Secondary literature sources for BSD
The following references were automatically generated.
- Maldonado-Borges JI, Ku-Cauich JR, Escobedo-Graciamedrano RM
- Annotation of differentially expressed genes in the somatic embryogenesis of musa and their location in the banana genome.
- ScientificWorldJournal. 2013; 2013: 535737-535737
- Display abstract
Analysis of cDNA-AFLP was used to study the genes expressed in zygotic and somatic embryogenesis of Musa acuminata Colla ssp. malaccensis, and a comparison was made between their differential transcribed fragments (TDFs) and the sequenced genome of the double haploid- (DH-) Pahang of the malaccensis subspecies that is available in the network. A total of 253 transcript-derived fragments (TDFs) were detected with apparent size of 100-4000 bp using 5 pairs of AFLP primers, of which 21 were differentially expressed during the different stages of banana embryogenesis; 15 of the sequences have matched DH-Pahang chromosomes, with 7 of them being homologous to gene sequences encoding either known or putative protein domains of higher plants. Four TDF sequences were located in all Musa chromosomes, while the rest were located in one or two chromosomes. Their putative individual function is briefly reviewed based on published information, and the potential roles of these genes in embryo development are discussed. Thus the availability of the genome of Musa and the information of TDFs sequences presented here opens new possibilities for an in-depth study of the molecular and biochemical research of zygotic and somatic embryogenesis of Musa.
- Lauberth SM, Rauchman M
- A conserved 12-amino acid motif in Sall1 recruits the nucleosome remodeling and deacetylase corepressor complex.
- J Biol Chem. 2006; 281: 23922-31
- Display abstract
Sall1 is a multi-zinc finger transcription factor that represses gene expression and regulates organogenesis. In this report, we further characterize the domain of Sall1 necessary for repression. We show that endogenous Sall1 binds to the nucleosome remodeling and deacetylase corepressor complex (NuRD) and confirm the functionality of the Sall1-associating macromolecular complex by showing that the complex possesses HDAC activity. NuRD is involved in global transcriptional repression and regulation of specific developmental processes. The mechanism by which sequence-specific DNA-binding proteins associate with NuRD is not well understood. We have identified a highly conserved 12-amino acid motif in the transcription factor Sall1 that is sufficient for the recruitment of NuRD. Single amino acid substitutions defined the critical amino acid peptide motif as RRKQXK-PXXF. This motif probably exhibits a more general role in regulating gene expression, since other proteins containing this domain, including all Sall family members and an unrelated zinc finger protein Ebfaz, mediate transcriptional repression and associate with NuRD. These results also have important implications for the pathogenesis of Townes-Brocks, a syndrome caused by SALL1 mutations.
- Patterson HM et al.
- The structure of bypass of forespore C, an intercompartmental signaling factor during sporulation in Bacillus.
- J Biol Chem. 2005; 280: 36214-20
- Display abstract
Sporulation in Bacillus subtilis begins with an asymmetric cell division giving rise to smaller forespore and larger mother cell compartments. Different programs of gene expression are subsequently directed by compartment-specific RNA polymerase sigma-factors. In the final stages, spore coat proteins are synthesized in the mother cell under the control of RNA polymerase containing sigma(K), (Esigma(K)). sigma(K) is synthesized as an inactive zymogen, pro-sigma(K), which is activated by proteolytic cleavage. Processing of pro-sigma(K) is performed by SpoIVFB, a metalloprotease that resides in a complex with SpoIVFA and bypass of forespore (Bof)A in the outer forespore membrane. Ensuring coordination of events taking place in the two compartments, pro-sigma(K) processing in the mother cell is delayed until appropriate signals are received from the forespore. Cell-cell signaling is mediated by SpoIVB and BofC, which are expressed in the forespore and secreted to the intercompartmental space where they regulate pro-sigma(K) processing by mechanisms that are not yet fully understood. Here we present the three-dimensional structure of BofC determined by solution state NMR. BofC is a monomer made up of two domains. The N-terminal domain, containing a four-stranded beta-sheet onto one face of which an alpha-helix is packed, closely resembles the third immunoglobulin-binding domain of protein G from Streptococcus. The C-terminal domain contains a three-stranded beta-sheet and three alpha-helices in a novel domain topology. The sequence connecting the domains contains a conserved DISP motif to which mutations that affect BofC activity map. Possible roles for BofC in the sigma(K) checkpoint are discussed in the light of sequence and structure comparisons.
- Sauve S, Tremblay L, Lavigne P
- The NMR solution structure of a mutant of the Max b/HLH/LZ free of DNA: insights into the specific and reversible DNA binding mechanism of dimeric transcription factors.
- J Mol Biol. 2004; 342: 813-32
- Display abstract
Basic region-helix1-loop-helix2-leucine zipper (b/H(1)LH(2)/LZ) transcription factors bind specific DNA sequence in their target gene promoters as dimers. Max, a b/H(1)LH(2)/LZ transcription factor, is the obligate heterodimeric partner of the related b/H(1)LH(2)/LZ proteins of the Myc and Mad families. These heterodimers specifically bind E-box DNA sequence (CACGTG) to activate (e.g. c-Myc/Max) and repress (e.g. Mad1/Max) transcription. Max can also homodimerize and bind E-box sequences in c-Myc target gene promoters. While the X-ray structure of the Max b/H(1)LH(2)/LZ/DNA complex and that of others have been reported, the precise sequence of events leading to the reversible and specific binding of these important transcription factors is still largely unknown. In order to provide insights into the DNA binding mechanism, we have solved the NMR solution structure of a covalently homodimerized version of a Max b/H(1)LH(2)/LZ protein with two stabilizing mutations in the LZ, and characterized its backbone dynamics from (15)N spin-relaxation measurements in the absence of DNA. Apart from minor differences in the pitch of the LZ, possibly resulting from the mutations in the construct, we observe that the packing of the helices in the H(1)LH(2) domain is almost identical to that of the two crystal structures, indicating that no important conformational change in these helices occurs upon DNA binding. Conversely to the crystal structures of the DNA complexes, the first 14 residues of the basic region are found to be mostly unfolded while the loop is observed to be flexible. This indicates that these domains undergo conformational changes upon DNA binding. On the other hand, we find the last four residues of the basic region form a persistent helical turn contiguous to H(1). In addition, we provide evidence of the existence of internal motions in the backbone of H(1) that are of larger amplitude and longer time-scale (nanoseconds) than the ones in the H(2) and LZ domain. Most interestingly, we note that conformers in the ensemble of calculated structures have highly conserved basic residues (located in the persistent helical turn of the basic region and in the loop) known to be important for specific binding in a conformation that matches that of the DNA-bound state. These partially prefolded conformers can directly fit into the major groove of DNA and as such are proposed to lie on the pathway leading to the reversible and specific DNA binding. In these conformers, the conserved basic side-chains form a cluster that elevates the local electrostatic potential and could provide the necessary driving force for the generation of the internal motions localized in the H(1) and therefore link structural determinants with the DNA binding function. Overall, our results suggests that the Max homodimeric b/H(1)LH(2)/LZ can rapidly and preferentially bind DNA sequence through transient and partially prefolded states and subsequently, adopt the fully helical bound state in a DNA-assisted mechanism or induced-fit.
- Yamaki A, Kudoh J, Shimizu N, Shimizu Y
- A novel nuclear localization signal in the human single-minded proteins SIM1 and SIM2.
- Biochem Biophys Res Commun. 2004; 313: 482-8
- Display abstract
Human Single-minded 1 (SIM1) and SIM2 genes were found as homologs of Drosophila sim gene which plays a key role in the midline cell lineage of the central nervous system. SIM proteins belong to a family of transcription factors, called bHLH/PAS. Here we examined the intracellular localization of SIM proteins using the expression constructs of whole SIM2 or SIM1 protein fused with enhanced green fluorescent protein (EGFP). The transient expression analysis revealed the nuclear localization of SIM proteins in the cultured cells. To identify the nuclear localization signal, we made expression constructs of EGFP-fusion protein consisting of various portions of SIM proteins. Transfection assay showed the presence of NLS activity in the small region of 23 and 21 amino acid residues at the central part of SIM2 and SIM1 proteins, respectively. Further analysis with amino acid substitution of this small region of SIM2 protein revealed the critical role of five amino acid residues (Arg367, Lys373, Pro385, Tyr386, and Gln389) in NLS activity. The consensus sequence of RKxxKx[K/R]xxxxKxKxRxxPY was estimated as a presumptive NLS in SIM proteins from various species. Thus, the NLS consisting of a cluster of basic amino acids with Pro and Tyr at the C-terminal end is novel and well conserved in the SIM proteins during evolution.
- Funk N, Becker S, Huber S, Brunner M, Buchner E
- Targeted mutagenesis of the Sap47 gene of Drosophila: flies lacking the synapse associated protein of 47 kDa are viable and fertile.
- BMC Neurosci. 2004; 5: 16-16
- Display abstract
BACKGROUND: Conserved proteins preferentially expressed in synaptic terminals of the nervous system are likely to play a significant role in brain function. We have previously identified and molecularly characterized the Sap47 gene which codes for a novel synapse associated protein of 47 kDa in Drosophila. Sequence comparison identifies homologous proteins in numerous species including C. elegans, fish, mouse and human. First hints as to the function of this novel protein family can be obtained by generating mutants for the Sap47 gene in Drosophila. RESULTS: Attempts to eliminate the Sap47 gene through targeted mutagenesis by homologous recombination were unsuccessful. However, several mutants were generated by transposon remobilization after an appropriate insertion line had become available from the Drosophila P-element screen of the Bellen/Hoskins/Rubin/Spradling labs. Characterization of various deletions in the Sap47 gene due to imprecise excision of the P-element identified three null mutants and three hypomorphic mutants. Null mutants are viable and fertile and show no gross structural or obvious behavioural deficits. For cell-specific over-expression and "rescue" of the knock-out flies a transgenic line was generated which expresses the most abundant transcript under the control of the yeast enhancer UAS. In addition, knock-down of the Sap47 gene was achieved by generating 31 transgenic lines expressing Sap47 RNAi constructs, again under UAS control. When driven by a ubiquitously expressed yeast transcription factor (GAL4), Sap47 gene suppression in several of these lines is highly efficient resulting in residual SAP47 protein concentrations in heads as low as 6% of wild type levels. CONCLUSION: The conserved synaptic protein SAP47 of Drosophila is not essential for basic synaptic function. The Sap47 gene region may be refractory to targeted mutagenesis by homologous recombination. RNAi using a construct linking genomic DNA to anti-sense cDNA in our hands is not more effective than using a cDNA-anti-sense cDNA construct. The tools developed in this study will now allow a detailed analysis of the molecular, cellular and systemic function of the SAP47 protein in Drosophila.
- Wang Y et al.
- TRIM45, a novel human RBCC/TRIM protein, inhibits transcriptional activities of ElK-1 and AP-1.
- Biochem Biophys Res Commun. 2004; 323: 9-16
- Display abstract
The tripartite motif (TRIM) proteins play important roles in a variety of cellular functions including cell proliferation, differentiation, development, oncogenesis, and apoptosis. In this study, we report the identification and characterization of the human tripartite motif-containing protein 45 (TRIM45), a novel member of the TRIM family, from a human embryonic heart cDNA library. TRIM45 has a predicted 580 amino acid open reading frame, encoding a putative 64-kDa protein. The N-terminal region harbors a RING finger, two B-boxes, and a predicted alpha-helical coiled-coil domain, which together form the RBCC/TRIM motif found in a large family of proteins, whereas the C-terminal region contains a filamin-type immunoglobulin (IG-FLMN) domain. Northern blot analysis indicates that TRIM45 is expressed in a variety of human adult and embryonic tissues. In the cell, TRIM45 protein is expressed both in cytoplasm and in cell nucleus. Overexpression of TRIM45 in COS-7 cells inhibits the transcriptional activities of ElK-1 and AP-1. These results suggest that TRIM45 may act as a new transcriptional repressor in mitogen-activated protein kinase signaling pathway.
- Jauch R et al.
- The zinc finger-associated domain of the Drosophila transcription factor grauzone is a novel zinc-coordinating protein-protein interaction module.
- Structure. 2003; 11: 1393-402
- Display abstract
About one-third of the more than 300 C2H2 zinc finger proteins of Drosophila contain a conserved sequence motif, the zinc finger-associated domain (ZAD). Genes that encode ZAD proteins are specific for and expanded in the genomes of insects. Only three ZAD-encoding gene functions are established, and the role of ZAD is unknown. Here we present the crystal structure of the ZAD of Grauzone (ZAD(Grau)), a Drosophila transcription factor that specifically controls the maternal Cdc20-like APC subunit Cortex. ZAD forms an atypical treble-clef-like zinc-coordinating fold. Head-to-tail arrangement of two ZAD(Grau) molecules in the crystals suggests dimer formation, an observation supported by crosslinking and dynamic light scattering. The results indicate that ZAD provides a novel protein-protein interaction module that characterizes a large family of insect transcription factors.
- Irie K et al.
- Crystal structure of the Homer 1 family conserved region reveals the interaction between the EVH1 domain and own proline-rich motif.
- J Mol Biol. 2002; 318: 1117-26
- Display abstract
PSD-Zip45 (also named Homer 1c/Vesl-1L) is a synaptic scaffolding protein, which interacts with neurotransmitter receptors and other scaffolding proteins to target them into post-synaptic density (PSD), a specialized protein complex at the synaptic junction. Binding of the PSD-Zip45 to the receptors and scaffolding proteins results in colocalization and clustering of its binding partners in PSD. It has an Ena/VASP homology 1 (EVH1) domain in the N terminus for receptor binding, two leucine zipper motifs in the C terminus for clustering, and a linking region whose function is unclear despite the high level of conservation within the Homer 1 family. The X-ray crystallographic analysis of the largest fragment of residues 1-163, including an EVH1 domain reported here, demonstrates that the EVH1 domain contains an alpha-helix longer than that of the previous models, and that the linking part included in the conserved region of Homer 1 (CRH1) of the PSD-Zip45 interacts with the EVH1 domain of the neighbour CRH1 molecule in the crystal. The results suggest that the EVH1 domain recognizes the PPXXF motif found in the binding partners, and the SPLTP sequence (P-motif) in the linking region of the CRH1. The two types of binding are partly overlapped in the EVH1 domain, implying a mechanism to regulate multimerization of Homer 1 family proteins.
- Hilbricht T, Salamini F, Bartels D
- CpR18, a novel SAP-domain plant transcription factor, binds to a promoter region necessary for ABA mediated expression of the CDeT27-45 gene from the resurrection plant Craterostigma plantagineum Hochst.
- Plant J. 2002; 31: 293-303
- Display abstract
CDeT27-45 is a lea-like gene from the resurrection plant Craterostigma plantagineum (Scrophulariaceae) which is strongly expressed in vegetative tissues in response to dehydration or treatment with abscisic acid (ABA). Expression of the gene is correlated with the acquisition of desiccation tolerance. Nuclear proteins bind to a 29-bp cis-regulatory region of the promoter which is essential for transcriptional activation of the CDeT27-45 gene by ABA. Using a yeast one-hybrid screen, the cDNA clone CpR18 was isolated, which encodes a protein with specific binding activity for the cis-regulatory element in the CDeT27-45 promoter. The protein contains an acidic region, a SAP-domain, a zinc finger of the C3H-type, and two motifs which are conserved in proteins from several plant species. One of the conserved regions is rich in basic residues and is predicted to form a helix-loop-helix structure. The R18 gene shows high similarities to genomic sequences and ESTs from other plant species. The tissue-specific expression pattern of the rare R18 mRNA and the distribution of nuclear protein binding activity for the CDeT27-45 promoter fragment are compared. The R18 protein is indeed localized in the nucleus, and activates transcription of CDeT27-45 promoter-GUS fusion constructs in tobacco protoplasts. DNA blot analysis and isolation of genomic clones reveal that two copies of R18 are present in the C. plantagineum genome.
- Koshiba S, Kigawa T, Kikuchi A, Yokoyama S
- Solution structure of the epsin N-terminal homology (ENTH) domain of human epsin.
- J Struct Funct Genomics. 2002; 2: 1-8
- Display abstract
Epsin is a protein that binds to the Eps15 homology (EH) domains, and is involved in clathrin-mediated endocytosis. The epsin N-terminal homology (ENTH) domain (about 140 amino acid residues) is well conserved in eukaryotes and is considered to be important for actin cytoskeleton organization in endocytosis. In this study, we have determined the solution structure of the ENTH domain (residues 1-144) of human epsin by multidimensional nuclear magnetic resonance spectroscopy. In the ENTH-domain structure, seven alpha-helices form a superhelical fold, consisting of two antiparallel two-helix HEAT motifs and one three-helix ARM motif, with a continuous hydrophobic core in the center. We conclude that the seven-helix superhelical fold defines the ENTH domain, and that the previously-reported eight-helix fold of a longer fragment of rat epsin 1 is divided into the authentic ENTH domain and a C-terminal flanking alpha-helix.
- Garriga-Canut M, Roopra A, Buckley NJ
- The basic helix-loop-helix protein, sharp-1, represses transcription by a histone deacetylase-dependent and histone deacetylase-independent mechanism.
- J Biol Chem. 2001; 276: 14821-8
- Display abstract
Many aspects of neurogenesis and neuronal differentiation are controlled by basic helix-loop-helix (bHLH) proteins. One such factor is SHARP-1, initially identified on the basis of its sequence similarity to hairy. Unlike hairy, and atypically for bHLHs, SHARP-1 is expressed late in development, suggestive of a role in terminal aspects of differentiation. Nevertheless, the role of SHARP-1 and the identity of its target genes remain unknown. During the course of a one-hybrid screen for transcription factors that bind to regulatory domains of the M1 muscarinic acetylcholine receptor gene, we isolated the bHLH transcription factor SHARP-1. In this study, we investigated the functional role of SHARP-1 in regulating transcription. Fusion proteins of SHARP-1 tethered to the gal4 DNA binding domain repress both basal and activated transcription when recruited to either a TATA-containing or a TATAless promoter. Furthermore, we identified two independent repression domains that operate via distinct mechanisms. Repression by a domain in the C terminus is sensitive to the histone deacetylase inhibitor trichostatin A, whereas repression by the bHLH domain is insensitive to TSA. Furthermore, overexpression of SHARP-1 represses transcription from the M(1) promoter. This study represents the first report to assign a function to, and to identify a target gene for, the bHLH transcription factor SHARP-1.
- Doliana R et al.
- EMILIN, a component of the elastic fiber and a new member of the C1q/tumor necrosis factor superfamily of proteins.
- J Biol Chem. 1999; 274: 16773-81
- Display abstract
EMILIN (elastin microfibril interface located protein) is an extracellular matrix glycoprotein abundantly expressed in elastin-rich tissues such as blood vessels, skin, heart, and lung. It occurs associated with elastic fibers at the interface between amorphous elastin and microfibrils. Avian EMILIN was extracted from 19-day-old embryonic chick aortas and associated blood vessels and purified by ion-exchange chromatography and gel filtration. Tryptic peptides were generated from EMILIN and sequenced, and degenerate inosine-containing oligonucleotide primers were designed from some peptides. A set of primers allowed the amplification of a 360-base pair reverse transcription polymerase chain reaction product from chick aorta mRNA. A probe based on a human homologue selected by comparison of the chick sequence with EST data base was used to select overlapping clones from both human aorta and kidney cDNA libraries. Here we present the cDNA sequence of the entire coding region of human EMILIN encompassing an open reading frame of 1016 amino acid residues. There was a high degree of homology (76% identity and 88% similarity) between the chick C terminus and the human sequence as well as between the N terminus of the mature chick protein where 10 of 12 residues, as determined by N-terminal sequencing, were identical or similar to the deduced N terminus of human EMILIN. The domain organization of human EMILIN includes a C1q-like globular domain at the C terminus, a collagenous stalk, and a longer segment in which at least four heptad repeats and a leucine zipper can be identified with a high potential for forming coiled-coil alpha helices. At the N terminus there is a cysteine-rich sequence stretch similar to a region of multimerin, a platelet and endothelial cell component, containing a partial epidermal growth factor-like motif. The native state of the recombinantly expressed EMILIN C1q-like domain to be used in cell adhesion was determined by CD spectra analysis, which indicated a high value of beta-sheet conformation. The EMILIN C1q-like domain promoted a high cell adhesion of the leiomyosarcoma cell line SK-UT-1, whereas the fibrosarcoma cell line HT1080 was negative.
- Turner RB, Smith DL, Zawrotny ME, Summers MF, Posewitz MC, Winge DR
- Solution structure of a zinc domain conserved in yeast copper-regulated transcription factors.
- Nat Struct Biol. 1998; 5: 551-5
- Display abstract
The three dimensional structure of the N-terminal domain (residues 1-42) of the copper-responsive transcription factor Amtl from Candida glabrata has been determined by two-dimensional 1H-correlated nuclear magnetic resonance (NMR) methods. The domain contains an array of zinc-binding residues (Cys-X2-Cys-X8-Cys-X-His) that is conserved among a family of Cu-responsive transcription factors. The structure is unlike those of previously characterized zinc finger motifs, and consists of a three-stranded antiparallel beta-sheet with two short helical segments that project from one end of the beta-sheet. Conserved residues at positions 16, 18 and 19 form a basic patch that may be important for DNA binding.
- Saksena NK et al.
- Simian T cell leukemia virus type I from naturally infected feral monkeys from central and west Africa encodes a 91-amino acid p12 (ORF-I) protein as opposed to a 99-amino acid protein encoded by HTLV type I from humans.
- AIDS Res Hum Retroviruses. 1997; 13: 425-32
- Display abstract
A single protein of 12 kDa, p12 is encoded by the HTLV-I genome from both the singly spliced mRNA pX-ORF-I and doubly spliced mRNA pX-rex-ORF-I. While many full-length sequences of HTLV-1 are known, data on the p12 regions of African STLV-I are unavailable. We have undertaken to sequence the p12 gene in STLV-I from Central and West Africa naturally infected primates, and have compared them to known p12 sequences of HTLV-I. Our data on sequence and in vitro transcription-translation analyses indicate that p12 is a 91-amino acid (aa) protein among STLV-I strains from Central and West Africa, in contrast to the 99-aa protein found among HTLV-I strains around the globe. The p12 sequences of STLV-I exhibit a marked genetic variability at the level of both nucleotide and peptide sequences. Hydropathic and helical wheel analyses reveal that 60% of residues in HTLV-I p12 are hydrophobic, in contrast to 55% in STLV-I from Africa. Although HTLV-I and STLV-I show a similar putative antigenic site, a second potential site was located exclusively in STLV-I from Africa. There are differences in the predicted transmembrane domains in p12 between STLV-I and HTLV-I. Furthermore, the secondary structure data according to the Chou and Fasman algorithm predict an alpha-helical domain at the carboxy terminus in HTLV-I, and this domain may be truncated in STLV-I p12. The amino acid sequence of p12 shows two leucine zipper motifs (LZMs) at the amino terminus and in the middle region, respectively. This is the first report describing the size differences in p12 protein between HTLV-I and STLV-I, which may provide insights into pathogenic mechanisms used by HTLV-I and STLV-I.
- Li X, Lopez-Guisa JM, Ninan N, Weiner EJ, Rauscher FJ 3rd, Marmorstein R
- Overexpression, purification, characterization, and crystallization of the BTB/POZ domain from the PLZF oncoprotein.
- J Biol Chem. 1997; 272: 27324-9
- Display abstract
The BTB/POZ domain defines a conserved region of about 120 residues and has been found in over 40 proteins to date. It is located predominantly at the N terminus of Zn-finger DNA-binding proteins, where it may function as a repression domain, and less frequently in actin-binding and poxvirus-encoded proteins, where it may function as a protein-protein interaction interface. A prototypic human BTB/POZ protein, PLZF (promyelocytic leukemia zinc finger) is fused to RARalpha (retinoic acid receptor alpha) in a subset of acute promyelocytic leukemias (APLs), where it acts as a potent oncogene. The exact role of the BTB/POZ domain in protein-protein interactions and/or transcriptional regulation is unknown. We have overexpressed, purified, characterized, and crystallized the BTB/POZ domain from PLZF (PLZF-BTB/POZ). Gel filtration, dynamic light scattering, and equilibrium sedimentation experiments show that PLZF-BTB/POZ forms a homodimer with a Kd below 200 nM. Differential scanning calorimetry and equilibrium denaturation experiments are consistent with the PLZF-BTB/POZ dimer undergoing a two-state unfolding transition with a Tm of 70.4 degrees C, and a DeltaG of 12.8 +/- 0.4 kcal/mol. Circular dichroism shows that the PLZF-BTB/POZ dimer has significant secondary structure including about 45% helix and 20% beta-sheet. We have prepared crystals of the PLZF-BTB/POZ that are suitable for a high resolution structure determination using x-ray crystallography. The crystals form in the space group I222 or I212121 with a = 38.8, b = 77.7, and c = 85.3 A and contain 1 protein subunit per asymmetric unit with approximately 40% solvent. Our data support the hypothesis that the BTB/POZ domain mediates a functionally relevant dimerization function in vivo. The crystal structure of the PLZF-BTB/POZ domain will provide a paradigm for understanding the structural basis underlying BTB/POZ domain function.
- Jurutka PW et al.
- Mutations in the 1,25-dihydroxyvitamin D3 receptor identifying C-terminal amino acids required for transcriptional activation that are functionally dissociated from hormone binding, heterodimeric DNA binding, and interaction with basal transcription factor IIB, in vitro.
- J Biol Chem. 1997; 272: 14592-9
- Display abstract
To investigate a potential ligand-dependent transcriptional activation domain (AF-2) in the C-terminal region of the human vitamin D receptor (hVDR), two conserved residues, Leu-417 and Glu-420, were replaced with alanines by site-directed mutagenesis (L417A and E420A). Transcriptional activation in response to 1, 25-dihydroxyvitamin D3 (1,25-(OH)2D3) was virtually eliminated when either point mutant was transfected into several mammalian cell lines. Furthermore, both mutants exhibited a dominant negative phenotype when expressed in COS-7 cells. Scatchard analysis at 4 degrees C and a ligand-dependent DNA binding assay at 25 degrees C revealed essentially normal 1,25-(OH)2D3 binding for the mutant hVDRs, which were also equivalent to native receptor in associating with the rat osteocalcin vitamin D responsive element as a presumed heterodimer with retinoid X receptor. Glutathione S-transferase-human transcription factor IIB (TFIIB) fusion protein linked to Sepharose equally coprecipitated the wild-type hVDR and the AF-2 mutants. These data implicate amino acids Leu-417 and Glu-420, residing in a putative alpha-helical region at the extreme C terminus of hVDR, as critical in the mechanism of 1, 25-(OH)2D3-stimulated transcription, likely mediating an interaction with a coactivator(s) or a component of the basal transcriptional machinery distinct from TFIIB.
- Donaldson LW, Petersen JM, Graves BJ, McIntosh LP
- Solution structure of the ETS domain from murine Ets-1: a winged helix-turn-helix DNA binding motif.
- EMBO J. 1996; 15: 125-34
- Display abstract
Ets-1 is the prototypic member of the ets family of transcription factors. This family is characterized by the conserved ETS domain that mediates specific DNA binding. Using NMR methods, we have determined the structure of a fragment of murine Ets-1 composed of the 85 residue ETS domain and a 25 amino acid extension that ends at its native C-terminus. The ETS domain folds into a helix-turn-helix motif on a four-stranded anti-parallel beta-sheet scaffold. This structure places Ets-1 in the winged helix-turn-helix (wHTH) family of DNA binding proteins and provides a model for interpreting the sequence conservation of the ETS domain and the specific interaction of Ets-1 with DNA. The C-terminal sequence of Ets-1, which is mutated in the v-Ets oncoprotein, forms an alpha-helix that packs anti-parallel to the N-terminal helix of the ETS domain. In this position, the C-terminal helix is poised to interact directly with an N-terminal inhibitory region in Ets-1 as well as the wHTH motif. This explains structurally the concerted role of residues flanking the ETS domain in the intramolecular inhibition of Ets-1 DNA binding.
- Farmer AA et al.
- Extreme evolutionary conservation of QM, a novel c-Jun associated transcription factor.
- Hum Mol Genet. 1994; 3: 723-8
- Display abstract
QM is a 214 amino acid polypeptide, encoded by a gene (DXS648) in Xq28, that contains a high percentage of charged amino acids and has been found to bind c-Jun and DNA. Searches of the GenBank database revealed no matches between QM and any other known transcription factors. However, we and others have isolated QM homologs from a diverse array of eukaryotes. Alignment of these sequences indicated a high degree of conservation throughout the first 175 residues of the protein and revealed several interesting features. Most notable is the considerable conservation of charged amino acids within specific regions of the protein. Secondary structure analysis suggests that two of these regions form amphipathic alpha-helices, one basic and one acidic. A third conserved charged domain, comprising the N-terminal 30 amino acids, is both basic and proline rich. The rate of sequence divergence of the various homologs was found to be slow (of the order of 1% change every 22 million years), consistent with a critical role for QM in eukaryotic cells. A role for QM as a novel class of transcription regulatory protein is suggested.
- Yonaha M et al.
- Domain structure of a human general transcription initiation factor, TFIIF.
- Nucleic Acids Res. 1993; 21: 273-9
- Display abstract
The structural and functional domains of a general transcription initiation factor, TFIIF (RAP30/74, FC), have been investigated using various deletion mutants of each subunit, both in vivo and in vitro. An in vivo assay showed that the N-terminal sequence containing residues of 1-110 of RAP30 that is located close to a sigma homology region interacts with a minimum sequence of residues 62-171 of RAP74 to form a heteromeric interaction. Reconstitution of in vitro transcription activity by deletion mutants of RAP74 clearly indicated that both N-terminal residues 73-205 and C-terminal residues 356-517 are essential for full activity, the former interacting with RAP30, thus complexing with RNA polymerase II. From these data, the functional significance of domain structure of TFIIF is discussed in terms of its sigma homology sequences and complex formation with RNA polymerase II in the initiation and elongation of transcription.
- Watanabe H, Sawada J, Yano K, Yamaguchi K, Goto M, Handa H
- cDNA cloning of transcription factor E4TF1 subunits with Ets and notch motifs.
- Mol Cell Biol. 1993; 13: 1385-91
- Display abstract
E4TF1 was originally identified as one of the transcription factors responsible for adenovirus E4 gene transcription. It is composed of two subunits, a DNA binding protein with a molecular mass of 60 kDa and a 53-kDa transcription-activating protein. Heterodimerization of these two subunits is essential for the protein to function as a transcription factor. In this study, we identified a new E4TF1 subunit, designated E4TF1-47, which has no DNA binding activity but can associate with E4TF1-60. We then cloned the cDNAs for each of the E4TF1 subunits. E4TF1 was purified, and the partial amino acid sequence of each subunit was determined. The predicted amino acid sequence of each cDNA clone revealed that E4TF1-60 had an ETS domain, which is a DNA binding domain common to ets-related transcription factors. E4TF1-53 had four tandemly repeated notch-ankyrin motifs. The putative cDNA of E4TF1-47 coded almost the same amino acid sequences as E4TF1-53. Three hundred and thirty-two amino acids of the N termini of E4TF1-47 and -53 were identical except for one amino acid insertion in E4TF1-53, and they differ from each other at the C terminus. These three recombinant cDNA clones were expressed in Escherichia coli, and the proteins behaved in the same manner as purified proteins in a gel retardation assay. Nucleotide and predicted amino acid sequences were highly homologous to GABP-alpha and -beta, which is further supported by the observation that GABP-specific antibody can recognize human E4TF1.
- Qian X, Gozani SN, Yoon H, Jeon CJ, Agarwal K, Weiss MA
- Novel zinc finger motif in the basal transcriptional machinery: three-dimensional NMR studies of the nucleic acid binding domain of transcriptional elongation factor TFIIS.
- Biochemistry. 1993; 32: 9944-59
- Display abstract
Transcriptional elongation provides a key control point in the regulation of eukaryotic gene expression. Here we describe homonuclear and 15N-heteronuclear 3D NMR studies of the nucleic acid binding domain of human transcriptional elongation factor TFIIS. This domain contains a Cys4 Zn(2+)-binding site with no homology to previously characterized Cys4, Cys6, or Cys2-His2 Zn fingers. Complete 1H and 15N NMR resonance assignment of a 50-residue TFIIS peptide-Zn2+ complex is obtained. Its solution structure, as determined by distance geometry/simulated annealing (DG/SA) calculations, exhibits a novel three-stranded antiparallel beta-sheet (designated the Zn ribbon). Analogous sequence motifs occur in a wide class of proteins involved in RNA or DNA transactions, including human basal transcriptional initiation factor TFIIE. A three-dimensional model of the TFIIE Cys4 domain is obtained by DG-based homology modeling. The role of the TFIIS Zn ribbon in the control of eukaryotic transcriptional elongation is discussed.
- Pani L, Overdier DG, Porcella A, Qian X, Lai E, Costa RH
- Hepatocyte nuclear factor 3 beta contains two transcriptional activation domains, one of which is novel and conserved with the Drosophila fork head protein.
- Mol Cell Biol. 1992; 12: 3723-32
- Display abstract
The hepatocyte nuclear factor 3 (HNF-3) gene family is composed of three proteins (alpha, beta, and gamma) that are transcription factors involved in the coordinate expression of several liver genes. All three proteins share strong homology in their DNA binding domains (region I) and are able to recognize the same DNA sequence. They also possess two similar stretches of amino acids at the carboxyl terminus (regions II and III) and a fourth segment of homology at the amino terminus (region IV). Furthermore, the HNF-3 proteins demonstrate homology with the Drosophila homeotic gene fork head in regions I, II, and III, suggesting that HNF-3 may be its mammalian homolog. In order to define HNF-3 beta protein domains involved in transcriptional activation, we have used a reporter gene, whose transcription is dependent on HNF-3 binding, for hepatoma cell cotransfection assays with expression vectors that produced different truncated HNF-3 beta proteins. A position-independent activation domain which contained conserved regions II and III was identified at the carboxyl terminus of the HNF-3 beta protein (amino acids 361 to 458). Moreover, site-directed mutations that altered the sequences within regions II and III demonstrated their importance to transactivation. The region II-III domain does not possess amino acid sequences in common with other transcription factors and may define a novel activation motif. HNF-3 beta amino-terminal sequences defined by conserved region IV also contributed to transactivation, but region IV activity required the participation of the region II-III domain. Region IV is abundant in serine amino acids and contains two putative casein kinase I phosphorylation sites, a feature similar to protein motifs described for the transcription factors Pit-1/GHF-1 and HNF-1.