Secondary literature sources for BLUF
The following references were automatically generated.
- Lukacs A et al.
- BLUF domain function does not require a metastable radical intermediate state.
- J Am Chem Soc. 2014; 136: 4605-15
- Display abstract
BLUF (blue light using flavin) domain proteins are an important family of blue light-sensing proteins which control a wide variety of functions in cells. The primary light-activated step in the BLUF domain is not yet established. A number of experimental and theoretical studies points to a role for photoinduced electron transfer (PET) between a highly conserved tyrosine and the flavin chromophore to form a radical intermediate state. Here we investigate the role of PET in three different BLUF proteins, using ultrafast broadband transient infrared spectroscopy. We characterize and identify infrared active marker modes for excited and ground state species and use them to record photochemical dynamics in the proteins. We also generate mutants which unambiguously show PET and, through isotope labeling of the protein and the chromophore, are able to assign modes characteristic of both flavin and protein radical states. We find that these radical intermediates are not observed in two of the three BLUF domains studied, casting doubt on the importance of the formation of a population of radical intermediates in the BLUF photocycle. Further, unnatural amino acid mutagenesis is used to replace the conserved tyrosine with fluorotyrosines, thus modifying the driving force for the proposed electron transfer reaction; the rate changes observed are also not consistent with a PET mechanism. Thus, while intermediates of PET reactions can be observed in BLUF proteins they are not correlated with photoactivity, suggesting that radical intermediates are not central to their operation. Alternative nonradical pathways including a keto-enol tautomerization induced by electronic excitation of the flavin ring are considered.
- Yasukawa H et al.
- Identification of photoactivated adenylyl cyclases in Naegleria australiensis and BLUF-containing protein in Naegleria fowleri.
- J Gen Appl Microbiol. 2013; 59: 361-9
- Display abstract
Complete genome sequencing of Naegleria gruberi has revealed that the organism encodes polypeptides similar to photoactivated adenylyl cyclases (PACs). Screening in the N. australiensis genome showed that the organism also encodes polypeptides similar to PACs. Each of the Naegleria proteins consists of a "sensors of blue-light using FAD" domain (BLUF domain) and an adenylyl cyclase domain (AC domain). PAC activity of the Naegleria proteins was assayed by comparing sensitivities of Escherichia coli cells heterologously expressing the proteins to antibiotics in a dark condition and a blue light-irradiated condition. Antibiotics used in the assays were fosfomycin and fosmidomycin. E. coli cells expressing the Naegleria proteins showed increased fosfomycin sensitivity and fosmidomycin sensitivity when incubated under blue light, indicating that the proteins functioned as PACs in the bacterial cells. Analysis of the N. fowleri genome revealed that the organism encodes a protein bearing an amino acid sequence similar to that of BLUF. A plasmid expressing a chimeric protein consisting of the BLUF-like sequence found in N. fowleri and the adenylyl cyclase domain of N. gruberi PAC was constructed to determine whether the BLUF-like sequence functioned as a sensor of blue light. E. coli cells expressing a chimeric protein showed increased fosfomycin sensitivity and fosmidomycin sensitivity when incubated under blue light. These experimental results indicated that the sequence similar to the BLUF domain found in N. fowleri functioned as a sensor of blue light.
- McNeil MB, Fineran PC
- Prokaryotic assembly factors for the attachment of flavin to complex II.
- Biochim Biophys Acta. 2013; 1827: 637-47
- Display abstract
Complex II (also known as Succinate dehydrogenase or Succinate-ubiquinone oxidoreductase) is an important respiratory enzyme that participates in both the tricarboxylic acid cycle and electron transport chain. Complex II consists of four subunits including a catalytic flavoprotein (SdhA), an iron-sulphur subunit (SdhB) and two hydrophobic membrane anchors (SdhC and SdhD). Complex II also contains a number of redox cofactors including haem, Fe-S clusters and FAD, which mediate electron transfer from succinate oxidation to the reduction of the mobile electron carrier ubiquinone. The flavin cofactor FAD is an important redox cofactor found in many proteins that participate in oxidation/reduction reactions. FAD is predominantly bound non-covalently to flavoproteins, with only a small percentage of flavoproteins, such as complex II, binding FAD covalently. Aside from a few examples, the mechanisms of flavin attachment have been a relatively unexplored area. This review will discuss the FAD cofactor and the mechanisms used by flavoproteins to covalently bind FAD. Particular focus is placed on the attachment of FAD to complex II with an emphasis on SdhE (a DUF339/SDH5 protein previously termed YgfY), the first protein identified as an assembly factor for FAD attachment to flavoproteins in prokaryotes. The molecular details of SdhE-dependent flavinylation of complex II are discussed and comparisons are made to known cofactor chaperones. Furthermore, an evolutionary hypothesis is proposed to explain the distribution of SdhE homologues in bacterial and eukaryotic species. Mechanisms for regulating SdhE function and how this may be linked to complex II function in different bacterial species are also discussed. This article is part of a Special Issue entitled: Respiratory complex II: Role in cellular physiology and disease.
- Ren S, Sawada M, Hasegawa K, Hayakawa Y, Ohta H, Masuda S
- A PixD--PapB chimeric protein reveals the function of the BLUF domain C-terminal alpha-helices for light signal transduction.
- Plant Cell Physiol. 2012; 53: 1638-47
- Display abstract
Blue light-using flavin (BLUF) proteins form a subfamily of blue light photoreceptors, are found in many bacteria and algae, and are further classified according to their structures. For one type of BLUF-containing protein, e.g. PixD, the central axes of its two C-terminal alpha-helices are perpendicular to the beta-sheet of its N-terminal BLUF domain. For another type, e.g. PapB, the central axes of its two C-terminal alpha-helices are parallel to its BLUF domain beta-sheet. However, the functional significance of the different orientations with respect to phototransduction is not clear. For the study reported herein, we constructed a chimeric protein, Pix0522, containing the core of the PixD BLUF domain and the C-terminal region of PapB, including the two alpha-helices, and characterized its biochemical and spectroscopic properties. Fourier transform infrared spectroscopy detected similar light-induced conformational changes in the C-terminal alpha-helices of Pix0522 and PapB. Pix0522 interacts with and activates the PapB-interacting enzyme, PapA, demonstrating the functionality of Pix0522. These results provide direct evidence that the BLUF C-terminal alpha-helices function as an intermediary that accepts the flavin-sensed blue light signal and transmits it downstream during phototransduction.
- Fruhwirth S, Teich K, Klug G
- Effects of the cryptochrome CryB from Rhodobacter sphaeroides on global gene expression in the dark or blue light or in the presence of singlet oxygen.
- PLoS One. 2012; 7: 33791-33791
- Display abstract
Several regulators are controlling the formation of the photosynthetic apparatus in the facultatively photosynthetic bacterium Rhodobacter sphaeroides. Among the proteins affecting photosynthesis gene expression is the blue light photoreceptor cryptochrome CryB. This study addresses the effect of CryB on global gene expression. The data reveal that CryB does not only influence photosynthesis gene expression but also genes for the non-photosynthetic energy metabolism like citric acid cycle and oxidative phosphorylation. In addition several genes involved in RNA processing and in transcriptional regulation are affected by a cryB deletion. Although CryB was shown to undergo a photocycle it does not only affect gene expression in response to blue light illumination but also in response to singlet oxygen stress conditions. While there is a large overlap in these responses, some CryB-dependent effects are specific for blue-light or photooxidative stress. In addition to protein-coding genes some genes for sRNAs show CryB-dependent expression. These findings give new insight into the function of bacterial cryptochromes and demonstrate for the first time a function in the oxidative stress response.
- Mank NN, Berghoff BA, Hermanns YN, Klug G
- Regulation of bacterial photosynthesis genes by the small noncoding RNA PcrZ.
- Proc Natl Acad Sci U S A. 2012; 109: 16306-11
- Display abstract
The small RNA PcrZ (photosynthesis control RNA Z) of the facultative phototrophic bacterium Rhodobacter sphaeroides is induced upon a drop of oxygen tension with similar kinetics to those of genes for components of photosynthetic complexes. High expression of PcrZ depends on PrrA, the response regulator of the PrrB/PrrA two-component system with a central role in redox regulation in R. sphaeroides. In addition the FnrL protein, an activator of some photosynthesis genes at low oxygen tension, is involved in redox-dependent expression of this small (s)RNA. Overexpression of full-length PcrZ in R. sphaeroides affects expression of a small subset of genes, most of them with a function in photosynthesis. Some mRNAs from the photosynthetic gene cluster were predicted to be putative PcrZ targets and results from an in vivo reporter system support these predictions. Our data reveal a negative effect of PcrZ on expression of its target mRNAs. Thus, PcrZ counteracts the redox-dependent induction of photosynthesis genes, which is mediated by protein regulators. Because PrrA directly activates photosynthesis genes and at the same time PcrZ, which negatively affects photosynthesis gene expression, this is one of the rare cases of an incoherent feed-forward loop including an sRNA. Our data identified PcrZ as a trans acting sRNA with a direct regulatory function in formation of photosynthetic complexes and provide a model for the control of photosynthesis gene expression by a regulatory network consisting of proteins and a small noncoding RNA.
- Antelmann H, Helmann JD
- Thiol-based redox switches and gene regulation.
- Antioxid Redox Signal. 2011; 14: 1049-63
- Display abstract
Cysteine is notable among the universal, proteinogenic amino acids for its facile redox chemistry. Cysteine thiolates are readily modified by reactive oxygen species (ROS), reactive electrophilic species (RES), and reactive nitrogen species (RNS). Although thiol switches are commonly triggered by disulfide bond formation, they can also be controlled by S-thiolation, S-alkylation, or modification by RNS. Thiol-based switches are common in both prokaryotic and eukaryotic organisms and activate functions that detoxify reactive species and restore thiol homeostasis while repressing functions that would be deleterious if expressed under oxidizing conditions. Here, we provide an overview of the best-understood examples of thiol-based redox switches that affect gene expression. Intra- or intermolecular disulfide bond formation serves as a direct regulatory switch for several bacterial transcription factors (OxyR, OhrR/2-Cys, Spx, YodB, CrtJ, and CprK) and indirectly regulates others (the RsrA anti-sigma factor and RegB sensory histidine kinase). In eukaryotes, thiol-based switches control the yeast Yap1p transcription factor, the Nrf2/Keap1 electrophile and oxidative stress response, and the Chlamydomonas NAB1 translational repressor. Collectively, these regulators reveal a remarkable range of chemical modifications exploited by Cys residues to effect changes in gene expression.
- Yu Q, Ghisla S, Hirschberg J, Mann V, Beyer P
- Plant carotene cis-trans isomerase CRTISO: a new member of the FAD(RED)-dependent flavoproteins catalyzing non-redox reactions.
- J Biol Chem. 2011; 286: 8666-76
- Display abstract
The carotene cis-trans isomerase CRTISO is a constituent of the carotene desaturation pathway as evolved in cyanobacteria and prevailing in plants, in which a tetra-cis-lycopene species, termed prolycopene, is formed. CRTISO, an evolutionary descendant of the bacterial carotene desaturase CRTI, catalyzes the cis-to-trans isomerization reactions leading to all-trans-lycopene, the substrate for the subsequent lycopene cyclization to form all-trans-alpha/beta-carotene. CRTISO and CRTI share a dinucleotide binding motif at the N terminus. Here we report that this site is occupied by FAD in CRTISO. The reduced form of this cofactor catalyzes a reaction not involving net redox changes. Results obtained with C(1)- and C(5)-deaza-FAD suggest mechanistic similarities with type II isopentenyl diphosphate: dimethylallyl diphosphate isomerase (IDI-2). CRTISO, together with lycopene cyclase CRTY and IDI-2, thus represents the third enzyme in isoprenoid metabolism belonging to the class of non-redox enzymes depending on reduced flavin for activity. The regional specificity and the kinetics of the isomerization reaction were investigated in vitro using purified enzyme and biphasic liposome-based systems carrying specific cis-configured lycopene species as substrates. The reaction proceeded from cis to trans, recognizing half-sides of the symmetrical prolycopene and was accompanied by one trans-to-cis isomerization step specific for the C(5)-C(6) double bond. Rice lycopene beta-cyclase (OsLCY-b), when additionally introduced into the biphasic in vitro system used, was found to be stereospecific for all-trans-lycopene and allowed the CRTISO reaction to proceed toward completion by modifying the thermodynamics of the overall reaction.
- Rieff B, Bauer S, Mathias G, Tavan P
- DFT/MM description of flavin IR spectra in BLUF domains.
- J Phys Chem B. 2011; 115: 11239-53
- Display abstract
A class of photoreceptors occurring in various organisms consists of domains that are blue light sensing using flavin (BLUF). The vibrational spectra of the flavin chromophore are spectroscopically well characterized for the dark-adapted resting states and for the light-adapted signaling states of BLUF domains in solution. Here we present a theoretical analysis of such spectra by applying density functional theory (DFT) to the flavin embedded in molecular mechanics (MM) models of its protein and solvent environment. By DFT/MM we calculate flavin spectra for seven different X-ray and NMR structures of BLUF domains occurring in the transcriptional antirepressor AppA and in the blue light receptor B (BlrB) of the purple bacterium Rb. Sphaeroides as well as in the phototaxis photoreceptor Slr1694 of the cyanobacterium Synechocystis. By considering the dynamical stabilities of associated all-atom simulation models and by comparing calculated with observed vibrational spectra, we show that two of the considered structures (both AppA) are obviously erroneous and that specific features of two further crystal structures (BlrB and Slr1694) cannot represent the states of the respective BLUF domains in solution. Thereby, the conformational transitions elicited by solvation are identified. In this context we demonstrate how hydrogen bonds of varying strengths can tune in BLUF domains the C horizontal lineO stretching frequencies of the flavin chromophore. Furthermore we show that the DFT/MM spectra of the flavin calculated for two different AppA BLUF conformations, which are called Trp(in) and Met(in), fit very well to the spectroscopic data observed for the dark and light states, respectively, if (i) polarized MM force fields, which are calculated by an iterative DFT/MM procedure, are employed for the flavin binding pockets and (ii) the calculated frequencies are properly scaled. Although the associated analysis indicates that the Trp(in) conformation belongs to the dark state, no clear light vs dark distinction emerges for the Met(in) conformation. In this connection, a number of methodological issues relevant for such complex computations are thoroughly discussed showing, in particular, why our current descriptions could not decide the light vs dark question for Met(in).
- Merz T, Sadeghian K, Schutz M
- Why BLUF photoreceptors with roseoflavin cofactors lose their biological functionality.
- Phys Chem Chem Phys. 2011; 13: 14775-83
- Display abstract
The photophysics of roseoflavin in three different environments is investigated by using ab initio and quantum mechanics/molecular mechanics methods. Intramolecular charge transfer is shown to be responsible for the quenching of the fluorescence in the gas phase, and in the water environment. However, for the roseoflavin incorporated into the blue light using flavin (BLUF) protein environment (substituting the native flavin) no such deactivation is found. The conical intersection between the locally excited state of the chromophore and the charge transfer state involving the tyrosine residue, which in the native BLUF domain is responsible for initiating the photocycle, is missing for the roseoflavin substituted protein. This explains the experimental observations of the lack of any photocycle, and the loss of the biological function of the BLUF photoreceptor reported earlier.
- Khrenova M, Domratcheva T, Grigorenko B, Nemukhin A
- Coupling between the BLUF and EAL domains in the blue light-regulated phosphodiesterase BlrP1.
- J Mol Model. 2011; 17: 1579-86
- Display abstract
The first biochemical and structural characterization of the full-length active photoreceptor BlrP1 from Klebsiella pneumoniae was recently reported by Barends et al. [Nature 459:1015-1018, (2009)]. The light-regulated catalytic function of its C-terminal c-di-guanosine monophosphate phosphodiesterase, the EAL (Glu-Ala-Leu) domain, is activated by the N-terminal sensor of blue light using the flavin adenine dinucleotide (BLUF) domain. We performed molecular dynamics simulations on the dimeric BlrP1 protein in order to examine the coupling regions that are presumably involved in transmitting light-induced structural changes which occur in the BLUF domain to the EAL domain. According to the results of simulations and an analysis of the hydrogen bonding between the respective polypeptide chains, the region containing the site on the alpha3alpha4 loop of BLUF is responsible for communication between the photosensing and catalytic domains in the dimeric BlrP1 protein.
- Krauss U, Lee J, Benkovic SJ, Jaeger KE
- LOVely enzymes - towards engineering light-controllable biocatalysts.
- Microb Biotechnol. 2010; 3: 15-23
- Display abstract
Light control over enzyme function represents a novel and exciting field of biocatalysis research. Blue-light photoreceptors of the Light, Oxygen, Voltage (LOV) family have recently been investigated for their applicability as photoactive switches. We discuss here the primary photochemical events leading to light activation of LOV domains as well as the proposed signal propagation mechanism to the respective effector domain. Furthermore, we describe the construction of LOV fusions to different effector domains, namely a dihydrofolate reductase from Escherichia coli and a lipase from Bacillus subtilis. Both fusion partners retained functionality, and alteration of enzyme activity by light was also demonstrated. Hence, it appears that fusion of LOV photoreceptors to functional enzyme target sites via appropriate linker structures may represent a straightforward strategy to design light controllable biocatalysts.
- Metz S, Hendriks J, Jager A, Hellingwerf K, Klug G
- In vivo effects on photosynthesis gene expression of base pair exchanges in the gene encoding the light-responsive BLUF domain of AppA in Rhodobacter sphaeroides.
- Photochem Photobiol. 2010; 86: 882-9
- Display abstract
The Rhodobacter sphaeroides protein AppA has the unique quality of sensing and transmitting light and redox signals. By acting as antirepressor to the PpsR protein, it acts as a major regulator in photosynthesis gene expression. In this study, we show that by introducing amino acid exchanges into the AppA protein, the in vivo activity as an antirepressor can be greatly altered. The tryptophan 104 to phenylalanine (W104F) base exchange greatly diminished blue-light sensitivity of the BLUF domain. From the obtained in vivo data, the difference in thermal recovery rate of the signaling state of the BLUF domain between the wild type and mutated protein was calculated, predicting an about 10-fold faster recovery in the mutant, which is consistent with in vitro data. Introduction of a tyrosine 21 to phenylalanine (Y21F) or to cysteine (Y21C) mutation led to a complete loss of AppA antirepressor activity, while additionally leading to an increase of photosynthesis gene expression after illumination with high blue-light quantities. Interestingly, this effect is not visible in a W104F/Y21F double mutant that again shows a wild-type-like behavior of the BLUF domain after blue-light illumination, thus restoring the activity of AppA.
- Singh AH, Doerks T, Letunic I, Raes J, Bork P
- Discovering functional novelty in metagenomes: examples from light-mediated processes.
- J Bacteriol. 2009; 191: 32-41
- Display abstract
The emerging coverage of diverse habitats by metagenomic shotgun data opens new avenues of discovering functional novelty using computational tools. Here, we apply three different concepts for predicting novel functions within light-mediated microbial pathways in five diverse environments. Using phylogenetic approaches, we discovered two novel deep-branching subfamilies of photolyases (involved in light-mediated repair) distributed abundantly in high-UV environments. Using neighborhood approaches, we were able to assign seven novel functional partners in luciferase synthesis, nitrogen metabolism, and quorum sensing to BLUF domain-containing proteins (involved in light sensing). Finally, by domain analysis, for RcaE proteins (involved in chromatic adaptation), we predict 16 novel domain architectures that indicate novel functionalities in habitats with little or no light. Quantification of protein abundance in the various environments supports our findings that bacteria utilize light for sensing, repair, and adaptation far more widely than previously thought. While the discoveries illustrate the opportunities in function discovery, we also discuss the immense conceptual and practical challenges that come along with this new type of data.
- Gonzalez JM et al.
- Genome analysis of the proteorhodopsin-containing marine bacterium Polaribacter sp. MED152 (Flavobacteria).
- Proc Natl Acad Sci U S A. 2008; 105: 8724-9
- Display abstract
Analysis of marine cyanobacteria and proteobacteria genomes has provided a profound understanding of the life strategies of these organisms and their ecotype differentiation and metabolisms. However, a comparable analysis of the Bacteroidetes, the third major bacterioplankton group, is still lacking. In the present paper, we report on the genome of Polaribacter sp. strain MED152. On the one hand, MED152 contains a substantial number of genes for attachment to surfaces or particles, gliding motility, and polymer degradation. This agrees with the currently assumed life strategy of marine Bacteroidetes. On the other hand, it contains the proteorhodopsin gene, together with a remarkable suite of genes to sense and respond to light, which may provide a survival advantage in the nutrient-poor sun-lit ocean surface when in search of fresh particles to colonize. Furthermore, an increase in CO(2) fixation in the light suggests that the limited central metabolism is complemented by anaplerotic inorganic carbon fixation. This is mediated by a unique combination of membrane transporters and carboxylases. This suggests a dual life strategy that, if confirmed experimentally, would be notably different from what is known of the two other main bacterial groups (the autotrophic cyanobacteria and the heterotrophic proteobacteria) in the surface oceans. The Polaribacter genome provides insights into the physiological capabilities of proteorhodopsin-containing bacteria. The genome will serve as a model to study the cellular and molecular processes in bacteria that express proteorhodopsin, their adaptation to the oceanic environment, and their role in carbon-cycling.
- Belas R, Zhulin IB, Yang Z
- Bacterial signaling and motility: sure bets.
- J Bacteriol. 2008; 190: 1849-56
- Bonetti C et al.
- Hydrogen bond switching among flavin and amino acid side chains in the BLUF photoreceptor observed by ultrafast infrared spectroscopy.
- Biophys J. 2008; 95: 4790-802
- Display abstract
BLUF domains constitute a recently discovered class of photoreceptor proteins found in bacteria and eukaryotic algae. BLUF domains are blue-light sensitive through a FAD cofactor that is involved in an extensive hydrogen-bond network with nearby amino acid side chains, including a highly conserved tyrosine and glutamine. The participation of particular amino acid side chains in the ultrafast hydrogen-bond switching reaction with FAD that underlies photoactivation of BLUF domains is assessed by means of ultrafast infrared spectroscopy. Blue-light absorption by FAD results in formation of FAD(*-) and a bleach of the tyrosine ring vibrational mode on a picosecond timescale, showing that electron transfer from tyrosine to FAD constitutes the primary photochemistry. This interpretation is supported by the absence of a kinetic isotope effect on the fluorescence decay on H/D exchange. Subsequent protonation of FAD(*-) to result in FADH(*) on a picosecond timescale is evidenced by the appearance of a N-H bending mode at the FAD N5 protonation site and of a FADH(*) C=N stretch marker mode, with tyrosine as the likely proton donor. FADH(*) is reoxidized in 67 ps (180 ps in D(2)O) to result in a long-lived hydrogen-bond switched network around FAD. This hydrogen-bond switch shows infrared signatures from the C-OH stretch of tyrosine and the FAD C4=O and C=N stretches, which indicate increased hydrogen-bond strength at all these sites. The results support a previously hypothesized rotation of glutamine by approximately 180 degrees through a light-driven radical-pair mechanism as the determinant of the hydrogen-bond switch.
- Domratcheva T, Grigorenko BL, Schlichting I, Nemukhin AV
- Molecular models predict light-induced glutamine tautomerization in BLUF photoreceptors.
- Biophys J. 2008; 94: 3872-9
- Display abstract
The recently discovered photoreceptor proteins containing BLUF (sensor of blue light using FAD) domains mediate physiological responses to blue light in bacteria and euglena. In BLUF domains, blue light activates the flavin chromophore yielding a signaling state characterized by a approximately 10 nm red-shifted absorption. We developed molecular models for the dark and light states of the BLUF domain of the Rhodobacter sphaeroides AppA protein, which are based on the crystal structures and quantum-mechanical simulations. According to these models, photon absorption by the flavin results in a tautomerization and 180 degree rotation of the Gln side chain that interacts with the flavin cofactor. This chemical modification of the Gln residue induces alterations in the hydrogen bond network in the core of the photoreceptor domain, which were observed in numerous spectroscopic experiments. The calculated electronic transition energies and vibrational frequencies of the proposed dark and light states are consistent with the optical and IR spectral changes observed during the photocycle. Light-induced isomerization of an amino acid residue instead of a chromophore represents a feature that has not been described previously in photoreceptors.
- Yuan H, Bauer CE
- PixE promotes dark oligomerization of the BLUF photoreceptor PixD.
- Proc Natl Acad Sci U S A. 2008; 105: 11715-9
- Display abstract
Cyanobacteria perceive and move (phototax) in response to blue light. In this study, we demonstrate that the PixD blue light-sensing using FAD (BLUF) photoreceptor that governs this response undergoes changes in oligomerization state upon illumination. Under dark conditions we observed that PixD forms a large molecular weight complex with another protein called PixE. Stoicheometric analyses, coupled with sedimentation equilibrium and size exclusion chromatography, demonstrates that PixE drives aggregation of PixD dimers into a stable PixD(10)-PixE(5) complex under dark conditions. Illumination of a flavin chromophore in PixD destabilizes the PixD(10)-PixE(5) complex into monomers of PixE and dimers of PixD. A crystallographic structure of PixD, coupled with Gibbs free energy calculation between interacting faces of PixD, lends to a model in which a light induces a conformational change in a critical PixD-interfacing loop that results in destabilization of the PixD(10)-PixE(5) complex.
- Key J, Hefti M, Purcell EB, Moffat K
- Structure of the redox sensor domain of Azotobacter vinelandii NifL at atomic resolution: signaling, dimerization, and mechanism.
- Biochemistry. 2007; 46: 3614-23
- Display abstract
NifL is a multidomain sensor protein responsible for the transcriptional regulation of genes involved in response to changes in cellular redox state and ADP concentration. Cellular redox is monitored by the N-terminal PAS domain of NifL which contains an FAD cofactor. Flavin-based PAS domains of this type have also been referred to as LOV domains. To explore the mechanism of signal recognition and transduction in NifL, we determined the crystal structure of the FAD-bound PAS domain of NifL from Azotobacter vinelandii to 1.04 A resolution. The structure reveals a novel cavity within the PAS domain which contains two water molecules directly coordinated to the FAD. This cavity is connected to solvent by multiple access channels which may facilitate the oxidation of the FAD by molecular oxygen and the release of hydrogen peroxide. The structure contains a dimer of the NifL PAS domain that is structurally very similar to those described in other crystal structures of PAS domains and identifies a conserved dimerization motif. An N-terminal amphipathic helix constitutes part of the dimerization interface, and similar N-terminal helices are identified in other PAS domain proteins. The structure suggests a model for redox-mediated signaling in which a conformational change is initiated by redox-dependent changes in protonation at the N5 atom of FAD that lead to reorganization of hydrogen bonds within the flavin binding pocket. A structural signal is subsequently transmitted to the beta-sheet interface between the monomers of the PAS domain.
- Grinstead JS et al.
- The solution structure of the AppA BLUF domain: insight into the mechanism of light-induced signaling.
- Chembiochem. 2006; 7: 187-93
- Display abstract
The transcriptional antirepressor AppA from the photosynthetic bacterium Rhodobacter sphaeroides senses both the light climate and the intracellular redox state. Under aerobic conditions in the dark, AppA binds to and thereby blocks the function of PpsR, a transcriptional repressor. Absorption of a blue photon dissociates AppA from PpsR and allows the latter to repress photosynthesis gene expression. The N terminus of AppA contains sequence homology to flavin-containing photoreceptors that belong to the BLUF family. Structural and chemical aspects of signal transduction mediated by AppA are still largely unknown. Here we present NMR studies of the N-terminal flavin-binding BLUF domain of AppA. Its solution structure adopts an alpha/beta-sandwich fold with a beta alpha beta beta alpha beta beta topology, which represents a new flavin-binding fold. Considerable disorder is observed for residues near the chromophore due to conformational exchange. This disorder is observed both in the dark and in the light-induced signaling state of AppA. Furthermore, we detect light-induced structural changes in a patch of surface residues that provide a structural link between light absorption and signal-transduction events.
- Zirak P, Penzkofer A, Schiereis T, Hegemann P, Jung A, Schlichting I
- Photodynamics of the small BLUF protein BlrB from Rhodobacter sphaeroides.
- J Photochem Photobiol B. 2006; 83: 180-94
- Display abstract
The BLUF protein BlrB from the non-sulphur anoxyphototrophic purple bacterium Rhodobacter sphaeroides is characterized by absorption and emission spectroscopy. BlrB expressed from E. coli binding FAD, FMN, and riboflavin (called BrlB(I)) and recombinant BlrB containing only FAD (called BlrB(II)) are investigated. The dark-adapted proteins exist in two different receptor conformations (receptor states) with different sub-nanosecond fluorescence lifetimes (BLUF(r,f) and BLUF(r,sl)). Some of the flavin-cofactor (ca. 8%) is unbound in thermodynamic equilibrium with the bound cofactor. The two receptor conformations are transformed to putative signalling states (BLUF(s,f) and BLUF(s,sl)) of decreased fluorescence efficiency and shortened fluorescence lifetime by blue-light excitation. In the dark at room temperature both signalling states recover back to the initial receptor states with a time constant of about 2s. Quantum yields of signalling state formation of about 90% for BlrB(II) and about 40% for BlrB(I) were determined by intensity dependent transmission measurements. Extended blue-light excitation causes unbound flavin degradation (formation of lumichrome and lumiflavin-derivatives) and bound cofactor conversion to the semiquinone form. The flavin-semiquinone further reduces and the reduced flavin re-oxidizes back in the dark. A photo-dynamics scheme is presented and relevant quantum efficiencies and time constants are determined.
- Jung A et al.
- Structure of a bacterial BLUF photoreceptor: insights into blue light-mediated signal transduction.
- Proc Natl Acad Sci U S A. 2005; 102: 12350-5
- Display abstract
Light is an essential environmental factor, and many species have evolved the capability to respond to it. Blue light is perceived through three flavin-containing photoreceptor families: cryptochromes, light-oxygen-voltage, and BLUF (sensor of blue light using flavin adenine dinucleotide, FAD) domain proteins. BLUF domains are present in various proteins from Bacteria and lower Eukarya. They are fully modular and can relay signals to structurally and functionally diverse output units, most of which are implicated in nucleotide metabolism. We present the high resolution crystal structure of the dark resting state of BlrB, a short BLUF domain-containing protein from Rhodobacter sphaeroides. The structure reveals a previously uncharacterized FAD-binding fold. Along with other lines of evidence, it suggests mechanistic aspects for the photocycle that is characterized by a red-shifted absorbance of the flavin. The isoalloxazine ring of FAD binds in a cleft between two helices, whereas the adenine ring points into the solvent. We propose that the adenine ring serves as a hook mediating the interaction with its effector/output domain. The structure suggests a unique photochemical signaling switch in which the absorption of light induces a structural change in the rim surrounding the hook, thereby changing the protein interface between BLUF and the output domain.
- Guo H, Kottke T, Hegemann P, Dick B
- The phot LOV2 domain and its interaction with LOV1.
- Biophys J. 2005; 89: 402-12
- Display abstract
Phot proteins are homologs of the blue-light receptor phototropin. We report a comparative study of the photocycles of the isolated, light-sensitive domains LOV1 and LOV2 from Chlamydomonas reinhardtii phot protein, as well as the construct LOV1/2 containing both domains. Transient absorption measurements revealed a short lifetime of the LOV2-wt triplet state (500 ns), but a long lifetime (287 micros) of the triplet in the mutant LOV2-C250S, in which the reactive cysteine is replaced by serine. For LOV1, in comparison, corresponding numbers of 800 ns and 4 micros for the two conformers in LOV1-wt, and 27 micros for LOV1-C57S have been reported. The triplet decay kinetics in the mixed domains LOV1/2-wt, LOV1/2-C57S, and LOV1/2-C250S can be analyzed as the superposition of the behavior of the corresponding single domains. The situation is different for the slow, thermal reaction of the photoadduct back to the dark form. Whereas the individual domains LOV1 and LOV2 show two decay components, the double domains LOV1/2-C57S and LOV1/2-C250S both show only a single component. The interaction of the two domains does therefore not manifest itself during the lifetime of the triplet states, but changes the decay behavior of the adduct states.
- Kita A, Okajima K, Morimoto Y, Ikeuchi M, Miki K
- Structure of a cyanobacterial BLUF protein, Tll0078, containing a novel FAD-binding blue light sensor domain.
- J Mol Biol. 2005; 349: 1-9
- Display abstract
The sensor proteins for blue light using the FAD (BLUF) domain belong to the third family of the photoreceptor proteins using a flavin chromophore, where the other two families are phototropins and cryptochromes. As the first structure of this BLUF domain, we have determined the crystal structure of the Tll0078 protein from Thermosynechococcus elongatus BP-1, which contains a BLUF domain bound to FAD, at 2A resolution. Five Tll0078 monomers are located around the non-crystallographic 5-fold axis to form a pentamer, and two pentamers related by 2-fold non-crystallographic symmetry form a decameric assembly. The monomer consists of two domains, the BLUF domain at the N-terminal region and the C-terminal domain. The overall structure of the BLUF domain consists of a five-stranded mixed beta-sheet with two alpha-helices running parallel with it. The isoalloxazine ring of FAD is accommodated in a pocket formed by several highly conserved amino acid residues in the BLUF domain. Of these, the three apparent key residues (Asn31, Asn32 and Gln50) were substituted with Ala. Mutant proteins of N31A and N32A showed a nearly normal 10nm spectral shift of the flavin upon illumination, while the Q50A mutant did not exhibit such a shift at all. On the basis of the crystal structure, we discussed a possible role of Gln50, which is structurally and functionally linked with the critical Tyr8 (FAD-Gln50-Tyr8 network), with regard to the light-induced spectral shift of the BLUF proteins.
- Masuda S, Hasegawa K, Ono TA
- Light-induced structural changes of apoprotein and chromophore in the sensor of blue light using FAD (BLUF) domain of AppA for a signaling state.
- Biochemistry. 2005; 44: 1215-24
- Display abstract
AppA is a new class blue-light receptor controlling photosynthesis gene expression in the purple bacterium Rhodobacter sphaeroides and retains a characteristic flavin adenine dinucleotide (FAD)-binding domain named the "sensor of blue light using FAD" (BLUF). AppA functions as an antirepressor controlling transcription of photosynthesis genes through the direct association with a transcriptional repressor PpsR in a blue-light-dependent manner [Masuda and Bauer (2002) Cell 110, 613-623]. Illumination of AppA induces a red shift in the UV-visible absorption of FAD, which results in a signaling state of AppA. Light-induced Fourier transform infrared (FTIR) difference spectrum of the AppA BLUF domain showed relatively simple features, which were mainly composed of two sets of derivative-shaped sharp bands at 1709(-)/1695(+) and 1632(+)/1619(-) cm(-)(1). We have developed an in vitro reconstitution method, by which a fully functional BLUF domain was reconstituted from free FAD and an apoprotein for the BLUF domain of AppA. An AppA BLUF domain that consisted of an apoprotein isotopically labeled with (13)C and unlabeled FAD was constituted using this method, and hydrated and deuterated samples were applied to FTIR spectroscopic analyses. When the spectra for the reconstituted domain were compared with those for uniformly (15)N- and (13)C-labeled or deuterated domains as well as for the unlabeled domain, the IR bands responsible for the light-induced changes in the FAD chromophore and apoprotein were identified. Unexpectedly, the light-induced spectrum of the unlabeled BLUF domain of AppA was predominantly composed of multiple apoprotein bands, while a C(4)=O stretching of an isoalloxazine ring was the only band exclusively assigned to FAD. The results showed that relatively large structural changes occur in the protein backbone of the BLUF domain of AppA upon illumination. These changes were discussed in relation to the mechanistic role of the BLUF domain in the process of blue-light perception by AppA.
- Partch CL, Clarkson MW, Ozgur S, Lee AL, Sancar A
- Role of structural plasticity in signal transduction by the cryptochrome blue-light photoreceptor.
- Biochemistry. 2005; 44: 3795-805
- Display abstract
Cryptochromes are blue-light photoreceptors that regulate a variety of responses such as growth and circadian rhythms in organisms ranging from bacteria to humans. Cryptochromes share a high level of sequence identity with the light-activated DNA repair enzyme photolyase. Photolyase uses energy from blue light to repair UV-induced photoproducts in DNA through cyclic electron transfer between the catalytic flavin adenine dinucleotide cofactor and the damaged DNA. Cryptochromes lack DNA repair activity, and their mechanism of signal transduction is not known. It is hypothesized that a light-dependent signaling state in cryptochromes is created as a result of an intramolecular redox reaction, resulting in conformational rearrangement and effector binding. Plant and animal cryptochromes possess 30-250 amino acid carboxy-terminal extensions beyond the photolyase-homology region that have been shown to mediate phototransduction. We analyzed the structures of C-terminal domains from an animal and a plant cryptochrome by computational, biophysical, and biochemical methods and found these domains to be intrinsically unstructured. We show that the photolyase-homology region interacts with the C-terminal domain, inducing stable tertiary structure in the C-terminal domain. Importantly, we demonstrate a light-dependent conformational change in the C-terminal domain of Arabidopsis Cry1. Collectively, these findings provide the first biochemical evidence for the proposed conformational rearrangement of cryptochromes upon light exposure.
- Han Y, Braatsch S, Osterloh L, Klug G
- A eukaryotic BLUF domain mediates light-dependent gene expression in the purple bacterium Rhodobacter sphaeroides 2.4.1.
- Proc Natl Acad Sci U S A. 2004; 101: 12306-11
- Display abstract
The flavin-binding BLUF domain functions as a blue-light receptor in eukaryotes and bacteria. In the photoreceptor protein photo-activated adenylyl cyclase (PAC) from the flagellate Euglena gracilis, the BLUF domain is linked to an adenylyl cyclase domain. The PAC protein mediates a photophobic response. In the AppA protein of Rhodobacter sphaeroides, the BLUF domain is linked to a downstream domain without similarity to known proteins. AppA functions as a transcriptional antirepressor, controlling photosynthesis gene expression in the purple bacterium R. sphaeroides in response to light and oxygen. We fused the PACalpha1-BLUF domain from Euglena to the C terminus of AppA. Our results show that the hybrid protein is fully functional in light-dependent gene repression in R. sphaeroides, despite only approximately 30% identity between the eukaryotic and the bacterial BLUF domains. Furthermore, the bacterial BLUF domain and the C terminus of AppA can transmit the light signal even when expressed as separated domains. This finding implies that the BLUF domain is fully modular and can relay signals to completely different output domains.
- Watts KJ, Ma Q, Johnson MS, Taylor BL
- Interactions between the PAS and HAMP domains of the Escherichia coli aerotaxis receptor Aer.
- J Bacteriol. 2004; 186: 7440-9
- Display abstract
The Escherichia coli energy-sensing Aer protein initiates aerotaxis towards environments supporting optimal cellular energy. The Aer sensor is an N-terminal, FAD-binding, PAS domain. The PAS domain is linked by an F1 region to a membrane anchor, and in the C-terminal half of Aer, a HAMP domain links the membrane anchor to the signaling domain. The F1 region, membrane anchor, and HAMP domain are required for FAD binding. Presumably, alterations in the redox potential of FAD induce conformational changes in the PAS domain that are transmitted to the HAMP and C-terminal signaling domains. In this study we used random mutagenesis and intragenic pseudoreversion analysis to examine functional interactions between the HAMP domain and the N-terminal half of Aer. Missense mutations in the HAMP domain clustered in the AS-2 alpha-helix and abolished FAD binding to Aer, as previously reported. Three amino acid replacements in the Aer-PAS domain, S28G, A65V, and A99V, restored FAD binding and aerotaxis to the HAMP mutants. These suppressors are predicted to surround a cleft in the PAS domain that may bind FAD. On the other hand, suppression of an Aer-C253R HAMP mutant was specific to an N34D substitution with a predicted location on the PAS surface, suggesting that residues C253 and N34 interact or are in close proximity. No suppressor mutations were identified in the F1 region or membrane anchor. We propose that functional interactions between the PAS domain and the HAMP AS-2 helix are required for FAD binding and aerotactic signaling by Aer.
- Masuda S, Hasegawa K, Ishii A, Ono TA
- Light-induced structural changes in a putative blue-light receptor with a novel FAD binding fold sensor of blue-light using FAD (BLUF); Slr1694 of synechocystis sp. PCC6803.
- Biochemistry. 2004; 43: 5304-13
- Display abstract
The sensor of blue-light using FAD (BLUF) domain is the flavin-binding fold categorized to a new class of blue-light sensing domain found in AppA from Rhodobacter sphaeroides and PAC from Euglena gracilis, but little is known concerning the mechanism of blue-light perception. An open reading frame slr1694 in a cyanobacterium Synechocystis sp. PCC6803 encodes a protein possessing the BLUF domain. Here, a full-length Slr1694 protein retaining FAD was expressed and purified and found to be present as an oligomeric form (trimer or tetramer). Using the purified Slr1694, spectroscopic properties of Slr1694 were characterized. Slr1694 was found to show the same red-shift of flavin absorption and quenching of flavin fluorescence by illumination as those of AppA. These changes reversed in the dark although the rate of dark state regeneration was much faster in Slr1694 than AppA, indicating that Slr1694 is a blue-light receptor based on BLUF with the similar photocycle to that of AppA. The dark decay in D(2)O was nearly four times slower than in H(2)O. Light-induced Fourier transform infrared (FTIR) difference spectroscopy was applied to examine the light-induced structure change of a chromophore and apo-protein with deuteration and universal (13)C and (15)N isotope labeling. The FTIR results indicate that light excitation induced distinct changes in the amide I modes of peptide backbone but relatively limited changes in flavin chromophore. Light excitation predominantly weakened the C(4)=O and C(2)=O bonding and strengthened the N1C10a and/or C4aN5 bonding, indicating formational changes of the isoalloxazine ring II and III of FAD but little formational change in the isoalloxazine ring I. The photocycle of the BLUF is unique in the sense that light excitation leads to the structural rearrangements of the protein moieties coupled with a minimum formational change of the chromophore.
- Laan W, Bednarz T, Heberle J, Hellingwerf KJ
- Chromophore composition of a heterologously expressed BLUF-domain.
- Photochem Photobiol Sci. 2004; 3: 1011-6
- Display abstract
Upon heterologous expression of the BLUF (for: Blue-Light sensing Using Flavin) domain from AppA, a transcriptional anti-repressor from Rhodobacter sphaeroides, in Escherichia coli, photoactive holo-protein is formed through non-covalent binding of a flavin. Whereas it is generally assumed that FAD is the physiological chromophore of this photo-perception domain in vivo, E. coli can (and does) insert, depending on the growth conditions, all naturally occurring flavins, i.e. riboflavin, FMN and FAD into this protein domain. The nature of the particular flavin bound affects the photochemical- and particularly the fluorescence properties of the N-terminal domain of this photosensory protein.
- Braatsch S, Moskvin OV, Klug G, Gomelsky M
- Responses of the Rhodobacter sphaeroides transcriptome to blue light under semiaerobic conditions.
- J Bacteriol. 2004; 186: 7726-35
- Display abstract
Exposure to blue light of the facultative phototrophic proteobacterium Rhodobacter sphaeroides grown semiaerobically results in repression of the puc and puf operons involved in photosystem formation. To reveal the genome-wide effects of blue light on gene expression and the underlying photosensory mechanisms, transcriptome profiles of R. sphaeroides during blue-light irradiation (for 5 to 135 min) were analyzed. Expression of most photosystem genes was repressed upon irradiation. Downregulation of photosystem development may be used to prevent photooxidative damage occurring when the photosystem, oxygen, and high-intensity light are present simultaneously. The photoreceptor of the BLUF-domain family, AppA, which belongs to the AppA-PpsR antirepressor-repressor system, is essential for maintenance of repression upon prolonged irradiation (S. Braatsch et al., Mol. Microbiol. 45:827-836, 2002). Transcriptome data suggest that the onset of repression is also mediated by the AppA-PpsR system, albeit via an apparently different sensory mechanism. Expression of several genes, whose products may participate in photooxidative damage defense, including deoxypyrimidine photolyase, glutathione peroxidase, and quinol oxidoreductases, was increased. Among the genes upregulated were genes encoding two sigma factors: sigmaE and sigma38. The consensus promoter sequences for these sigma factors were predicted in the upstream sequences of numerous upregulated genes, suggesting that coordinated action of sigmaE and sigma38 is responsible for the upregulation. Based on the dynamics of upregulation, the anti-sigmaE factor ChrR or its putative upstream partner is proposed to be the primary sensor. The identified transcriptome responses provided a framework for deciphering blue-light-dependent signal transduction pathways in R. sphaeroides.
- Kraft BJ et al.
- Spectroscopic and mutational analysis of the blue-light photoreceptor AppA: a novel photocycle involving flavin stacking with an aromatic amino acid.
- Biochemistry. 2003; 42: 6726-34
- Display abstract
The flavoprotein AppA is a blue-light photoreceptor that functions as an antirepressor of photosynthesis gene expression in the purple bacterium Rhodobacter sphaeroides. Heterologous expression studies show that FAD binds to a 156 amino acid N-terminal domain of AppA and that this domain is itself photoactive. A pulse of white light causes FAD absorption to be red shifted in a biphasic process with a fast phase occurring in <1 micros and a slow phase occurring at approximately 5 ms. The absorbance shift was spontaneously restored over a 30 min period, also in a biphasic process as assayed by fluorescence quenching and electronic absorption analyses. Site-directed replacement of Tyr21 with Leu or Phe abolished the photochemical reaction implicating involvement of Tyr21 in the photocycle. Nuclear magnetic resonance analysis of wild-type and mutant proteins also indicates that Tyr21 forms pi-pi stacking interactions with the isoalloxazine ring of FAD. We propose that photochemical excitation of the flavin results in strengthening of a hydrogen bond between the flavin and Tyr 21 leading to a stable local conformational change in AppA.
- Guan ZW, Iyanagi T
- Electron transfer is activated by calmodulin in the flavin domain of human neuronal nitric oxide synthase.
- Arch Biochem Biophys. 2003; 412: 65-76
- Display abstract
The objective of this study was to clarify the mechanism of electron transfer in the human neuronal nitric oxide synthase (nNOS) flavin domain using the recombinant human nNOS flavin domains, the FAD/NADPH domain (contains FAD- and NADPH-binding sites), and the FAD/FMN domain (the flavin domain including a calmodulin-binding site). The reduction by NADPH of the two domains was studied by rapid-mixing, stopped-flow spectroscopy. For the FAD/NADPH domain, the results indicate that FAD is reduced by NADPH to generate the two-electron-reduced form (FADH(2)) and the reoxidation of the reduced FAD proceeds via a neutral (blue) semiquinone with molecular oxygen or ferricyanide, indicating that the reduced FAD is oxidized in two successive one-electron steps. The neutral (blue) semiquinone form, as an intermediate in the air-oxidation, was unstable in the presence of O(2). The purified FAD/NADPH domain prepared under our experimental conditions was activated by NADP(+) but not NAD(+). These results indicate that this domain exists in two states; an active state and a resting state, and the enzyme in the resting state can be activated by NADP(+). For the FAD/FMN domain, the reduction of the FAD-FMN pair of the oxidized enzyme with NADPH proceeded by both one-electron equivalent and two-electron equivalent mechanisms. The formation of semiquinones from the FAD-FMN pair was greatly increased in the presence of Ca(2+)/CaM. The air-stable semiquinone form, FAD-FMNH(.), was further rapidly reduced by NADPH with an increase at 520 nm, which is a characteristic peak of the FAD semiquinone. Results presented here indicate that intramolecular one-electron transfer from FAD to FMN is activated by the binding of Ca(2+)/CaM.
- Braatsch S, Gomelsky M, Kuphal S, Klug G
- A single flavoprotein, AppA, integrates both redox and light signals in Rhodobacter sphaeroides.
- Mol Microbiol. 2002; 45: 827-36
- Display abstract
Anoxygenic photosynthetic proteobacteria exhibit various light responses, including changing levels of expression of photosynthesis genes. However, the underlying mechanisms are largely unknown. We show that expression of the puf and puc operons encoding structural proteins of the photosynthetic complexes is strongly repressed by blue light under semi-aerobic growth in Rhodobacter sphaeroides but not in the related species Rhodobacter capsulatus. At very low oxygen tension, puf and puc expression is independent of blue light in both species. Photosynthetic electron transport does not mediate the blue light repression, implying the existence of specific photoreceptors. Here, we show that the flavoprotein AppA is likely to act as the photoreceptor for blue light-dependent repression during continuous illumination. The FAD cofactor of AppA is essential for the blue light-dependent sensory transduction of this response. AppA, which is present in R. sphaeroides but not in R. capsulatus, is known to participate in the redox-dependent control of photosynthesis gene expression. Thus, AppA is the first example of a protein with dual sensing capabilities that integrates both redox and light signals.
- Dym O, Pratt EA, Ho C, Eisenberg D
- The crystal structure of D-lactate dehydrogenase, a peripheral membrane respiratory enzyme.
- Proc Natl Acad Sci U S A. 2000; 97: 9413-8
- Display abstract
d-Lactate dehydrogenase (d-LDH) of Escherichia coli is a peripheral membrane respiratory enzyme involved in electron transfer, located on the cytoplasmic side of the inner membrane. d-LDH catalyzes the oxidation of d-lactate to pyruvate, which is coupled to transmembrane transport of amino acids and sugars. Here we describe the crystal structure at 1.9 A resolution of the three domains of d-LDH: the flavin adenine dinucleotide (FAD)-binding domain, the cap domain, and the membrane-binding domain. The FAD-binding domain contains the site of d-lactate reduction by a noncovalently bound FAD cofactor and has an overall fold similar to other members of a recently discovered FAD-containing family of proteins. This structural similarity extends to the cap domain as well. The most prominent difference between d-LDH and the other members of the FAD-containing family is the membrane-binding domain, which is either absent in some of these proteins or differs significantly. The d-LDH membrane-binding domain presents an electropositive surface with six Arg and five Lys residues, which presumably interacts with the negatively charged phospholipid head groups of the membrane. Thus, d-LDH appears to bind the membrane through electrostatic rather than hydrophobic forces.
- Gomelsky M, Horne IM, Lee HJ, Pemberton JM, McEwan AG, Kaplan S
- Domain structure, oligomeric state, and mutational analysis of PpsR, the Rhodobacter sphaeroides repressor of photosystem gene expression.
- J Bacteriol. 2000; 182: 2253-61
- Display abstract
The transcription factor PpsR from the facultative photoheterotroph Rhodobacter sphaeroides is involved in repression of photosystem gene expression under aerobic growth conditions. We have isolated a number of spontaneous mutations as well as constructed directed mutations and deletions in ppsR. Repressor activities and the oligomeric state of the wild-type and mutant proteins were assayed. Our results suggest that the wild-type PpsR exists in cell extracts as a tetramer. Analysis of the PpsR mutants confirmed that the carboxy-terminal region of PpsR (residues 400 to 464) is involved in DNA binding. The central region of the protein (residues 150 to 400) was found to contain two PAS domains (residues 161 to 259 and 279 to 367). PAS domains are ubiquitous protein modules involved in sensory transduction as well as in protein-protein interactions. All spontaneously isolated mutations, which significantly impaired repressor activity and which mapped outside the DNA binding region, were positioned in the PAS domains. None of these, however, affected the overall oligomeric state. This implies that the conformation of the PAS domains within the tetramer is critical for repressor activity. Upstream of the first PAS domain resides a putative glutamine-rich hinge (residues 127 to 136) that connects the first PAS domain to the amino-terminal region (residues 1 to 135). The role of the amino terminus of PpsR is not obvious; however, extended deletions within this region abolish repressor activity, thus suggesting that the amino terminus is essential for structural integrity of the protein. We present a model of the domain architecture of the PpsR protein according to which PpsR is comprised of three regions: the carboxy terminus responsible for DNA binding, the central region primarily involved in protein oligomerization and possibly signal sensing, and the amino terminus of unknown function. This model may prove useful for determining the mode of PpsR action.
- Senda T et al.
- Crystal structure of NADH-dependent ferredoxin reductase component in biphenyl dioxygenase.
- J Mol Biol. 2000; 304: 397-410
- Display abstract
Oxidative biodegradation of aromatic compounds by bacteria usually begins with hydroxylation of the aromatic ring by multi-component dioxygenases like benzene dioxygenase, biphenyl dioxygenase, and others. These enzymes are composed of ferredoxin reductase, ferredoxin, and terminal oxygenase. Reducing equivalents that originate from NADH are transferred from ferredoxin reductase to ferredoxin and, in turn, to the terminal oxygenase, thus resulting in the activation of a dioxygen. BphA4 is the ferredoxin reductase component of biphenyl dioxygenase from Pseudomonas sp. strain KKS102. The amino acid sequence of BphA4 exhibits significant homology with the putidaredoxin reductase of the cytochrome P450cam system in Pseudomonas putida, as well as with various other oxygenase-coupled NADH-dependent ferredoxin reductases (ONFRs) of bacteria. To date, no structural information has been provided for the ferredoxin reductase component of the dioxygenase systems. In order to provide a structural basis for discussing the mechanism of electron transport between ferredoxin reductase and ferredoxin, crystal structures of BphA4 and its NADH complex were solved. The three-dimensional structure of BphA4 is different from those of ferredoxin reductases whose structures have already been determined, but adopts essentially the same fold as the enzymes of the glutathione reductase (GR) family. Also the three-dimensional structure of the first two domains of BphA4 adopts a fold similar to that of adrenodoxin reductase (AdR) in the mitochondrial cytochrome P450 system. Comparing the amino acid sequence with what is known of the three-dimensional structure of BphA4 strongly suggests that the other ONFRs have secondary structural features that are similar to that of BphA4. This analysis of the crystal structures of BphA4 suggests that Lys53 and Glu159 seem to be involved in the hydride transfer from NADH to FAD. Since the amino acid residues around the active site, some of which seem to be important to electron transport, are highly conserved among ONFRs, it is likely that the mechanism of electron transport of BphA4 is quite applicable to other ONFRs.