. The corresponding recombinant protein had an apparent molecular mass of 22,000. The deduced amino acid sequence had 55% identity with the human ARL1 and four functional GTP-binding sites. Immunofluorescent confocal microscopy studies showed that ARL184 was present in the cytosol as well as in the Golgi apparatus, raising the possibility that it has a role in a secretory pathway. The involvement of this ARF-like protein in secretion was confirmed by demonstrating that ARL184 potentiated acetylcholine release in stably transfected PC12 cells. Collectively these results suggest that this ARL protein is a component of a regulated secretory pathway involved in Ca2(+)-dependent release of acetylcholine.
- Aoe T, Cukierman E, Lee A, Cassel D, Peters PJ, Hsu VW
- The KDEL receptor, ERD2, regulates intracellular traffic by recruiting a GTPase-activating protein for ARF1.
- EMBO J. 1997; 16: 7305-16
- Display abstract
The small GTPase ADP-ribosylation factor 1 (ARF1) is a key regulator of intracellular membrane traffic. Regulators of ARF1, its GTPase-activating protein (GAP) and its guanine nucleotide exchange factor have been identified recently. However, it remains uncertain whether these regulators drive the GTPase cycle of ARF1 autonomously or whether their activities can be regulated by other proteins. Here, we demonstrate that the intracellular KDEL receptor, ERD2, self-oligomerizes and interacts with ARF1 GAP, and thereby regulates the recruitment of cytosolic ARF1 GAP to membranes. Because ERD2 overexpression enhances the recruitment of GAP to membranes and results in a phenotype that reflects ARF1 inactivation, our findings suggest that ERD2 regulates ARF1 GAP, and thus regulates ARF1-mediated transport.
- Antonny B, Huber I, Paris S, Chabre M, Cassel D
- Activation of ADP-ribosylation factor 1 GTPase-activating protein by phosphatidylcholine-derived diacylglycerols.
- J Biol Chem. 1997; 272: 30848-51
- Display abstract
Disassembly of the coatomer from Golgi vesicles requires that the small GTP-binding protein ADP-ribosylation factor 1 (ARF1) hydrolyzes its bound GTP by the action of a GTPase-activating protein. In vitro, the binding of the ARF1 GTPase-activating protein to lipid vesicles and its activity on membrane-bound ARF1GTP are increased by diacylglycerols with monounsaturated acyl chains, such as those arising in vivo as secondary products from the hydrolysis of phosphatidylcholine by ARF-activated phospholipase D. Thus, the phospholipase D pathway may provide a feedback mechanism that promotes GTP hydrolysis on ARF1 and the consequent uncoating of vesicles.
- Morinaga N, Moss J, Vaughan M
- Cloning and expression of a cDNA encoding a bovine brain brefeldin A-sensitive guanine nucleotide-exchange protein for ADP-ribosylation factor.
- Proc Natl Acad Sci U S A. 1997; 94: 12926-31
- Display abstract
A 200-kDa guanine nucleotide-exchange protein (p200 or GEP) for ADP-ribosylation factors 1 and 3 (ARF1 and ARF3) that was inhibited by brefeldin A (BFA) was purified earlier from cytosol of bovine brain cortex. Amino acid sequences of four tryptic peptides were 47% identical to that of Sec7 from Saccharomyces cerevisiae, which is involved in vesicular trafficking in the Golgi. By using a PCR-based procedure with two degenerate primers representing sequences of these peptides, a product similar in size to Sec7 that contained the peptide sequences was generated. Two oligonucleotides based on this product were used to screen a bovine brain library, which yielded one clone that was a partial cDNA for p200. The remainder of the cDNA was obtained by 5' and 3' rapid amplification of cDNA ends (RACE). The ORF of the cDNA encodes a protein of 1,849 amino acids (approximately 208 kDa) that is 33% identical to yeast Sec7 and 50% identical in the Sec7 domain region. On Northern blot analysis of bovine tissues, a approximately 7.4-kb mRNA was identified that hybridized with a p200 probe; it was abundant in kidney, somewhat less abundant in lung, spleen, and brain, and still less abundant in heart. A six-His-tagged fusion protein synthesized in baculovirus-infected Sf9 cells demonstrated BFA-inhibited GEP activity, confirming that BFA sensitivity is an intrinsic property of this ARF GEP and not conferred by another protein component of the complex from which p200 was originally purified.
- Gant TM, Wilson KL
- ARF is not required for nuclear vesicle fusion or mitotic membrane disassembly in vitro: evidence for a non-ARF GTPase in fusion.
- Eur J Cell Biol. 1997; 74: 10-9
- Display abstract
Xenopus laevis egg extracts are a well-characterized system for studying nuclear envelope dynamics in vitro. ADP-ribosylation factor (ARF), a 21 kDa GTPase involved in vesicular transport, inhibits nuclear vesicle fusion in vitro when membranes are preincubated with ARF and GTP gamma S (Boman et al., Nature 358, 512-514 (1992)). To test the hypothesis that ARF was required for nuclear envelope assembly or disassembly, we examined these events in cytosol from which ARF was depleted by size fractionation or inhibited with brefeldin A (BFA). In ARF-depleted extracts, vesicles bound chromatin and fused to enclose the chromatin, but the resulting enclosed nuclei lacked pore complexes and remained small. Further growth was not stimulated by adding ARF1, suggesting that fractionation removed other proteins required for pore complex assembly and nuclear growth. Nuclei assembled in ARF-depleted extracts, and rat liver nuclei, disassembled normally in mitotic ARF-depleted reactions. BFA, which inhibits ARF binding to membranes, had no effect on nuclear assembly or disassembly. We concluded that ARF is not essential for nuclear membrane dynamics. Nuclear vesicle fusion was still inhibited by GTP gamma S in ARF-depleted reactions and in reactions containing BFA, strongly suggesting that there is another unidentified GTPase that is either required for vesicle fusion or capable of inhibiting fusion in the presence of GTP gamma S.
- Vitale N, Moss J, Vaughan M
- Characterization of a GDP dissociation inhibitory region of ADP-ribosylation factor domain protein ARD1.
- J Biol Chem. 1997; 272: 25077-82
- Display abstract
ADP-ribosylation factors (ARFs) are approximately 20-kDa guanine nucleotide-binding proteins initially identified by their ability to stimulate cholera toxin ADP-ribosyltransferase activity and later recognized as critical components in intracellular vesicular transport and phospholipase D activation. ARF domain protein 1 (ARD1) is a member of the ARF family that differs from other ARFs by the presence of a 46-kDa amino-terminal extension. We previously reported that this extension acts as a GTPase-activating protein for the ARF domain of ARD1 (Vitale, N., Moss, J., and Vaughan, M. (1996) Proc. Natl. Acad. Sci. U. S. A. 93, 1941-1944). Both GTP binding and GTP hydrolysis are necessary for physiological function of guanine nucleotide-binding proteins, and the rates of GDP/GTP exchange and GTPase activity are critical in the activation/deactivation cycle. Dissociation of GDP from the ARF domain of ARD1 was faster than from ARD1 itself (both proteins synthesized in Escherichia coli). Using deletion mutations, it was demonstrated that the 15 amino acids directly preceding the ARF domain were responsible for decreasing the rate of GDP dissociation but not guanosine 5-[gamma-thio]triphosphate dissociation. By site-specific mutagenesis it was shown that hydrophobic amino acids in this region were particularly important in stabilizing the GDP-bound form of ARD1. It is suggested that, like the amino-terminal segment of ARF, the equivalent region in ARD1, located between the GTPase-activating protein and ARF domains, may act as a GDP dissociation inhibitor.
- Meacci E, Tsai SC, Adamik R, Moss J, Vaughan M
- Cytohesin-1, a cytosolic guanine nucleotide-exchange protein for ADP-ribosylation factor.
- Proc Natl Acad Sci U S A. 1997; 94: 1745-8
- Display abstract
Cytohesin-1, a protein abundant in cells of the immune system, has been proposed to be a human homolog of the Saccharomyces cerevisiae Sec7 gene product, which is crucial in protein transport. More recently, the same protein has been reported to be a regulatory factor for the alphaLbeta2 integrin in lymphocytes. Overexpression of human or yeast ADP-ribosylation factor (ARF) genes rescues yeast with Sec7 defects, restoring secretory pathway function. ARFs, 20-kDa guanine nucleotide-binding proteins initially identified by their ability to stimulate cholera toxin ADP-ribosyltransferase activity and now recognized as critical components in intracellular vesicular transport, exist in an inactive cytosolic form with GDP bound (ARF-GDP). Interaction with a guanine nucleotide-exchange protein (GEP) accelerates exchange of GDP for GTP, producing the active ARF-GTP. Both soluble and particulate GEPs have been described. To define better the interaction between ARF and Sec7-related proteins, effects of cytohesin-1, synthesized in Escherichia coli, on ARF activity were evaluated. Cytohesin-1 enhanced binding of 35S-labeled guanosine 5'-[gamma-thio]triphosphate [35S]GTP[gammaS] or [3H]GDP to ARF purified from bovine brain (i.e., it appeared to function as an ARF-GEP). Addition of cytohesin-1 to ARF3 with [35S]GTP[gammaS] bound, accelerated [35S]GTP[gammaS] release to a similar degree in the presence of unlabeled GDP or GTP[gammaS] and to a lesser degree with GDP[betaS]; release was negligible without added nucleotide. Cytohesin-1 also increased ARF1 binding to a Golgi fraction, but its effect was not inhibited by brefeldin A (BFA), a drug that reversibly inhibits Golgi function. In this regard, it differs from a recently reported BFA-sensitive ARF-GEP that contains a Sec7 domain.
- Stricker R et al.
- cDNA cloning of porcine p42IP4, a membrane-associated and cytosolic 42 kDa inositol(1,3,4,5)tetrakisphosphate receptor from pig brain with similarly high affinity for phosphatidylinositol (3,4,5)P3.
- FEBS Lett. 1997; 405: 229-36
- Display abstract
We previously identified a 42 kDa Ins(1,3,4,5)P4 (InsP4) receptor protein (p42IP4) in brain membranes from several species. Here the cDNA sequence of p42IP4 was obtained by PCR using degenerate primers derived from peptide sequences of proteolytic fragments of the porcine protein and by subsequent screening of a pig brain cDNA library. The derived peptide sequence of 374 amino acids for porcine p42IP4 is 45 amino acids shorter at the C-terminus than centaurin-alpha from rat (84% homology) and has a calculated molecular mass of 43 kDa. From the InsP4 binding activity present in brain tissue homogenate about 25% is found in the cytosolic fraction and 75% associated with microsomes. Both activities are due to p42IP4 since (i) a peptide-specific antiserum recognizing specifically p42IP4 labels the InsP4 receptor protein in membranes and in the cytosol, (ii) the antiserum immunoprecipitates both the membrane protein and the cytosolic protein of 42 kDa, (iii) the InsP4 binding activity released by high salt or by alkaline extraction from membranes is identified immunologically as the 42 kDa protein, and (iv) the affinity for InsP4 and specificity for various inositolphosphates are similar for the membrane-associated and for the soluble p42IP4. The functional importance of p42IP4 is highlighted by the identical affinity for InsP4 and for phosphatidylinositol (3,4,5)P3 (Ki = 1.6 and 0.9 nM, respectively). Thus, the InsP4 receptor, apparently a peripheral membrane protein, which exists also as a cytosolic protein can transfer the signals mediated by InsP4 or by PtdInsP3 between membranes and cytosolic compartment.
- Liang JO, Sung TC, Morris AJ, Frohman MA, Kornfeld S
- Different domains of mammalian ADP-ribosylation factor 1 mediate interaction with selected target proteins.
- J Biol Chem. 1997; 272: 33001-8
- Display abstract
Mammalian ADP-ribosylation factor 1 (mARF1) is a small GTP-binding protein that is activated by a Golgi guanine nucleotide exchange factor. Once bound to the Golgi membranes in the GTP form, mARF1 initiates the recruitment of the adaptor protein 1 (AP-1) complex and coatomer (COPI) onto these membranes and activates phospholipase D1 (PLD1). To map the domains of mARF1 that are important for these activities, we constructed chimeras between mARF1 and Saccharomyces cerevisiae ARF2, which functions poorly in all of these processes except COPI recruitment. The carboxyl half of mARF1 (amino acids 95-181) was essential for activation by the Golgi guanine nucleotide exchange factor, whereas a separate domain (residues 35-94) was required to effectively activate PLD1 and to promote efficient AP-1 recruitment. Since residues 35-94 of mARF1 are critical for optimal activity in both PLD1 activation and AP-1 recruitment, we hypothesize that this region of ARF contains residues that interact with effector molecules.
- Gaidarov I, Chen Q, Falck JR, Reddy KK, Keen JH
- A functional phosphatidylinositol 3,4,5-trisphosphate/phosphoinositide binding domain in the clathrin adaptor AP-2 alpha subunit. Implications for the endocytic pathway.
- J Biol Chem. 1996; 271: 20922-9
- Display abstract
Clathrin-coated pits are sites of concentration of ligand-bound signaling receptors. Several such receptors are known to recruit, bind, and activate the heterodimeric phosphatidylinositol-3-kinase, resulting in the generation of phosphatidylinositol 3,4, 5-trisphosphate. We report here that dioctanoyl-phosphatidylinositol-3,4,5-P3 binds specifically and saturably to soluble AP-2 and with greater affinity to AP-2 within assembled coat structures. Soluble -myo-inositol hexakisphosphate shows converse behavior. Binding to bovine brain clathrin-coated vesicles is evident only after detergent extraction. These observations and evidence for recognition of the diacylglyceryl backbone as well as the inositol phosphate headgroup are consistent with AP-2 interaction with membrane phosphoinositides in coated vesicles and with soluble inositol phosphates in cytoplasm. A discrete binding domain is identified near the N terminus of the AP-2 alpha subunit, and an expressed fusion protein containing this sequence exhibits specific, high affinity binding that is virtually identical to the parent protein. This region of the AP-2 alpha sequence also shows the greatest conservation between a Caenorhabditis elegans homolog and mammalian alpha, consistent with a function in recognition of an evolutionarily unchanging low molecular weight ligand. Binding of phosphatidylinositol 3,4, 5-trisphosphate to AP-2 inhibits the protein's clathrin binding and assembly activities. These findings are discussed in the context of the potential roles of phosphoinositides and AP-2 in the internalization and trafficking of cell surface receptors.
- Ding M, Vitale N, Tsai SC, Adamik R, Moss J, Vaughan M
- Characterization of a GTPase-activating protein that stimulates GTP hydrolysis by both ADP-ribosylation factor (ARF) and ARF-like proteins. Comparison to the ARD1 gap domain.
- J Biol Chem. 1996; 271: 24005-9
- Display abstract
ADP-ribosylation factors (ARFs) are approximately20-kDa guanine nucleotide-binding proteins that participate in vesicular transport in the Golgi and other intracellular compartments and stimulate cholera toxin ADP-ribosyltransferase activity. Both GTP binding and hydrolysis are necessary for its physiological functions, although purified mammalian ARF lacks detectable GTPase activity. An ARF GTPase-activating protein (GAP) was purified >15,000-fold from rat spleen cytosol using (NH4)2SO4 precipitation and chromatography on Ultrogel AcA 34, DEAE-Sephacel, heparin-Sepharose, hydroxylapatite, and Ultrogel AcA 44. In fractions ( approximately100-kDa proteins) from Ultrogel AcA 44, a major protein band of approximately50 kDa on SDS-polyacrylamide gel electrophoresis correlated with GAP activity, consistent with it being a homodimer, thus differing from an ARF GAP purified from rat liver (Makler, V., Cukierman, E., Rotman, M., Admon, A., and Cassel, D. (1995) J. Biol. Chem. 270, 5232-5237). Purified spleen GAP accelerated hydrolysis of GTP bound to recombinant ARF1, ARF3, ARF5, and ARF6; no effect of NH2-terminal myristoylation was observed. ARF GAP also activated GTP hydrolysis by ARL1, which is 56% identical in amino acid sequence to ARF1, but lacks ARF activity. ARD1 is a 64-kDa guanine nucleotide-binding protein that contains an 18-kDa ARF domain at its carboxyl terminus; the ARF domain lacks the amino-terminal alpha-helix found in native ARF and hence is similar to the amino-terminal truncated mutant Delta13ARF1. Both the ARF domain of ARD1 and Delta13ARF1 were poor substrates for ARF GAP. The non-ARF1 domain of ARD1 enhanced the GTPase activity of the ARF domain, but not that of the ARF proteins and Delta13ARF1, i.e. it lacks the relatively broad substrate specificity exhibited by ARF GAP.
- Makler V, Cukierman E, Rotman M, Admon A, Cassel D
- ADP-ribosylation factor-directed GTPase-activating protein. Purification and partial characterization.
- J Biol Chem. 1995; 270: 5232-7
- Display abstract
The small GTP-binding protein ARF plays an established role in the control of vesicular traffic and in the regulation of phospholipase D activity. Like other GTP binding proteins, ARF becomes activated upon the binding of GTP, whereas GTP hydrolysis acts as a turn-off signal. The fact that purified ARF proteins have negligible GTPase activity has suggested that GTP hydrolysis by ARFs is dependent on a GTPase-activating protein (GAP). Here we report the complete purification of an ARF GAP from rat liver cytosol. Advanced stages in the purification were carried out in the presence of denaturing agents, making use of an unusual conformational stability, or refolding capacity, of the GAP. The GAP was purified about 15,000-fold and was identified as a protein of 49 kDa. Partial amino acid sequence analysis showed that the GAP is a previously uncharacterized protein. Both crude and purified GAP migrated on a Superdex 200 column as a 200-kDa complex, suggesting a tetrameric structure. The purified ARF GAP was stimulated by phosphoinositides and was inhibited by phosphatidylcholine, similar to the results previously reported for a preparation from brain (Randazzo, P. A., and Kahn, R. A. (1994) J. Biol. Chem. 269, 10758). The availability of the ARF GAP molecule will advance the understanding of the regulation of the cellular processes in which ARF proteins participate.
- Kahn RA et al.
- Mutational analysis of Saccharomyces cerevisiae ARF1.
- J Biol Chem. 1995; 270: 143-50
- Display abstract
Wild type and eight point mutants of Saccharomyces cerevisiae ARF1 were expressed in yeast and bacteria to determine the roles of specific residues in in vivo and in vitro activities. Mutations at either Gly2 or Asp26 resulted in recessive loss of function. It was concluded that N-myristoylation is required for Arf action in cells but not for either nucleotide exchange or cofactor activities in vitro. Asp26 (homologous to Gly12 of p21ras) was essential for the binding of the activating nucleotide, guanosine 5'-3-O-(thio)triphosphate. This is in marked contrast to results obtained after mutagenesis of the homologous residue in p21ras or Gs alpha, and suggests a fundamental difference in the guanine nucleotide binding site of Arf with respect to these other GTP-binding proteins. Two dominant alleles were also identified, one activating dominant ([Q71L]Arf1) and the other ([N126I]) a negative dominant. A conditional allele, [W66R]Arf1, was characterized and shown to have approximately 300-fold lower specific activity in an in vitro Arf assay. Two high-copy suppressors of this conditional phenotype were cloned and sequenced. One of these suppressors, SFS4, was found to be identical to PBS2/HOG4, recently shown to encode a microtubule-associated protein kinase kinase in yeast.
- Randazzo PA, Kahn RA
- GTP hydrolysis by ADP-ribosylation factor is dependent on both an ADP-ribosylation factor GTPase-activating protein and acid phospholipids.
- J Biol Chem. 1994; 269: 10758-63
- Display abstract
ADP-ribosylation factor (ARF) is a 21-kDa GTP binding protein that regulates eukaryotic membrane traffic. Both the binding and hydrolysis of GTP by ARF have been shown to be necessary for this function. However, purified mammalian ARF lacks intrinsic GTPase activity (< 0.0015 min-1). We document the presence, in bovine brain extracts, of a protein with the predicted properties for an ARF GTPase-activating protein (ARF GAP). This activity was highly dependent on phospholipids. An acid phospholipid fraction from bovine brain (containing primarily phosphatidylinositol 4,5-bisphosphate (PIP2), phosphatidylinositol 4-phosphate, phosphatidylinositol, and phosphatidylserine) had no effect on intrinsic GTPase activity of purified ARF but increased the ARF GAP activity of bovine brain homogenates about 8-fold. This dependence on acid phospholipids was retained after > 100-fold purification of ARF GAP, making it, likely, an inherent property of this reaction. PIP2 alone stimulated ARF GAP activity up to 30-fold with a half-maximal effect at 100-300 microM but had no effect on the GTPase rate of ARF alone. Phosphatidylinositol 4-phosphate was also active but had only 50% of the maximal effect and twice the EC50 of PIP2. Phosphatidylserine, phosphatidylethanolamine, phosphatidylcholine, phosphatidylinositol, and diacylglycerol either alone or in the presence of ARF GAP do not stimulate ARF GTPase activity. ARF proteins have been identified recently as regulators of phospholipase D. The product of the phospholipase D reaction, phosphatidic acid, stimulated ARF GAP approximately 5-fold and reduced the PIP2 concentration needed for GAP stimulation about 6-fold. The substrate of phospholipase D, phosphatidylcholine, inhibited ARF GAP activity, but this inhibition seen with phosphatidylcholine was partially reversed by phosphatidic acid. A feedback loop for the coordinate regulation of phospholipase D and ARF activities is proposed.
- Hong JX, Haun RS, Tsai SC, Moss J, Vaughan M
- Effect of ADP-ribosylation factor amino-terminal deletions on its GTP-dependent stimulation of cholera toxin activity.
- J Biol Chem. 1994; 269: 9743-5
- Display abstract
It has been proposed that the amino-terminal domain of ADP-ribosylation factor (ARF) is critical for its stimulation of cholera toxin ADP-ribosyltransferase activity. In this study, recombinant ARF1 (rARF1), r delta 13ARF1 (recombinant ARF1 lacking the first 13 amino acids) and rPKA14ARF1 (recombinant ARF1 in which the first 14 amino acids were replaced by the first 7 amino acids of the cAMP-dependent protein kinase catalytic subunit) were used to assess the effect of the amino terminus on the ability of ARF to enhance ADP-ribosylation of agmatine by the cholera toxin A subunit. The GTP-dependent ARF activities of r delta 13ARF1 and rPKA14ARF1 were similar to that of rARF1, whereas the GTP requirement for half-maximal activation of cholera toxin A, was somewhat higher for rARF1 than it was for r delta 13ARF1 and rPKA14ARF1. These results are consistent with the view that the amino terminus of ARF1 is not critical for its action as a GTP-dependent activator of cholera toxin.
- Randazzo PA, Terui T, Sturch S, Kahn RA
- The amino terminus of ADP-ribosylation factor (ARF) 1 is essential for interaction with Gs and ARF GTPase-activating protein.
- J Biol Chem. 1994; 269: 29490-4
- Display abstract
The role of the amino terminus in the actions of ADP-ribosylation factor 1 (ARF1) was examined by comparing wild type ARF1, a 13-residue NH2-terminal deletion mutant ([delta 13]ARF1), and a 17-residue NH2-terminal deletion mutant ([delta 17]ARF1). The amino-terminal 13 residues of ARF1 are required for cofactor activity in the ADP-ribosylation by cholera toxin when Gs is the substrate. This is in marked contrast to the finding that cofactor activity is the same for wild type and [delta 13]ARF1 when agmatine is substrate (Hong, J.-X., Haun, R. S., Tsai, S.-C., Moss, J., and Vaughan, M. (1994) J. Biol. Chem. 269, 9743-9745). These data support the conclusion that ARF1 interacts with both cholera toxin and Gs and that the amino terminus of ARF1 is required specifically for binding Gs. Surprisingly, this result also clearly revealed that the two principal assays for ARF activity, cofactor activity for cholera toxin using either Gs or agmatine as substrates, used for over 10 years in different laboratories, can yield quite different results. While both NH2-terminal deletion mutants failed to support the ADP-ribosylation of Gs by cholera toxin, [delta 13]ARF1, but not [delta 17]ARF1, inhibited the activity of the wild type protein. The GTPase activity of [delta 13]ARF1 was activated to a small extent by ARF GTPase-activating protein (GAP), whereas that of [delta 17]ARF1 was unaffected. We conclude that residues 14-17 are involved in the interaction of ARF with both cholera toxin and ARF GAP. The co-purifying nucleotides, nucleotide exchange kinetics, and dependence of exchange on phospholipids for the mutant proteins were all different from the wild type ARF1 proteins. The importance of monitoring the nucleotide binding to ARF proteins under the conditions used in the ARF assay and expressing ARF activities as specific activities, normalized to GTP binding sites, particularly when comparisons between different proteins or preparations are made, is discussed.
- Tsai SC, Adamik R, Moss J, Vaughan M
- Identification of a brefeldin A-insensitive guanine nucleotide-exchange protein for ADP-ribosylation factor in bovine brain.
- Proc Natl Acad Sci U S A. 1994; 91: 3063-6
- Display abstract
ADP-ribosylation factors (ARFs) are approximately 20-kDa guanine nucleotide-binding proteins that participate in vesicular transport in the Golgi and other intracellular compartments and stimulate cholera toxin ADP-ribosyltransferase activity. ARFs are active in the GTP-bound form; hydrolysis of bound GTP to GDP, possibly with the assistance of a GTP hydrolysis (GTPase)-activating protein results in inactivation. Exchange of GDP for GTP and reactivation were shown by other workers to be enhanced by Golgi membranes in a brefeldin A-sensitive reaction, leading to the proposal that the guanine nucleotide-exchange protein (GEP) was a target of brefeldin A. In the studies reported here, a soluble GEP was partially purified from bovine brain. Exchange of nucleotide on ARFs 1 and 3, based on increased ARF activity in a toxin assay and stimulation of binding of guanosine 5'-[gamma-[35S]thio]triphosphate, was dependent on phospholipids, with phosphatidylserine being more effective than cardiolipin. GEP appeared to increase the rate of nucleotide exchange but did not affect the affinity of ARF for GTP. Whereas the crude GEP had a size of approximately 700 kDa, the partially purified GEP behaved on Ultrogel AcA 54 as a protein of 60 kDa. With purification, the GEP activity became insensitive to brefeldin A, consistent with the conclusion that, in contrast to earlier inferences, the exchange protein is not itself the target of brefeldin A.
- Haun RS, Tsai SC, Adamik R, Moss J, Vaughan M
- Effect of myristoylation on GTP-dependent binding of ADP-ribosylation factor to Golgi.
- J Biol Chem. 1993; 268: 7064-8
- Display abstract
ADP-ribosylation factors (ARFs), a family of approximately 20-kDa guanine nucleotide-binding proteins that activate cholera toxin ADP-ribosyltransferase in vitro, have been implicated in intracellular protein trafficking and are thought to cycle between cytosolic and membrane compartments. Although isolated predominantly as soluble proteins, ARFs associate with membranes and phospholipids in a GTP-dependent manner. In contrast to other small GTP-binding proteins, ARFs are NH2 terminally myristoylated. Using a bacterial expression system, recombinant myristoylated and non-myristoylated human ARF5 were produced to investigate the role of myristoylation in its association with Golgi. The recombinant ARFs (myristoylated and non-myristoylated) exhibited similar biochemical activity as measured by GTP binding and in vitro activation of cholera toxin. Myristoylated ARF5, however, demonstrated a temperature- and GTP-dependent association with Golgi membranes, whereas non-myristoylated ARF did not bind to Golgi under any of the experimental conditions. These data indicate that myristoylation is necessary, although not sufficient, for membrane attachment, but is not necessary for activation of cholera toxin.
- Helms JB, Palmer DJ, Rothman JE
- Two distinct populations of ARF bound to Golgi membranes.
- J Cell Biol. 1993; 121: 751-60
- Display abstract
ADP-ribosylation factor (ARF) is a small molecular weight GTP-binding protein (20 kD) and has been implicated in vesicular protein transport. The guanine nucleotide, bound to ARF protein is believed to modulate the activity of ARF but the mechanism of action remains elusive. We have previously reported that ARF binds to Golgi membranes after Brefeldin A-sensitive nucleotide exchange of ARF-bound GDP for GTP gamma S. Here we report that treatment with phosphatidylcholine liposomes effectively removed 40-60% of ARF bound to Golgi membranes with nonhydrolyzable GTP, presumably by competing for binding of activated ARF to lipid bilayers. This revealed the presence of two different pools of ARF on Golgi membranes. Whereas total ARF binding did not appear to be saturable, the liposome-resistant pool is saturable suggesting that this pool of ARF is stabilized by interaction with a Golgi membrane-component. We propose that activation of ARF by a guanine nucleotide-exchange protein results in association of myristoylated ARF GTP with the lipid bilayer of the Golgi apparatus. Once associated with the membrane, activated ARF can diffuse freely to associate stably with a target protein or possibly can be inactivated by a GTPase activating protein (GAP) activity.