Secondary literature sources for CoA_trans
The following references were automatically generated.
- Marlaire S, Van Schaftingen E, Veiga-da-Cunha M
- C7orf10 encodes succinate-hydroxymethylglutarate CoA-transferase, the enzyme that converts glutarate to glutaryl-CoA.
- J Inherit Metab Dis. 2014; 37: 13-9
- Display abstract
Glutarate, a side-product in the metabolism of tryptophan and lysine, is metabolized by conversion to glutaryl-CoA by a transferase using succinyl-CoA as a coenzyme donor. The enzyme catalyzing this conversion has not been formally identified. However, a benign form of glutaric aciduria (glutaric aciduria type III) is due to mutations in C7orf10, a putative member of the coenzyme A transferase class III family. In the present work, we show that recombinant human C7orf10 catalyzes the succinyl-CoA-dependent conversion of glutarate to glutaryl-CoA. C7orf10 could use many dicarboxylic acids as CoA acceptors, the best ones being glutarate, succinate, adipate, and 3-hydroxymethylglutarate. Confocal microscopy analysis of CHO cells transfected with a C7orf10-GFP fusion protein indicated that C7orf10 is a mitochondrial protein, in agreement with the presence of a predicted mitochondrial propeptide at its N-terminus. The effect of a missense mutation (p.Arg336Trp) found in the homozygous state in several patients with glutaric aciduria type III and present in the general population at a low frequency was also investigated. The p.Arg336Trp mutation led to the production of insoluble and inactive C7orf10 both in Escherichia coli and in HEK293T cells. These findings indicate that C7orf10 is implicated in the metabolism of glutarate, but possibly also of longer dicarboxylic acids. Homologues of this enzyme are found in numerous bacterial operons comprising also a putative glutaryl-CoA dehydrogenase, indicating that an enzyme with similar specificity exists in prokaryotes.
- Alejandro-Marin CM, Bosch R, Nogales B
- Comparative genomics of the protocatechuate branch of the beta-ketoadipate pathway in the Roseobacter lineage.
- Mar Genomics. 2014; 17: 25-33
- Display abstract
The protocatechuate branch of the beta-ketoadipate pathway is the most common pathway for degradation of monoaromatic compounds in the Roseobacter lineage. We analyzed 43 Roseobacter genomes in order to determine if they possessed all genetic elements for this pathway and if there were common patterns in gene organization. The eight genes of the pathway (pcaG, -H, -B, -C, -D, -I, -J, and -F), possible regulators, and genes encoding for proteins with related function (i.e. catabolism of 4-hydroxybenzoate, catechol, and meta-cleavage of protocatechuate) were predicted by sequence homology analysis. Most of the Roseobacters studied had putatively a complete protocatechuate branch of the beta-ketoadipate pathway while 11 of them would probably have an incomplete pathway. Thirty-one Roseobacters would be potentially able of transforming 4-hydroxybenzoate to protocatechuate, and 13 of them might transform catechol via ortho-cleavage, the starting reaction of the catechol branch of the beta-ketoadipate pathway. We observed variability in gene organization, with no clear relationship between gene order and Roseobacter taxonomy. Genes were usually organized in several gene clusters. One of the clusters (pcaRIJF) was not reported previously in Roseobacters. The presence of the putative regulator pcaR in these bacteria was also a novel finding. The conserved ORF (chp), encoding for a protein of family DUF849 whose functional role has been proven recently, was detected in 34 genomes. Sequence homology confirmed that proteins encoded by chp corresponded to putative BKACE G4 proteins, which are able to transform beta-ketoadipate. Therefore, most Roseobacters seemed to possess two different enzymes for transforming beta-ketoadipate. We also report two possible regulation mechanisms of gene pobA (encoding for the enzyme transforming 4-hydroxybenzoate to protocatechuate): via PcaQ, the regulator commonly found with pca genes, and via an independent regulator (PobR). The results of this study evidence the relevance of 4-hydroxybenzoate, protocatechuate and beta-ketoadipate degradation pathways in Roseobacters and provide a more complex view of possible regulation mechanisms.
- Zhang M, Xu HY, Wang YC, Shi ZB, Zhang NN
- Structure of succinyl-CoA:3-ketoacid CoA transferase from Drosophila melanogaster.
- Acta Crystallogr Sect F Struct Biol Cryst Commun. 2013; 69: 1089-93
- Display abstract
Succinyl-CoA:3-ketoacid CoA transferase (SCOT) plays a crucial role in ketone-body metabolism. SCOT from Drosophila melanogaster (DmSCOT) was purified and crystallized. The crystal structure of DmSCOT was determined at 2.64 A resolution and belonged to space group P212121, with unit-cell parameters a=76.638, b=101.921, c=122.457 A, alpha=beta=gamma=90 degrees . Sequence alignment and structural analysis identified DmSCOT as a class I CoA transferase. Compared with Acetobacter aceti succinyl-CoA:acetate CoA transferase, DmSCOT has a different substrate-binding pocket, which may explain the difference in their substrate specificities.
- Hess V, Gonzalez JM, Parthasarathy A, Buckel W, Muller V
- Caffeate respiration in the acetogenic bacterium Acetobacterium woodii: a coenzyme A loop saves energy for caffeate activation.
- Appl Environ Microbiol. 2013; 79: 1942-7
- Display abstract
The anaerobic acetogenic bacterium Acetobacterium woodii couples reduction of caffeate with electrons derived from molecular hydrogen to the synthesis of ATP by a chemiosmotic mechanism with sodium ions as coupling ions. Caffeate is activated to caffeyl coenzyme A (caffeyl-CoA) prior to its reduction, and the caffeate reduction operon encodes an ATP-dependent caffeyl-CoA synthetase that is thought to catalyze the initial caffeate activation. The operon also encodes a potential CoA transferase, the product of carA, which was thought to be involved in subsequent ATP-independent caffeate activation. To prove the proposed function of carA, we overproduced its protein in Escherichia coli and then purified it. Purified CarA drives the formation of caffeyl-CoA from caffeate with hydrocaffeyl-CoA as the CoA donor. The dependence of the reaction on caffeate and hydrocaffeyl-CoA followed Michaelis-Menten kinetics, with apparent K(m) values of 75 +/- 5 muM for caffeate and 8 +/- 2 muM for hydrocaffeyl-CoA. The enzyme activity had broad ranges of pH and temperature optima. In addition to being able to use caffeate, CarA could use p-coumarate and ferulate but not cinnamate, sinapate, or p-hydroxybenzoate as a CoA acceptor. Neither acetyl-CoA nor butyryl-CoA served as the CoA donor for CarA. The enzyme uses a ping-pong mechanism for CoA transfer and is the first classified member of a new subclass of family I CoA transferases that has two catalytic domains on one polypeptide chain. Apparently, CarA catalyzes an energy-saving CoA loop for caffeate activation in the steady state of caffeate respiration.
- Nam GH et al.
- Identification of ORF sequences and exercise-induced expression change in thoroughbred horse OXCT1 gene.
- Gene. 2012; 496: 45-8
- Display abstract
In the mitochondrial matrix, the OXCT1 gene catalyzes the reversible transfer of coenzyme A from succinyl-CoA to acetoacetate in a reaction related to energy production from ketone bodies. Here, horse OXCT1 gene containing coenzyme A transferase domain was identified in the transcriptome analysis of cDNAs derived from skeletal muscles. Horse OXCT1 gene consisted of 1761 [corrected] nucleotide sequences with an open reading frame of 1560 nucleotides encoding a protein of 520 putative amino acid residues.The number of non-synonymous substitutions was lower than the number of synonymous substitutions in the OXCT1 genes of other species, indicating that purifying selection occurred in the OXCT1 genes during evolutionary radiation. Quantitative real-time RT-RCR analysis showed a dominant expression pattern of horse OXCT1 gene in the cerebrum, heart, and skeletal muscle. Different expression levels of horse OXCT1 transcripts between before- and after-exercise samples were also measured in the skeletal muscles of six horses. These data could be of great use for further investigation of the relationship between energy products and horse OXCT1 gene.
- Fukao T et al.
- Clinical and molecular characterization of five patients with succinyl-CoA:3-ketoacid CoA transferase (SCOT) deficiency.
- Biochim Biophys Acta. 2011; 1812: 619-24
- Display abstract
Succinyl-CoA:3-ketoacid CoA transferase (SCOT) deficiency is an inborn error of ketone body metabolism and causes episodic ketoacidosis. We report clinical and molecular analyses of 5 patients with SCOT deficiency. Patients GS07, GS13, and GS14 are homozygotes of S405P, L327P, and R468C, respectively. GS17 and GS18 are compound heterozygotes for S226N and A215V, and V404F and E273X, respectively. These mutations have not been reported previously. Missense mutations were further characterized by transient expression analysis of mutant cDNAs. Among 6 missense mutations, mutants L327P, R468C, and A215V retained some residual activities and their mutant proteins were detected in immunoblot analysis following expression at 37 degrees C. They were more stable at 30 degrees C than 37 degrees C, indicating their temperature sensitive character. The R468C mutant is a distinct temperature sensitive mutant which retained 12% and 51% of wild-type residual activities at 37 and 30 degrees C, respectively. The S226N mutant protein was detected but retained no residual activity. Effects of missense mutations were predicted from the tertiary structure of the SCOT molecule. Main effects of these mutations were destabilization of SCOT molecules, and some of them also affected catalytic activity. Among 5 patients, GS07 and GS18 had null mutations in both alleles and the other three patients retained some residual SCOT activities. All 5 developed a first severe ketoacidotic crisis with blood gas pH <7.1, and experienced multiple ketoacidotic decompensations (two of them had seven such episodes). In general, the outcome was good even following multiple ketoacidotic events. Permanent ketosis or ketonuria is considered a pathognomonic feature of SCOT deficiency. However, this condition depends not only on residual activity but also on environmental factors.
- Koire AM, Cavalcanti AR
- Fusion of the subunits alpha and beta of succinyl-CoA synthetase as a phylogenetic marker for Pezizomycotina fungi.
- Genet Mol Biol. 2011; 34: 669-75
- Display abstract
Gene fusions, yielding the formation of multidomain proteins, are evolutionary events that can be utilized as phylogenetic markers. Here we describe a fusion gene comprising the alpha and beta subunits of succinyl-coA synthetase, an enzyme of the TCA cycle, in Pezizomycotina fungi. This fusion is present in all Pezizomycotina with complete genome sequences and absent from all other organisms. Phylogenetic analysis of the alpha and beta subunits of succinyl-CoA synthetase suggests that both subunits were duplicated and retained in Pezizomycotina while one copy was lost from other fungi. One of the duplicated copies was then fused in Pezizomycotina. Our results suggest that the fusion of the alpha and beta subunits of succinyl-CoA synthetase can be used as a molecular marker for membership in the Pezizomycotina subphylum. If a species has the fusion it can be reliably classified as Pezizomycotina, while the absence of the fusion is suggestive that the species is not a member of this subphylum.
- Nogales J et al.
- Unravelling the gallic acid degradation pathway in bacteria: the gal cluster from Pseudomonas putida.
- Mol Microbiol. 2011; 79: 359-74
- Display abstract
Gallic acid (3,4,5-trihydroxybenzoic acid, GA) is widely distributed in nature, being a major phenolic pollutant and a commonly used antioxidant and building-block for drug development. We have characterized the first complete cluster (gal genes) responsible for growth in GA in a derivative of the model bacterium Pseudomonas putida KT2440. GalT mediates specific GA uptake and chemotaxis, and highlights the critical role of GA transport in bacterial adaptation to GA consumption. The proposed GA degradation via the central intermediate 4-oxalomesaconic acid (OMA) was revisited and all enzymes involved have been identified. Thus, GalD is the prototype of a new subfamily of isomerases that catalyses a biochemical step that remained unknown, i.e. the tautomerization of the OMAketo generated by the GalA dioxygenase to OMAenol. GalB is the founding member of a new family of zinc-containing hydratases that converts OMAenol into 4-carboxy-4-hydroxy-2-oxoadipic acid (CHA). galC encodes the aldolase catalysing CHA cleavage to pyruvic and oxaloacetic acids. The presence of homologous gal clusters outside the Pseudomonas genus sheds light on the evolution and ecology of the gal genes in GA degraders. The gal genes were used for expanding the metabolic abilities of heterologous hosts towards GA degradation, and for engineering a GA cellular biosensor.
- Vitoriano I et al.
- Ulcerogenic Helicobacter pylori strains isolated from children: a contribution to get insight into the virulence of the bacteria.
- PLoS One. 2011; 6: 26265-26265
- Display abstract
Infection with Helicobacter pylori is the major cause for the development of peptic ulcer disease (PUD). In children, with no other etiology for the disease, this rare event occurs shortly after infection. In these young patients, habits of smoking, diet, consumption of alcohol and non-steroid anti-inflammatory drugs and stress, in addition to the genetic susceptibility of the patient, represent a minor influence. Accordingly, the virulence of the implicated H. pylori strain should play a crucial role in the development of PUD. Corroborating this, our in vitro infection assays comparing a pool of five H. pylori strains isolated from children with PUD to a pool of five other pediatric clinical isolates associated with non-ulcer dyspepsia (NUD) showed the greater ability of PUD strains to induce a marked decrease in the viability of gastric cells and to cause severe damage in the cells cytoskeleton as well as an impairment in the production/secretion of mucins. To uncover virulence features, we compared the proteome of these two groups of H. pylori strains. Two-dimensional gel electrophoresis followed by mass-spectrometry allowed us to detect 27 differentially expressed proteins between them. In addition to the presence of genes encoding well established virulence factors, namely cagA, vacAs1, oipA "on" status, homB and jhp562 genes, the pediatric ulcerogenic strains shared a proteome profile characterized by changes in the abundance of: motility-associated proteins, accounting for higher motility; antioxidant proteins, which may confer increased resistance to inflammation; and enzymes involved in key steps in the metabolism of glucose, amino acids and urea, which may be advantageous to face fluctuations of nutrients. In conclusion, the enhanced virulence of the pediatric ulcerogenic H. pylori strains may result from a synergy between their natural ability to better adapt to the hostile human stomach and the expression of the established virulence factors.
- Louis P, Young P, Holtrop G, Flint HJ
- Diversity of human colonic butyrate-producing bacteria revealed by analysis of the butyryl-CoA:acetate CoA-transferase gene.
- Environ Microbiol. 2010; 12: 304-14
- Display abstract
Butyrate-producing bacteria play an important role in the human colon, supplying energy to the gut epithelium and regulating host cell responses. In order to explore the diversity and culturability of this functional group, we designed degenerate primers to amplify butyryl-CoA:acetate CoA-transferase sequences from faecal samples provided by 10 healthy volunteers. Eighty-eight per cent of amplified sequences showed >98% DNA sequence identity to CoA-transferases from cultured butyrate-producing bacteria, and these fell into 12 operational taxonomic units (OTUs). The four most prevalent OTUs corresponded to Eubacterium rectale, Roseburia faecis, Eubacterium hallii and an unnamed cultured species SS2/1. The remaining 12% of sequences, however, belonged to 20 OTUs that are assumed to come from uncultured butyrate-producing strains. Samples taken after ingestion of inulin showed significant (P=0.019) increases in Faecalibacterium prausnitzii. Because several of the dominant butyrate producers differ in their DNA % G+C content, analysis of thermal melt curves obtained for PCR amplicons of the butyryl-CoA:acetate CoA-transferase gene provides a convenient and rapid qualitative assessment of the major butyrate producing groups present in a given sample. This type of analysis therefore provides an excellent source of information on functionally important groups within the colonic microbial community.
- Li D et al.
- Genome-wide investigation and functional characterization of the beta-ketoadipate pathway in the nitrogen-fixing and root-associated bacterium Pseudomonas stutzeri A1501.
- BMC Microbiol. 2010; 10: 36-36
- Display abstract
BACKGROUND: Soil microorganisms are mainly responsible for the complete mineralization of aromatic compounds that usually originate from plant products or environmental pollutants. In many cases, structurally diverse aromatic compounds can be converted to a small number of structurally simpler intermediates, which are metabolized to tricarboxylic acid intermediates via the beta-ketoadipate pathway. This strategy provides great metabolic flexibility and contributes to increased adaptation of bacteria to their environment. However, little is known about the evolution and regulation of the beta-ketoadipate pathway in root-associated diazotrophs. RESULTS: In this report, we performed a genome-wide analysis of the benzoate and 4-hydroxybenzoate catabolic pathways of Pseudomonas stutzeri A1501, with a focus on the functional characterization of the beta-ketoadipate pathway. The P. stutzeri A1501 genome contains sets of catabolic genes involved in the peripheral pathways for catabolism of benzoate (ben) and 4-hydroxybenzoate (pob), and in the catechol (cat) and protocatechuate (pca) branches of the beta-ketoadipate pathway. A particular feature of the catabolic gene organization in A1501 is the absence of the catR and pcaK genes encoding a LysR family regulator and 4-hydroxybenzoate permease, respectively. Furthermore, the BenR protein functions as a transcriptional activator of the ben operon, while transcription from the catBC promoter can be activated in response to benzoate. Benzoate degradation is subject to carbon catabolite repression induced by glucose and acetate in A1501. The HPLC analysis of intracellular metabolites indicated that low concentrations of 4-hydroxybenzoate significantly enhance the ability of A1501 to degrade benzoate. CONCLUSIONS: The expression of genes encoding proteins involved in the beta-ketoadipate pathway is tightly modulated by both pathway-specific and catabolite repression controls in A1501. This strain provides an ideal model system for further study of the evolution and regulation of aromatic catabolic pathways.
- Huang D, Liu J, Shen G
- Cloning, expression, and enzymatic characterization of isocitrate dehydrogenase from Helicobacter pylori.
- Protein J. 2009; 28: 443-7
- Display abstract
Isocitrate dehydrogenase (IDH) catalyzes the oxidative decarboxylation of isocitrate to alpha-ketoglutarate with NAD(P) as a cofactor in the tricarboxylic acid cycle. As a housekeeping protein in Helicobacter pylori, IDH was considered as a possible candidate for serological diagnostics and detection. Here, we identified a new icd gene encoding IDH from H. pylori strain SS1. The recombinant H. pylori isocitrate dehydrogenase (HpIDH) was cloned, expressed, and purified in E. coli system. The enzymatic characterization of HpIDH demonstrates its activity with k (cat) of 87 s(-1), K (m) of 124 microM and k (cat)/K (m) of 7 x 10(5) M(-1)s(-1) toward isocitrate, k (cat) of 80 s(-1), K (m) of 176 microM and k (cat)/K (m) of 4.5 x 10(5) M(-1)s(-1) toward NADP. The optimum pH of the enzyme activity is around 9.0, and the optimum temperature is around 50 degrees C. This current work is expected to help better understand the features of HpIDH and provide useful information for H. pylori serological diagnostics and detection.
- Angelini A, Cendron L, Goncalves S, Zanotti G, Terradot L
- Structural and enzymatic characterization of HP0496, a YbgC thioesterase from Helicobacter pylori.
- Proteins. 2008; 72: 1212-21
- Display abstract
YbgC proteins are bacterial acyl-CoA thioesterases associated with the Tol-Pal system. This system is important for cell envelope integrity and is part of the cell division machinery. In E. coli, YbgC associates with the cell membrane and is part of a protein network involved in lipid biogenesis. In the human pathogen Helicobacter pylori, a putative homologue of YbgC, named HP0496, was found to interact with the cytotoxin CagA by two different studies. We have determined its crystal structure and characterized its enzymatic activity. The structure of HP0496 shows that it is a member of the hot-dog family of proteins, with a epsilongamma tetrameric arrangement. Finally, enzymatic assays performed with the purified protein showed that HP0496 is an acyl-CoA thioesterase that favors long-chain substrates.
- van Grinsven KW et al.
- Acetate:succinate CoA-transferase in the hydrogenosomes of Trichomonas vaginalis: identification and characterization.
- J Biol Chem. 2008; 283: 1411-8
- Display abstract
Acetate:succinate CoA-transferases (ASCT) are acetate-producing enzymes in hydrogenosomes, anaerobically functioning mitochondria and in the aerobically functioning mitochondria of trypanosomatids. Although acetate is produced in the hydrogenosomes of a number of anaerobic microbial eukaryotes such as Trichomonas vaginalis, no acetate producing enzyme has ever been identified in these organelles. Acetate production is the last unidentified enzymatic reaction of hydrogenosomal carbohydrate metabolism. We identified a gene encoding an enzyme for acetate production in the genome of the hydrogenosome-containing protozoan parasite T. vaginalis. This gene shows high similarity to Saccharomyces cerevisiae acetyl-CoA hydrolase and Clostridium kluyveri succinyl-CoA:CoA-transferase. Here we demonstrate that this protein is expressed and is present in the hydrogenosomes where it functions as the T. vaginalis acetate:succinate CoA-transferase (TvASCT). Heterologous expression of TvASCT in CHO cells resulted in the expression of an active ASCT. Furthermore, homologous overexpression of the TvASCT gene in T. vaginalis resulted in an equivalent increase in ASCT activity. It was shown that the CoA transferase activity is succinate-dependent. These results demonstrate that this acetyl-CoA hydrolase/transferase homolog functions as the hydrogenosomal ASCT of T. vaginalis. This is the first hydrogenosomal acetate-producing enzyme to be identified. Interestingly, TvASCT does not share any similarity with the mitochondrial ASCT from Trypanosoma brucei, the only other eukaryotic succinate-dependent acetyl-CoA-transferase identified so far. The trichomonad enzyme clearly belongs to a distinct class of acetate:succinate CoA-transferases. Apparently, two completely different enzymes for succinate-dependent acetate production have evolved independently in ATP-generating organelles.
- Berthold CL, Toyota CG, Richards NG, Lindqvist Y
- Reinvestigation of the catalytic mechanism of formyl-CoA transferase, a class III CoA-transferase.
- J Biol Chem. 2008; 283: 6519-29
- Display abstract
Formyl-coenzyme A transferase from Oxalobacter formigenes belongs to the Class III coenzyme A transferase family and catalyzes the reversible transfer of a CoA carrier between formyl-CoA and oxalate, forming oxalyl-CoA and formate. Formyl-CoA transferase has a unique three-dimensional fold composed of two interlaced subunits locked together like rings of a chain. We here present an intermediate in the reaction, formyl-CoA transferase containing the covalent beta-aspartyl-CoA thioester, adopting different conformations in the two active sites of the dimer, which was identified through crystallographic freeze-trapping experiments with formyl-CoA and oxalyl-CoA in the absence of acceptor carboxylic acid. The formation of the enzyme-CoA thioester was also confirmed by mass spectrometric data. Further structural data include a trapped aspartyl-formyl anhydride protected by a glycine loop closing down over the active site. In a crystal structure of the beta-aspartyl-CoA thioester of an inactive mutant variant, oxalate was found bound to the open conformation of the glycine loop. Together with hydroxylamine trapping experiments and kinetic as well as mutagenesis data, the structures of these formyl-CoA transferase complexes provide new information on the Class III CoA-transferase family and prompt redefinition of the catalytic steps and the modified reaction mechanism of formyl-CoA transferase proposed here.
- Hoffman PS et al.
- Antiparasitic drug nitazoxanide inhibits the pyruvate oxidoreductases of Helicobacter pylori, selected anaerobic bacteria and parasites, and Campylobacter jejuni.
- Antimicrob Agents Chemother. 2007; 51: 868-76
- Display abstract
Nitazoxanide (NTZ) exhibits broad-spectrum activity against anaerobic bacteria and parasites and the ulcer-causing pathogen Helicobacter pylori. Here we show that NTZ is a noncompetitive inhibitor (K(i), 2 to 10 microM) of the pyruvate:ferredoxin/flavodoxin oxidoreductases (PFORs) of Trichomonas vaginalis, Entamoeba histolytica, Giardia intestinalis, Clostridium difficile, Clostridium perfringens, H. pylori, and Campylobacter jejuni and is weakly active against the pyruvate dehydrogenase of Escherichia coli. To further mechanistic studies, the PFOR operon of H. pylori was cloned and overexpressed in E. coli, and the multisubunit complex was purified by ion-exchange chromatography. Pyruvate-dependent PFOR activity with NTZ, as measured by a decrease in absorbance at 418 nm (spectral shift from 418 to 351 nm), unlike the reduction of viologen dyes, did not result in the accumulation of products (acetyl coenzyme A and CO(2)) and pyruvate was not consumed in the reaction. NTZ did not displace the thiamine pyrophosphate (TPP) cofactor of PFOR, and the 351-nm absorbing form of NTZ was inactive. Optical scans and (1)H nuclear magnetic resonance analyses determined that the spectral shift (A(418) to A(351)) of NTZ was due to protonation of the anion (NTZ(-)) of the 2-amino group of the thiazole ring which could be generated with the pure compound under acidic solutions (pK(a) = 6.18). We propose that NTZ(-) intercepts PFOR at an early step in the formation of the lactyl-TPP transition intermediate, resulting in the reversal of pyruvate binding prior to decarboxylation and in coordination with proton transfer to NTZ. Thus, NTZ might be the first example of an antimicrobial that targets the "activated cofactor" of an enzymatic reaction rather than its substrate or catalytic sites, a novel mechanism that may escape mutation-based drug resistance.
- Louis P, Flint HJ
- Development of a semiquantitative degenerate real-time pcr-based assay for estimation of numbers of butyryl-coenzyme A (CoA) CoA transferase genes in complex bacterial samples.
- Appl Environ Microbiol. 2007; 73: 2009-12
- Display abstract
We describe a new degenerate real-time PCR approach to simultaneously quantify phylogenetically different butyrate-producing bacteria based on the detection of butyryl-coenzyme A (CoA) CoA transferase genes. This pathway is present in numerically important groups of butyrate producers within the human colon, and thus this assay estimates the butyrate-producing ability of the microbiota.
- Kosaka T et al.
- Reconstruction and regulation of the central catabolic pathway in the thermophilic propionate-oxidizing syntroph Pelotomaculum thermopropionicum.
- J Bacteriol. 2006; 188: 202-10
- Display abstract
Obligate anaerobic bacteria fermenting volatile fatty acids in syntrophic association with methanogenic archaea share the intermediate bottleneck step in organic-matter decomposition. These organisms (called syntrophs) are biologically significant in terms of their growth at the thermodynamic limit and are considered to be the ideal model to address bioenergetic concepts. We conducted genomic and proteomic analyses of the thermophilic propionate-oxidizing syntroph Pelotomaculum thermopropionicum to obtain the genetic basis for its central catabolic pathway. Draft sequencing and subsequent targeted gap closing identified all genes necessary for reconstructing its propionate-oxidizing pathway (i.e., methylmalonyl coenzyme A pathway). Characteristics of this pathway include the following. (i) The initial two steps are linked to later steps via transferases. (ii) Each of the last three steps can be catalyzed by two different types of enzymes. It was also revealed that many genes for the propionate-oxidizing pathway, except for those for propionate coenzyme A transferase and succinate dehydrogenase, were present in an operon-like cluster and accompanied by multiple promoter sequences and a putative gene for a transcriptional regulator. Proteomic analysis showed that enzymes in this pathway were up-regulated when grown on propionate; of these enzymes, regulation of fumarase was the most stringent. We discuss this tendency of expression regulation based on the genetic organization of the open reading frame cluster. Results suggest that fumarase is the central metabolic switch controlling the metabolic flow and energy conservation in this syntroph.
- McMahon B, Gallagher ME, Mayhew SG
- The protein coded by the PP2216 gene of Pseudomonas putida KT2440 is an acyl-CoA dehydrogenase that oxidises only short-chain aliphatic substrates.
- FEMS Microbiol Lett. 2005; 250: 121-7
- Display abstract
A gene (PP2216) that codes for an acyl-CoA dehydrogenase was cloned from Pseudomonas putida strain KT2240 and over-expressed in Escherichia coli, and the recombinant enzyme purified and characterised. The enzyme is tetrameric with one FAD per subunit of molecular mass 40,500 Da. An anaerobic titration with sodium dithionite showed that the enzyme accepts two electrons. A similar titration with butyryl-CoA showed that reduction by this substrate was incomplete with 4.5 mol butyryl-CoA added per mol enzyme FAD; the equilibrium was used to calculate that the oxidation-reduction potential of the enzyme at pH 7 and 25 degrees C is 5+/-5 mV versus the standard hydrogen electrode. The enzyme shows catalytic activity with butyryl-CoA, valeryl-CoA and hexanoyl-CoA, and very low activity with heptanoyl-CoA and octanoyl-CoA; it fails to oxidise propionyl-CoA. These properties resemble those of short-chain acyl-CoA dehydrogenases from other sources. The enzyme is inactive with the CoA derivatives of all phenylalkanoates that were tested (side chains 3-8 carbon atoms) indicating that in contrast to an earlier suggestion, the enzyme is not involved in the beta-oxidation of aromatic compounds.
- Yan J, Wang Y, Shao SH, Mao YF, Li HW, Luo YH
- Construction of prokaryotic expression system of ltB-ureB fusion gene and identification of the recombinant protein immunity and adjuvanticity.
- World J Gastroenterol. 2004; 10: 2675-9
- Display abstract
AIM: To construct ltB-ureB fusion gene and its prokaryotic expression system and identify immunity and adjuvanticity of the expressed recombinant protein. METHODS: The ureB gene from a clinical Helicobacter pylori (H pylori) strain Y06 and the ltB gene from Escherichia coli (E. coli) strain 44851 were linked into ltB-ureB fusion gene by PCR. The fusion gene sequence was analyzed after T-A cloning. A prokaryotic recombinant expression vector pET32a inserted with ltB-ureB fusion gene (pET32a-ltB-ureB) was constructed. Expression of the recombinant LTB-UreB protein (rLTB-UreB) in E. coli BL21DE3 induced by isopropylthio-beta-D-galactoside (IPTG) at different concentrations was detected by SDS-PAGE. Western blot assays were used to examine the immunoreaction of rLTB-UreB by a commercial antibody against whole cell of H pylori and a self-prepared rabbit anti-rUreB serum, respectively, and determine the antigenicity of the recombinant protein on inducing specific antibody in rabbits. GM1-ELISA was used to demonstrate the adjuvanticity of rLTB-UreB. Immunoreaction of rLTB-UreB to the UreB antibody positive sera from 125 gastric patients was determined by using ELISA. RESULTS: In comparison with the corresponding sequences of original genes, the nucleotide sequence homologies of the cloned ltB-ureB fusion gene were 100%. IPTG with different dosages of 0.1-1.0 mmol/L could efficiently induce pET32a-ltB-ureB-E.coli BL21DE3 to express the rLTB-UreB. The output of the target recombinant protein expressed by pET32a-ureB-E.coli BL21DE3 was approximately 35% of the total bacterial proteins. rLTB-UreB mainly presented in the form of inclusion body. Western blotting results demonstrated that rLTB-UreB could combine with the commercial antibody against whole cell of H pylori and anti-rUreB serum as well as induce rabbit to produce specific antibody. The strong ability of rLTB-UreB binding bovine GM1 indicated the existence of adjuvanticity of the recombinant protein. All the UreB antibody positive sera from the patients (125/125) were positive for rLTB-UreB. CONCLUSION: A recombinant prokaryotic expression system with high expression efficiency of the target fusion gene ltB-ureB was successfully established. The expressed rLTB-UreB showed qualified immunogenicity, antigenicity and adjuvanticity. All the results mentioned above laid a firm foundation for further development of H pylori genetically engineered vaccine.
- Contreras M, Thiberge JM, Mandrand-Berthelot MA, Labigne A
- Characterization of the roles of NikR, a nickel-responsive pleiotropic autoregulator of Helicobacter pylori.
- Mol Microbiol. 2003; 49: 947-63
- Display abstract
The Helicobacter pylori genome contains a gene (hp1338 or nikR) that encodes a nickel-dependent regulator that is homologous to the Escherichia coli nickel-responsive regulator, NikR. The H. pylori nikR product acts as a pleiotropic metal-dependent regulator. We constructed a non-polar isogenic mutant deleted for the nikR gene. NikR was essential for the survival of H. pylori in the presence of high nickel and cobalt ion concentrations in vitro. We screened a DNA macroarray for genes that were differentially expressed in parental and nikR-deficient H. pylori strains grown in the presence of excess nickel. We found that H. pylori NikR mediates the expression of nickel-activated and -repressed genes. In the presence of excess nickel, NikR activated the transcription of ureA-ureB (hp72-73), nixA (hp1077 ), copA2 (hp1072), hpn (hp1427 ) and hpn-like (hp1432) genes and repressed the expression of genes encoding proteins involved in ferric iron uptake and storage [pfr (hp0653), fur (hp1027 ), frpB4 (hp1512), exbB/exbD (hp1339-1340), ceuE (hp1561)], motility [cheV (hp616), flaA (hp0601), flaB (hp0115 )], stress responses [hrcA-grpE-dnaK (hp111-110-109)] and encoding outer-membrane proteins [omp11(hp0472), omp31 (hp1469), omp32 (hp1501)]. Slot blot DNA/RNA hybridization experiments using RNA from three independent bacterial cultures confirmed the transcriptome data for 10 selected genes. The results of gel shift experiments using purified native NikR, beta-galactosidase assays with the region between nikR and the exbB/exbD divergent operon, and the study of exbB gene expression using a gentamicin/apramycin reporter gene in H. pylori indicated that NikR is an autorepressor that binds to this intergenic region and also controls the expression of the exbB/exbD/tonB operon, which provides energy for ferric iron uptake. Thus, as previously suggested for Fur in H. pylori, NikR appears to be a global regulator of the metabolism of some divalent cations within a highly complex regulated network.
- Alonso S, Bartolome-Martin D, del Alamo M, Diaz E, Garcia JL, Perera J
- Genetic characterization of the styrene lower catabolic pathway of Pseudomonas sp. strain Y2.
- Gene. 2003; 319: 71-83
- Display abstract
Pseudomonas sp. strain Y2 is a styrene-degrading bacterium, which initiates the catabolism of this compound via its transformation into phenylacetate by the sequential oxidation of the vinyl side chain. The styrene upper catabolic gene cluster (sty genes) had been localized in a 9.2-kb chromosomal region. This report describes the isolation, sequencing and analysis of an adjacent 20.5-kb chromosomal region that contains the genes of the styrene lower degradative pathway (paa genes), which are involved in the transformation of phenylacetate into aliphatic compounds that can enter the Krebs cycle. Hence, Pseudomonas sp. strain Y2 becomes the first microorganism whose entire styrene catabolic cluster has been completely characterized. Analysis of the paa gene cluster has revealed the presence of 17 open reading frames as well as gene duplications and gene reorganizations that are absent in other phenylacetate catabolic clusters described so far. The functionality of these genes has been proved by means of both complementation experiments on Pseudomonas putida mutants and in vitro enzymatic assays. Moreover, a DNA cassette encoding the whole styrene lower pathway has been constructed and has been used to expand the ability of Pseudomonas strains to degrade phenylacetic acid. For the first time, two functional phenylacetate-CoA ligases have been identified in an aerobic phenylacetic acid degradation pathway. Although the upper and lower styrene catabolic clusters are adjacent in the Pseudomonas sp. strain Y2 chromosome, their particular base composition and codon usage suggest a distinct evolutionary history.
- Yan J, Liang SH, Mao YF, Li LW, Li SP
- Construction of expression systems for flaA and flaB genes of Helicobacter pylori and determination of immunoreactivity and antigenicity of recombinant proteins.
- World J Gastroenterol. 2003; 9: 2240-50
- Display abstract
AIM: To clone flagellin genes A (flaA) and B (flaB) from a clinical strain of Helicobacter pylori (H pylori) and to construct prokaryotic expression systems of the genes and identify immunity of the fusion proteins. METHODS: The flaA and flaB genes from a clinical H pylori isolate Y06 were amplified by high fidelity PCR. The nucleotide sequences of target DNA amplification fragments from the two genes were sequenced after T-A cloning. The recombinant expression vector pET32a inserted with flaA and flaB genes was constructed, respectively. The expressions of FlaA and FlaB fusion proteins in E. coli BL21DE3 induced by isopropylthio-beta-D-galactoside (IPTG) at different concentrations were examined by SDS-PAGE. Western blot using commercial antibodies against whole cell of H pylori and immunodiffusion assay using self-prepared rabbit antiserum against FlaA (rFlaA) or FlaB (rFlaB) recombinant proteins were applied to the determination of the fusion proteins immunity. ELISA was used to detect the antibodies against rFlaA and rFlaB in sera of 125 H pylori infected patients and to examine rFlaA and rFlaB expression in 98 clinical isolates of H pylori, respectively. RESULTS: In comparison with the reported corresponding sequences, the nucleotide sequence homologies of the cloned flaA and flaB genes were from 96.28-97.13% and 96.31-97.73%, and their putative amino acid sequence homologies were 99.61-99.80% and 99.41-100% for the two genes, respectively. The output of rFlaA and rFlaB expressed by pET32a-flaA-BL21DE3 and pET32a-flaB-BL21DE3 systems was as high as 40-50% of the total bacterial proteins. Both rFlaA and rFlaB were able to combine with the commercial antibodies against whole cell of H pylori and to induce rabbits to produce specific antibodies with the same 1:2 immunodiffusion titers after the animals were immunized with the two recombinant proteins. Ninety-eight and zero point 4 and 92.80% of the serum samples from 125 patients infected with H pylori were positive for rFlaA and rFlaB antibodies, respectively. One hundred percent and 98.98% of the 98 tested isolates of H pylori were detectable for rFlaA and rFlaB epitopes, respectively. CONCLUSION: Two prokaryotic expression systems with high efficiency of H pylori flaA and flaB genes were successfully established. The expressed rFlaA and rFlaB showed satisfactory immunoreactivity and antigenicity. High frequencies of FlaA and FlaB expression in different H pylori clinical strains and the general existence of specific antibodies against FlaA and FlaB in H pylori infected patients strongly indicate that FlaA and FlaB are excellent antigen candidates for developing H pylori vaccine.
- Luthy L, Grutter MG, Mittl PR
- The crystal structure of Helicobacter pylori cysteine-rich protein B reveals a novel fold for a penicillin-binding protein.
- J Biol Chem. 2002; 277: 10187-93
- Display abstract
Colonization of the gastric mucosa with the spiral-shaped Gram-negative proteobacterium Helicobacter pylori is probably the most common chronic infection in humans. The genomes of H. pylori strains J99 and 26695 have been completely sequenced. Functional and three-dimensional structural information is available for less than one third of all open reading frames. We investigated the function and three-dimensional structure of a member from a family of cysteine-rich hypothetical proteins that are unique to H. pylori and Campylobacter jejuni. The structure of H. pylori cysteine-rich protein (Hcp) B possesses a modular architecture consisting of four alpha/alpha-motifs that are cross-linked by disulfide bridges. The Hcp repeat is similar to the tetratricopeptide repeat, which is frequently found in protein/protein interactions. In contrast to the tetratricopeptide repeat, the Hcp repeat is 36 amino acids long. HcpB is capable of binding and hydrolyzing 6-amino penicillinic acid and 7-amino cephalosporanic acid derivatives. The HcpB fold is distinct from the fold of any known penicillin-binding protein, indicating that the Hcp proteins comprise a new family of penicillin-binding proteins. The putative penicillin binding site is located in an amphipathic groove on the concave side of the molecule.
- Skouloubris S, Labigne A, De Reuse H
- The AmiE aliphatic amidase and AmiF formamidase of Helicobacter pylori: natural evolution of two enzyme paralogues.
- Mol Microbiol. 2001; 40: 596-609
- Display abstract
Aliphatic amidases (EC 3.5.1.4) are enzymes catalysing the hydrolysis of short-chain amides to produce ammonia and the corresponding organic acid. Such an amidase, AmiE, has been detected previously in Helicobacter pylori. Analysis of the complete H. pylori genome sequence revealed the existence of a duplicated amidase gene that we named amiF. The corresponding AmiF protein is 34% identical to its AmiE paralogue. Because gene duplication is widely considered to be a fundamental process in the acquisition of novel enzymatic functions, we decided to study and compare the functions of the paralogous amidases of H. pylori. AmiE and AmiF proteins were overproduced in Escherichia coli and purified by a two-step chromatographic procedure. The two H. pylori amidases could be distinguished by different biochemical characteristics such as optimum pH or temperature. AmiE hydrolysed propionamide, acetamide and acrylamide and had no activity with formamide. AmiF presented an unexpected substrate specificity: it only hydrolysed formamide. AmiF is thus the first formamidase (EC 3.5.1.49) related to aliphatic amidases to be described. Cys-165 in AmiE and Cys-166 in AmiF were identified as residues essential for catalysis of the corresponding enzymes. H. pylori strains carrying single and double mutations of amiE and amiF were constructed. The substrate specificities of these enzymes were confirmed in H. pylori. Production of AmiE and AmiF proteins is dependent on the activity of other enzymes involved in the nitrogen metabolism of H. pylori (urease and arginase respectively). Our results strongly suggest that (i) the H. pylori paralogous amidases have evolved to achieve enzymatic specialization after ancestral gene duplication; and (ii) the production of these enzymes is regulated to maintain intracellular nitrogen balance in H. pylori.
- Elssner T, Engemann C, Baumgart K, Kleber HP
- Involvement of coenzyme A esters and two new enzymes, an enoyl-CoA hydratase and a CoA-transferase, in the hydration of crotonobetaine to L-carnitine by Escherichia coli.
- Biochemistry. 2001; 40: 11140-8
- Display abstract
Two proteins (CaiB and CaiD) were found to catalyze the reversible biotransformation of crotonobetaine to L-carnitine in Escherichia coli in the presence of a cosubstrate (e.g., gamma-butyrobetainyl-CoA or crotonobetainyl-CoA). CaiB (45 kDa) and CaiD (27 kDa) were purified in two steps to electrophoretic homogeneity from overexpression strains. CaiB was identified as crotonobetainyl-CoA:carnitine CoA-transferase by MALDI-TOF mass spectrometry and enzymatic assays. The enzyme exhibits high cosubstrate specificity to CoA derivatives of trimethylammonium compounds. In particular, the N-terminus of CaiB shows significant identity with other CoA-transferases (e.g., FldA from Clostridium sporogenes, Frc from Oxalobacter formigenes, and BbsE from Thauera aromatica) and CoA-hydrolases (e.g., BaiF from Eubacterium sp.). CaiD was shown to be a crotonobetainyl-CoA hydratase using MALDI-TOF mass spectrometry and enzymatic assays. Besides crotonobetainyl-CoA CaiD is also able to hydrate crotonyl-CoA with a significantly lower Vmax (factor of 10(3)) but not crotonobetaine. The substrate specificity of CaiD and its homology to the crotonase confirm this enzyme as a new member of the crotonase superfamily. Concluding these results, it was verified that hydration of crotonobetaine to L-carnitine proceeds at the CoA level in two steps: the CaiD catalyzed hydration of crotonobetainyl-CoA to L-carnitinyl-CoA, followed by a CoA transfer from L-carnitinyl-CoA to crotonobetaine, catalyzed by CaiB. When gamma-butyrobetainyl-CoA was used as a cosubstrate (CoA donor), the first reaction is the CoA transfer. The optimal ratios of CaiB and CaiD during this hydration reaction, determined to be 4:1 when crotonobetainyl-CoA was used as cosubstrate and 5:1 when gamma-butyrobetainyl-CoA was used as cosubstrate, are different from that found for in vivo conditions (1:3).
- Gerhardt A, Cinkaya I, Linder D, Huisman G, Buckel W
- Fermentation of 4-aminobutyrate by Clostridium aminobutyricum: cloning of two genes involved in the formation and dehydration of 4-hydroxybutyryl-CoA.
- Arch Microbiol. 2000; 174: 189-99
- Display abstract
Clostridium aminobutyricum ferments 4-aminobutyrate via succinic semialdehyde, 4-hydroxybutyrate, 4-hydroxybutyryl-CoA and crotonyl-CoA to acetate and butyrate. The genes coding for the enzymes that catalyse the interconversion of these intermediates are arranged in the order abfD (4-hydroxybutyryl-CoA dehydratase), abfT (4-hydroxybutyrate CoA-transferase), and abfH (NAD-dependent 4-hydroxybutyrate dehydrogenase). The genes abfD and abfT were cloned, sequenced and expressed as active enzymes in Escherichia coli. Hence the insertion of the [4Fe-4S]clusters and FAD into the dehydratase required no additional specific protein from C. aminobutyricum. The amino acid sequences of the dehydratase and the CoA-transferase revealed close relationships to proteins deduced from the genomes of Clostridium difficile, Porphyromonas gingivalis and Archaeoglobus fulgidus. In addition the N-terminal part of the dehydratase is related to those of a family of FAD-containing mono-oxygenases from bacteria. The putative assignment in the databank of Cat2 (OrfZ) from Clostridium kluyveri as 4-hydroxybutyrate CoA-transferase, which is thought to be involved in the reductive pathway from succinate to butyrate, was confirmed by sequence comparison with AbfT (57% identity). Furthermore, an acetyl-CoA:4-hydroxybutyrate CoA-transferase activity could be detected in cell-free extracts of C. kluyveri. In contrast to glutaconate CoA-transferase from Acidaminococcus fermentans, mutation studies suggested that the glutamate residue of the motive EXG, which is conserved in many homologues of AbfT, does not form a CoA-ester during catalysis.
- Garcia B et al.
- Phenylacetyl-coenzyme A is the true inducer of the phenylacetic acid catabolism pathway in Pseudomonas putida U.
- Appl Environ Microbiol. 2000; 66: 4575-8
- Display abstract
Aerobic degradation of phenylacetic acid in Pseudomonas putida U is carried out by a central catabolism pathway (phenylacetyl-coenzyme A [CoA] catabolon core). Induction of this route was analyzed by using different mutants specifically designed for this objective. Our results revealed that the true inducer molecule is phenylacetyl-CoA and not other structurally or catabolically related aromatic compounds.
- Shirai M, Fujinaga R, Akada JK, Nakazawa T
- Activation of Helicobacter pylori ureA promoter by a hybrid Escherichia coli-H. pylori rpoD gene in E. coli.
- Gene. 1999; 239: 351-9
- Display abstract
We constructed and analyzed hybrid Escherichia coli-Helicobacter pylori rpoD genes in an E. coli rpoD mutant. It turned out that a hybrid consisting of E. coli rpoD with subdomain 4.2 of H. pylori rpoD (for -35 recognition) was functional. On the other hand, hybrids consisting of E. coli rpoD with domain 2 and the adjacent sequence of H. pylori rpoD (for core enzyme binding and -10 recognition) were non-functional. Intriguingly, a hybrid rpoD containing H. pylori subdomain 4.2 conferred higher activity for the H. pylori PureA as determined by xylE expression of PureA-xylE fusions, although the activity of the hybrid rpoD for the tac promoter was comparable to that of E. coli rpoD. The tsp of ureA in E. coli with the hybrid rpoD and E. coli rpoD were 15 and 17bp upstream from that in H. pylori, respectively. The comparison of PureA sequences in both E. coli and H. pylori indicated the existence of a -10 consensus sequence but little conservation of -35 sequences. Instead, the PureA in both H. pylori and E. coli contained an identical heptamer, GTTAATA, in the extended -35 region.
- Armengaud J, Timmis KN, Wittich RM
- A functional 4-hydroxysalicylate/hydroxyquinol degradative pathway gene cluster is linked to the initial dibenzo-p-dioxin pathway genes in Sphingomonas sp. strain RW1.
- J Bacteriol. 1999; 181: 3452-61
- Display abstract
The bacterium Sphingomonas sp. strain RW1 is able to use dibenzo-p-dioxin, dibenzofuran, and several hydroxylated derivatives as sole sources of carbon and energy. We have determined and analyzed the nucleic acid sequence of a 9,997-bp HindIII fragment downstream of cistrons dxnA1A2, which encode the dioxygenase component of the initial dioxygenase system of the corresponding catabolic pathways. This fragment contains 10 colinear open reading frames (ORFs), apparently organized in one compact operon. The enzymatic activities of some proteins encoded by these genes were analyzed in the strain RW1 and, after hyperexpression, in Escherichia coli. The first three ORFs of the locus, designated dxnC, ORF2, and fdx3, specify a protein with a low homology to bacterial siderophore receptors, a polypeptide representing no significant homology to known proteins, and a putative ferredoxin, respectively. dxnD encodes a 69-kDa phenol monooxygenase-like protein with activity for the turnover of 4-hydroxysalicylate, and dxnE codes for a 37-kDa protein whose sequence and activity are similar to those of known maleylacetate reductases. The following gene, dxnF, encodes a 33-kDa intradiol dioxygenase which efficiently cleaves hydroxyquinol, yielding maleylacetate, the ketoform of 3-hydroxy-cis,cis-muconate. The heteromeric protein encoded by dxnGH is a 3-oxoadipate succinyl coenzyme A (succinyl-CoA) transferase, whereas dxnI specifies a protein exhibiting marked homology to acetyl-CoA acetyltransferases (thiolases). The last ORF of the sequenced fragment codes for a putative transposase. DxnD, DxnF, DxnE, DxnGH, and DxnI (the activities of most of them have also been detected in strain RW1) thus form a complete 4-hydroxysalicylate/hydroxyquinol degradative pathway. A route for the mineralization of the growth substrates 3-hydroxydibenzofuran and 2-hydroxydibenzo-p-dioxin in Sphingomonas sp. strain RW1 thus suggests itself.
- Connerton PL, Connerton IF
- Identification of a gene encoding an immuno-reactive membrane protein from Campylobacter jejuni.
- Lett Appl Microbiol. 1999; 28: 233-7
- Display abstract
A gene encoding a putative membrane protein has been identified from Campylobacter jejuni NCTC 11168 following an immuno-screen of a lambda ZAP II genomic DNA library with antiserum raised against glycine-extractable proteins. The nucleotide sequence of the entire genomic insert revealed six open reading frames, all but one of which have sequence homologues in the complete genome sequence of Helicobacter pylori. The gene encoding the immuno-reactive protein was further identified by independent expression of these reading frames in Escherichia coli. The gene encodes an integral membrane protein, expression of which in E. coli results in a profound filamentous phenotype.
- Hsieh PF, Yang JC, Lin JT, Wang JT
- Molecular mechanisms of clarithromycin resistance in Helicobacter pylori.
- J Formos Med Assoc. 1998; 97: 445-52
- Display abstract
Combination antibiotic therapy for Helicobacter pylori has now become the standard means of treating peptic ulcer diseases. Clarithromycin is a newly adopted antibiotic for H. pylori eradication. However, resistance to clarithromycin reduces the efficacy of clarithromycin-containing regimens. We explored mechanisms of clarithromycin resistance by evaluating H. pylori for macrolide resistance mechanisms reported in H. pylori and other bacteria. Degenerate polymerase chain reaction analysis of the H. pylori genome failed to yield products homologous to methylase, a drug inactivation enzyme, or efflux pumps. Clarithromycin selection in Escherichia coliNM522, transformed with an expression library that was constructed with genomic DNA from a clarithromycin-resistant strain of H. pylori, revealed six clones that conferred clarithromycin resistance consistently after retransformation. Southern hybridization and DNA sequencing revealed that four of the six clones contained the same locus. Comparison of DNA and amino acid sequences showed that the 1.3-kb DNA fragment had significant homology to the 3-oxoadipate CoA-transferase subunit A (yxjD) and subunit B (yxjE) of Bacillus subtilis. However, the clarithromycin inactivation assay and knockout mutation analysis showed that the gene increased clarithromycin resistance in E. coli, but not in H. pylori. In contrast, sequencing of the 23S rRNA gene in six clarithromycin-resistant H. pylori clinical isolates revealed an A to G transitional mutation at position 2515 of the 23S rRNA gene in all isolates. Natural transformation with the 23S rRNA gene from resistant strains conferred clarithromycin resistance in clarithromycin-sensitive strains. We conclude that the 23S rRNA mutation is sufficient to confer clarithromycin resistance and that it is the major mechanism of clarithromycin resistance in H. pylori.
- Philipp B, Schink B
- Evidence of two oxidative reaction steps initiating anaerobic degradation of resorcinol (1,3-dihydroxybenzene) by the denitrifying bacterium Azoarcus anaerobius.
- J Bacteriol. 1998; 180: 3644-9
- Display abstract
The denitrifying bacterium Azoarcus anaerobius LuFRes1 grows anaerobically with resorcinol (1,3-dihydroxybenzene) as the sole source of carbon and energy. The anaerobic degradation of this compound was investigated in cell extracts. Resorcinol reductase, the key enzyme for resorcinol catabolism in fermenting bacteria, was not present in this organism. Instead, resorcinol was hydroxylated to hydroxyhydroquinone (HHQ; 1,2,4-trihydroxybenzene) with nitrate or K3Fe(CN)6 as the electron acceptor. HHQ was further oxidized with nitrate to 2-hydroxy-1,4-benzoquinone as identified by high-pressure liquid chromatography, UV/visible light spectroscopy, and mass spectroscopy. Average specific activities were 60 mU mg of protein-1 for resorcinol hydroxylation and 150 mU mg of protein-1 for HHQ dehydrogenation. Both activities were found nearly exclusively in the membrane fraction and were only barely detectable in extracts of cells grown with benzoate, indicating that both reactions were specific for resorcinol degradation. These findings suggest a new strategy of anaerobic degradation of aromatic compounds involving oxidative steps for destabilization of the aromatic ring, different from the reductive dearomatization mechanisms described so far.
- Thompson SA, Latch RL, Blaser JM
- Molecular characterization of the Helicobacter pylori uvr B gene.
- Gene. 1998; 209: 113-22
- Display abstract
Helicobacter pylori persists in the human stomach where it may encounter a variety of DNA-damaging conditions, including gastric acidity. To determine whether the nucleotide excision repair (NER) pathway contributes to the repair of acid-induced DNA damage, we have cloned the putative H. pylori NER gene, uvrB. Degenerate oligonucleotide primers based on conserved amino acid residues of bacterial UvrB proteins were used in PCR with genomic DNA from H. pylori strain 84-183, and the 1.3-kb PCR product from this reaction was used as a probe to clone uvrB from an H. pylori genomic library. This plasmid clone had a 5.5-kb insert containing a 2.0-kb ORF whose predicted product (658 amino acids; 75.9 kDa) exhibited 69.5% similarity to E. coli UvrB. We constructed an isogenic H. pylori uvrB mutant by inserting a kanamycin-resistance cassette into uvrB and verified its proper placement by Southern hybridization. As with uvrB mutants of other bacteria, the H. pylori uvrB mutant showed a greatly increased sensitivity to the DNA-damaging agents methylmethane sulfonate and ultraviolet radiation. The uvrB mutant also was significantly more sensitive than the wild-type strain to killing by low pH, suggesting that the H. pylori nucleotide excision repair (NER) pathway is involved in the repair of acid-induced DNA damage.
- Song XQ et al.
- Succinyl-CoA:3-ketoacid coenzyme A transferase (SCOT): development of an antibody to human SCOT and diagnostic use in hereditary SCOT deficiency.
- Biochim Biophys Acta. 1997; 1360: 151-6
- Display abstract
Succinyl-CoA:3-ketoacid CoA transferase (SCOT) is a key enzyme for ketone body utilization. Hereditary SCOT deficiency in humans (McKusick catalogue number 245050) is characterized by intermittent ketoacidotic attacks and permanent hyperketonemia. Since previously-available antibody to rat SCOT did not crossreact with human SCOT, we developed an antibody against recombinant human SCOT expressed in a bacterial system. The recombinant SCOT was insoluble except under denaturing conditions. Antibody raised to this polypeptide recognized denatured SCOT and proved useful for immunoblot analysis. On immunoblots, SCOT was easily detectable in control fibroblasts and lymphocytes but was detected neither in fibroblast extracts from four SCOT-deficient patients, nor in lymphocytes from two SCOT-deficient patients. These data indicate that immunoblot analysis is useful for diagnosis of SCOT deficiency in combination with enzyme assay.
- Enos-Berlage JL, Downs DM
- Mutations in sdh (succinate dehydrogenase genes) alter the thiamine requirement of Salmonella typhimurium.
- J Bacteriol. 1997; 179: 3989-96
- Display abstract
Mutants lacking the first enzyme in de novo purine synthesis (PurF) can synthesize thiamine if increased levels of pantothenate are present in the culture medium (J. L. Enos-Berlage and D. M. Downs, J. Bacteriol. 178:1476-1479, 1996). Derivatives of purF mutants that no longer required pantothenate for thiamine-independent growth were isolated. Analysis of these mutants demonstrated that they were defective in succinate dehydrogenase (Sdh), an enzyme of the tricarboxylic acid cycle. Results of phenotypic analyses suggested that a defect in Sdh decreased the thiamine requirement of Salmonella typhimurium. This reduced requirement correlated with levels of succinyl-coenzyme A (succinyl-CoA), which is synthesized in a thiamine pyrophosphate-dependent reaction. The effect of succinyl-CoA on thiamine metabolism was distinct from the role of pantothenate in thiamine synthesis.
- Schmitt W, Odenbreit S, Heuermann D, Haas R
- Cloning of the Helicobacter pylori recA gene and functional characterization of its product.
- Mol Gen Genet. 1995; 248: 563-72
- Display abstract
The RecA protein is a key enzyme involved in DNA recombination in bacteria. Using a polymerase chain reaction (PCR) amplification we cloned a recA homolog from Helicobacter pylori. The gene revealed an open reading frame (ORF) encoding a putative protein of 37.6 kDa showing closest homology to the Campylobacter jejuni RecA (75.5% identity). A putative ribosome binding site and a near-consensus sigma 70 promoter sequence was found upstream of recA. A second ORF, encoding a putative protein with N-terminal sequence homology to prokaryotic and eukaryotic enolases, is located directly downstream of recA. Compared to the wild-type strains, isogenic H. pylori recA deletion mutants of strains 69A and NCTC11637 displayed increased sensitivity to ultraviolet light and abolished general homologous recombination. The recombinant H. pylori RecA protein produced in Escherichia coli strain GC6 (recA-) was 38 kDa in size but inactive in DNA repair, whereas the corresponding protein in H. pylori 69A migrated at the greater apparent molecular weight of approx. 40 kDa in SDS-polyacrylamide gels. However, complementation of the H. pylori mutant using the cloned recA gene on a shuttle vector resulted in a RecA protein of the original size and fully restored the general functions of the enzyme. These data can be best explained by a modification of RecA in H. pylori which is crucial for its function. The potential modification seems not to occur when the protein is produced in E. coli, giving rise to a smaller but inactive protein.
- Rochet JC, Bridger WA
- Identification of glutamate 344 as the catalytic residue in the active site of pig heart CoA transferase.
- Protein Sci. 1994; 3: 975-81
- Display abstract
The enzyme CoA transferase (succinyl-CoA:3-ketoacid coenzyme A transferase [3-oxoacid CoA transferase], EC 2.8.3.5) is essential for the metabolism of ketone bodies in the mammalian mitochondrion. It is known that its catalytic mechanism involves the transient thioesterification of an active-site glutamate residue by CoA. As a means of identifying this glutamate within the sequence, we have made use of a fortuitous autolytic fragmentation that occurs at the active site when the enzyme-CoA covalent intermediate is heated. The presence of protease inhibitors has no effect on the extent of cleavage detectable by SDS-PAGE, supporting the view that this fragmentation is indeed autolytic. This fragmentation can be carried out on intact CoA transferase, as well as on a proteolytically nicked but active form of the enzyme. Because the resulting C-terminal fragment is blocked at its N-terminus by a pyroglutamate moiety, it is not amenable to direct sequencing by the Edman degradation method. As an alternative, we have studied a peptide (peptide D) generated specifically by autolysis of the nicked enzyme and predicted to have an N-terminus corresponding to the site of proteolysis and a C-terminus determined by the site of autolysis. This peptide was purified by reversed-phase HPLC and subsequently characterized by electrospray mass spectrometry. We have obtained a mass value for peptide D, from which it can be deduced that glutamate 344, known to be conserved in all sequenced CoA transferases, is the catalytically active amino acid. This information should prove useful to future mutagenesis work aimed at better understanding the active-site structure and catalytic mechanism of CoA transferase.
- Spiegelhalder C, Gerstenecker B, Kersten A, Schiltz E, Kist M
- Purification of Helicobacter pylori superoxide dismutase and cloning and sequencing of the gene.
- Infect Immun. 1993; 61: 5315-25
- Display abstract
The superoxide dismutase (SOD) of Helicobacter pylori, a pathogenic bacterium which colonizes the gastric mucosa, evoking a marked inflammatory response, was purified and characterized, and the N-terminal amino acid sequence was determined. The enzyme consists of two identical subunits each with an apparent molecular weight of 24,000. Analysis of the primary structure and inhibition studies revealed that H. pylori possesses a typical procaryotic iron-containing enzyme. No other isoenzymes could be detected. Indirect gold immunostaining of H. pylori SOD with a polyclonal antibody directed against the iron-containing SOD of Escherichia coli showed a surface-associated localization of the enzyme. The H. pylori SOD gene was cloned by functional complementation of a SOD-deficient E. coli mutant. Sequencing and alignment revealed striking homology to the following facultative intracellular human pathogens: Listeria ivanovii, Listeria monocytogenes, Coxiella burnetti, Porphyromonas gingivalis, Legionella pneumophila, and Entamoeba histolytica. An open reading frame of 642 bp encoding 214 amino acids was determined. There was no leader sequence detectable. Cloning of the H. pylori SOD gene is one of the prerequisites to investigation of its pathophysiological role in the defense against antimicrobial mechanisms of polymorphonuclear granulocytes.
- Thornton CG et al.
- Primary structure of the monomer of the 12S subunit of transcarboxylase as deduced from DNA and characterization of the product expressed in Escherichia coli.
- J Bacteriol. 1993; 175: 5301-8
- Display abstract
Transcarboxylase from Propionibacterium shermanii is a complex biotin-containing enzyme composed of 30 polypeptides of three different types: a hexameric central 12S subunit to which 6 outer 5S subunits are attached through 12 1.3S biotinyl subunits. The enzyme catalyzes a two-step reaction in which methylmalonyl coenzyme A and pyruvate serve as substrates to form propionyl coenzyme A (propionyl-CoA) and oxalacetate, the 12S subunit specifically catalyzing one of the two reactions. We report here the cloning, sequencing, and expression of the 12S subunit. The gene was identified by matching amino acid sequences derived from isolated authentic 12S peptides with the deduced sequence of an open reading frame present in a cloned P. shermanii genomic fragment known to contain the gene encoding the 1.3S biotinyl subunit. The cloned 12S gene encodes a protein of 604 amino acids and of M(r) 65,545. The deduced sequence shows regions of extensive homology with the beta subunit of mammalian propionyl-CoA carboxylase as well as regions of homology with acetyl-CoA carboxylase from several species. Two genomic fragments were subcloned into pUC19 in an orientation such that the 12S open reading frame could be expressed from the lac promoter of the vector. Crude extracts prepared from these cells contained an immunoreactive band on Western blots (immunoblots) which comigrated with authentic 12S. The Escherichia coli-expressed 12S was purified to apparent homogeneity by a three-step procedure and compared with authentic 12S from P. shermanii. Their quaternary structures were identical by electron microscopy, and the E. coli 12S preparation was fully active in the reactions catalyzed by this subunit. We conclude that we have cloned, sequenced, and expressed the 12S subunit which exists in a hexameric active form in E.coli.
- Coco WM, Rothmel RK, Henikoff S, Chakrabarty AM
- Nucleotide sequence and initial functional characterization of the clcR gene encoding a LysR family activator of the clcABD chlorocatechol operon in Pseudomonas putida.
- J Bacteriol. 1993; 175: 417-27
- Display abstract
The 3-chlorocatechol operon clcABD is central to the biodegradative pathway of 3-chlorobenzoate. The clcR regulatory gene, which activates the clcABD operon, was cloned from the region immediately upstream of the operon and was shown to complement an insertion mutation for growth on 3-chlorobenzoate. ClcR activated the clcA promoter, which controls expression of the clcABD operon, in trans by 14-fold in an in vivo promoter probe assay in Pseudomonas putida when cells were incubated with 15 mM 3-chlorobenzoic acid. Specific binding of ClcR to the clcR-clcA intergenic promoter region was observed in a gel shift assay. Nucleotide sequence analysis of the clcR gene predicts a polypeptide of 32.5 kDa, which was confirmed by using specific in vivo 35S labeling of the protein from a T7 promoter-controlled ATG fusion construct. ClcR shares high sequence identity with the LysR family of bacterial regulator proteins and has especially high homology to a subgroup of the family consisting of TcbR (57% amino acid sequence identity), TfdS, CatR, and CatM. ClcR was shown to autoregulate its own production in trans to 35% of unrepressed levels but partially relieved this autorepression under conditions that induced transcription at the clcA promoter. Several considerations indicate that the clcR-clcABD locus is most similar to the tcbR-tcbCDEF regulon.
- Parales RE, Harwood CS
- Characterization of the genes encoding beta-ketoadipate: succinyl-coenzyme A transferase in Pseudomonas putida.
- J Bacteriol. 1992; 174: 4657-66
- Display abstract
beta-Ketoadipate:succinyl-coenzyme A transferase (beta-ketoadipate:succinyl-CoA transferase) (EC 2.8.3.6) carries out the penultimate step in the conversion of benzoate and 4-hydroxybenzoate to tricarboxylic acid cycle intermediates in bacteria utilizing the beta-ketoadipate pathway. This report describes the characterization of a DNA fragment from Pseudomonas putida that encodes this enzyme. The fragment complemented mutants defective in the synthesis of the CoA transferase, and two proteins of sizes appropriate to encode the two nonidentical subunits of the enzyme were produced in Escherichia coli when the fragment was placed under the control of a phage T7 promoter. DNA sequence analysis revealed two open reading frames, designated pcaI and pcaJ, that were separated by 8 bp, suggesting that they may comprise an operon. A comparison of the deduced amino acid sequence of the P. putida CoA transferase genes with the sequences of two other bacterial CoA transferases and that of succinyl-CoA:3-ketoacid CoA transferase from pig heart suggests that the homodimeric structure of the mammalian enzyme may have resulted from a gene fusion of the bacterial alpha and beta subunit genes during evolution. Conserved functional groups important to the catalytic activity of CoA transferases were also identified.
- Huisman GW, Wonink E, Meima R, Kazemier B, Terpstra P, Witholt B
- Metabolism of poly(3-hydroxyalkanoates) (PHAs) by Pseudomonas oleovorans. Identification and sequences of genes and function of the encoded proteins in the synthesis and degradation of PHA.
- J Biol Chem. 1991; 266: 2191-8
- Display abstract
Pseudomonas oleovorans accumulates poly(3-hydroxyalkanoates) (PHAs) after growth on medium chain length hydrocarbons. Large amounts of this polyester are synthesized when cells are grown under nitrogen-limiting conditions. When nitrogen is resupplied in the medium, the accumulated PHA is degraded. In this paper, we describe mutants which are defective in the synthesis or in the degradation of PHA. These mutants were used to select DNA fragments which encode PHA polymerases and a PHA depolymerase. A 25-kilobase (kb) DNA fragment was isolated from P. oleovorans that complements a Pseudomonas putida mutant unable to accumulate PHA. Subcloning resulted in the assignment of a 6.4-kb EcoRI fragment as the pha locus, containing genetic information for PHA synthesis. Mutants in the PHA degradation pathway were also complemented by this fragment, indicating that genes encoding PHA biosynthetic and degradative enzymes are clustered. Analysis of the DNA sequence of the 6.4-kb fragment revealed the presence of two open reading frames encoding PHA polymerases based on homology to the poly(3-hydroxybutyrate) polymerase from Alcaligenes eutrophus. A third open reading frame complemented the PHA degradation mutation and is likely to encode a PHA depolymerase. The presence of two PHA polymerases is due to a 2098-base pair DNA duplication. The PHA polymerases are 53% identical and show 35-40% identity to the poly(3-hydroxybutyrate) polymerase. No clear difference in specificity was found for the PHA polymerases. However, with the pha locus cloned on a multicopy vector, a polymer was accumulated that contains a significantly higher amount of substrate-derived monomers. An increase in the rate of polyester synthesis versus oxidation of the monomers in the beta-oxidation explains these findings.
- Harayama S, Rekik M, Bairoch A, Neidle EL, Ornston LN
- Potential DNA slippage structures acquired during evolutionary divergence of Acinetobacter calcoaceticus chromosomal benABC and Pseudomonas putida TOL pWW0 plasmid xylXYZ, genes encoding benzoate dioxygenases.
- J Bacteriol. 1991; 173: 7540-8
- Display abstract
The xylXYZ DNA region is carried on the TOL pWW0 plasmid in Pseudomonas putida and encodes a benzoate dioxygenase with broad substrate specificity. The DNA sequence of the region is presented and compared with benABC, the chromosomal region encoding the benzoate dioxygenase of Acinetobacter calcoaceticus. Corresponding genes from the two biological sources share common ancestry: comparison of aligned XylX-BenA, XylY-BenB, and XylZ-BenC amino acid sequences revealed respective identities of 58.3, 61.3, and 53%. The aligned genes have diverged to assume G+C contents that differ by 14.0 to 14.9%. Usage of the unusual arginine codons AGA and AGG appears to have been selected in the P. putida xylX gene as it diverged from the ancestor it shared with A. calcoaceticus benA. Homologous A. calcoaceticus and P. putida genes exhibit different patterns of DNA sequence repetition, and analysis of one such pattern suggests that mutations creating different DNA slippage structures made a significant contribution to the evolutionary divergence of xylX.
- Lee SY, Rasheed S
- A simple procedure for maximum yield of high-quality plasmid DNA.
- Biotechniques. 1990; 9: 676-9
- Display abstract
We have established a simple procedure for the rapid isolation of high-quality plasmid DNA suitable for various molecular techniques and provided a step-by-step protocol. The DNA samples isolated by this procedure have been used successfully for double-stranded DNA sequencing, restriction enzyme mapping, subcloning, in vitro mutagenesis, generation of deletion clones and so on. The procedure is highly reproducible, and superior quality DNA can be obtained without the use of phenol, chloroform or other organic solvents.
- Cary JW, Petersen DJ, Papoutsakis ET, Bennett GN
- Cloning and expression of Clostridium acetobutylicum ATCC 824 acetoacetyl-coenzyme A:acetate/butyrate:coenzyme A-transferase in Escherichia coli.
- Appl Environ Microbiol. 1990; 56: 1576-83
- Display abstract
Coenzyme A (CoA)-transferase (acetoacetyl-CoA:acetate/butyrate:CoA-transferase [butyrate-acetoacetate CoA-transferase] [EC 2.8.3.9]) of Clostridium acetobutylicum ATCC 824 is an important enzyme in the metabolic shift between the acid-producing and solvent-forming states of this organism. The purification and properties of the enzyme have recently been described (D. P. Weisenborn, F. B. Rudolph, and E. T. Papoutsakis, Appl. Environ. Microbiol. 55:323-329, 1989). The genes encoding the two subunits of this enzyme have been cloned by using synthetic oligodeoxynucleotide probes designed from amino-terminal sequencing data from each subunit of the CoA-transferase. A bacteriophage lambda EMBL3 library of C. acetobutylicum DNA was prepared and screened by using these probes. Subsequent subcloning experiments established the position of the structural genes for CoA-transferase. Complementation of Escherichia coli ato mutants with the recombinant plasmid pCoAT4 (pUC19 carrying a 1.8-kilobase insert of C. acetobutylicum DNA encoding CoA-transferase activity) enabled the transformants to grow on butyrate as a sole carbon source. Despite the ability of CoA-transferase to complement the ato defect in E. coli mutants, Southern blot and Western blot (immunoblot) analyses showed that neither the C. acetobutylicum genes encoding CoA-transferase nor the enzyme itself shared any apparent homology with its E. coli counterpart. Polypeptides of Mr of the purified CoA-transferase subunits were observed by Western blot and maxicell analysis of whole-cell extracts of E. coli harboring pCoAT4. The proximity and orientation of the genes suggest that the genes encoding the two subunits of CoA-transferase may form an operon similar to that found in E. coli.(ABSTRACT TRUNCATED AT 250 WORDS)
- Hawkins CF, Borges A, Perham RN
- Cloning and sequence analysis of the genes encoding the alpha and beta subunits of the E1 component of the pyruvate dehydrogenase multienzyme complex of Bacillus stearothermophilus.
- Eur J Biochem. 1990; 191: 337-46
- Display abstract
A 4175-bp EcoRI fragment of DNA that encodes the alpha and beta chains of the pyruvate dehydrogenase (lipoamide) component (E1) of the pyruvate dehydrogenase multienzyme complex of Bacillus stearothermophilus has been cloned in Escherichia coli. Its nucleotide sequence was determined. Open reading frames (pdhA, pdhB) corresponding to the E1 alpha subunit (368 amino acids, Mr 41,312, without the initiating methionine residue) and E1 beta subunit (324 amino acids, Mr 35,306, without the initiating methionine residue) were identified and confirmed with the aid of amino acid sequences determined directly from the purified polypeptide chains. The E1 beta gene begins just 3 bp downstream from the E1 alpha stop codon. It is followed, after a longer gap of 73 bp, by the start of another but incomplete open reading frame that, on the basis of its known amino acid sequence, encodes the dihydrolipoyl acetyltransferase (E2) component of the complex. All three genes are preceded by potential ribosome-binding sites and the gene cluster is located immediately downstream from a region of DNA showing numerous possible promoter sequences. The E1 alpha and E1 beta subunits of the B. stearothermophilus pyruvate dehydrogenase complex exhibit substantial sequence similarity with the E1 alpha and E1 beta subunits of pyruvate and branched-chain 2-oxo-acid dehydrogenase complexes from mammalian mitochondria and Pseudomonas putida. In particular, the E1 alpha chain contains the highly conserved sequence motif that has been found in all enzymes utilizing thiamin diphosphate as cofactor.
- West SE, Iglewski BH
- Codon usage in Pseudomonas aeruginosa.
- Nucleic Acids Res. 1988; 16: 9323-35
- Display abstract
We have generated a codon usage table for Pseudomonas aeruginosa. Codon usage in P. aeruginosa is extremely biased. In contrast to E. coli and yeast, P. aeruginosa preferentially uses those codons within a synonymous codon group with the strongest predicted codon-anticodon interaction. We were unable to correlate a particular codon usage pattern with predicted levels of mRNA expressivity. The choice of a third base reflects the high guanine plus cytosine content of the P. aeruginosa genome (67.2%) and cytosine is the preferred nucleotide for the third codon position.
- Stewart GS, Lubinsky-Mink S, Jackson CG, Cassel A, Kuhn J
- pHG165: a pBR322 copy number derivative of pUC8 for cloning and expression.
- Plasmid. 1986; 15: 172-81
- Display abstract
During the construction of the Messing pUC plasmid series, the rop(rom) gene of pBR322 which mediates the activity of RNAI was deleted. This has resulted in an elevated copy number for the pUC plasmids which makes the expression of beta-galactosidase activity constitutive in a host containing the Iqtss lac repressor. We describe the construction of a new series of vectors which retain the pUC multiple cloning site (MCS) but in which copy number control has been recovered. In addition, the lac alpha/lac promoter expression region has been inserted into a HpaI cassette. This facilitates the movement of recombinant DNA clones within the MCS. It also increases the complementation activity of the lac alpha peptide by an order of magnitude, allowing selection of recombinants by their Lac- phenotype on MacConkey agar.
- Shanley MS, Neidle EL, Parales RE, Ornston LN
- Cloning and expression of Acinetobacter calcoaceticus catBCDE genes in Pseudomonas putida and Escherichia coli.
- J Bacteriol. 1986; 165: 557-63
- Display abstract
This report describes the isolation and preliminary characterization of a 5.0-kilobase-pair (kbp) EcoRI DNA restriction fragment carrying the catBCDE genes from Acinetobacter calcoaceticus. The respective genes encode enzymes that catalyze four consecutive reactions in the catechol branch of the beta-ketoadipate pathway: catB, muconate lactonizing enzyme (EC 5.5.1.1); catC, muconolactone isomerase (EC 5.3.3.4); catD, beta-ketoadipate enol-lactone hydrolase (EC 3.1.1.24); and catE, beta-ketoadipate succinyl-coenzyme A transferase (EC 2.8.3.6). In A. calcoaceticus, pcaDE genes encode products with the same enzyme activities as those encoded by the respective catDE genes. In Pseudomonas putida, the requirements for both catDE and pcaDE genes are met by a single set of genes, designated pcaDE. A P. putida mutant with a dysfunctional pcaE gene was used to select a recombinant pKT230 plasmid carrying the 5.0-kbp EcoRI restriction fragment containing the A. calcoaceticus catE structural gene. The recombinant plasmid, pAN1, complemented P. putida mutants with lesions in catB, catC, pcaD, and pcaE genes; the complemented activities were expressed constitutively in the recombinant P. putida strains. After introduction into Escherichia coli, the pAN1 plasmid expressed the activities constitutively but at much lower levels that those found in the P. putida transformants or in fully induced cultures of A. calcoaceticus or P. putida. When placed under the control of a lac promoter on a recombinant pUC13 plasmid in E. coli, the A. calcoaceticus restriction fragment expressed catBCDE activities at levels severalfold higher than those found in fully induced cultures of A. calcoaceticus. Thus there is no translational barrier to expression of the A. calcoaceticus genes at high levels in E. coli. The genetic origin of the cloned catBCDE genes was demonstrated by the fact that the 5.0-kbp EcoRI restriction fragment hybridized with a corresponding fragment from wild-type A. calcoaceticus DNA. This fragment was missing in DNA from an A. calcoaceticus mutant in which the cat genes had been removed by deletion. The properties of the cloned fragment demonstrate physical linkage of the catBCDE genes and suggest that they are coordinately transcribed.
- McLaughlin GL, Saz HJ, deBruyn BS
- Purification and properties of an acyl CoA transferase from Ascaris suum muscle mitochondria.
- Comp Biochem Physiol B. 1986; 83: 523-7
- Display abstract
An acyl CoA transferase has been purified to electrophoretic homogeneity from the soluble compartment of Ascaris suum muscle mitochondria. From SDS-PAGE, isoelectric focusing and molecular exclusion chromatography, homogeneity was confirmed and the enzyme appears to be composed of two similar or identical subunits of apparent mol. wts of 50,000 resulting in an apparent mol. wt of 100,000 for the holoenzyme. The apparent isoelectric point was 5.6 +/- 0.1 by both chromatofocusing columns and slab gel isoelectric focusing. The transferase was relatively specific for the short, straight-chain acyl CoA donors as well as the CoA acceptors, being active on acetyl CoA, propionyl CoA, butyryl CoA, valeryl CoA and hexanoyl CoA as donors to acetate and propionate. Neither succinyl CoA nor succinate were appreciably active as CoA donor or acceptor, respectively. This enzyme cannot serve physiologically to activate succinate for decarboxylation to propionate, but may serve to ensure a supply of propionyl CoA which appears to be required in catalytic amounts for the decarboxylation of succinate.
- Harwood CS, Rivelli M, Ornston LN
- Aromatic acids are chemoattractants for Pseudomonas putida.
- J Bacteriol. 1984; 160: 622-8
- Display abstract
A quantitative capillary assay was used to show that aromatic acids, compounds that are chemorepellents for Escherichia coli and Salmonella sp., are chemoattractants for Pseudomonas putida PRS2000. The most effective attractants were benzoate; p-hydroxybenzoate; the methylbenzoates; m-, p-, and o-toluate; salicylate; DL-mandelate; beta-phenylpyruvate; and benzoylformate. The chemotactic responses to these compounds were inducible. Taxis to benzoate and m-toluate was induced by beta-ketoadipate, a metabolic intermediate formed when benzoate is dissimilated via enzymes specified by chromosomal genes. Benzoylformate taxis was induced by benzoylformate and L(+)-mandelate. Taxis to mandelate, benzoylformate, and beta-phenylpyruvate was exhibited by cells grown on mandelate, but not by cells grown on benzoate. Cells grown on benzoate were chemotactic to benzoate, the toluates, p-hydroxybenzoate, and salicylate. These results show that P. putida synthesizes at least two distinct chemoreceptors for aromatic acids. Although DL-mandelate was an effective attractant in capillary assays, additional experiments indicated that the cells were actually responding to benzoylformate, a metabolite formed from mandelate. With the exception of mandelate taxis, chemotaxis to aromatic acids was not dependent on the expression of pathways for aromatic degradation. Therefore, the tactic responses exhibited by cells cannot be attributed to an effect of the oxidation of aromatic acids on the energy metabolism of cells.
- Sharp JA, Edwards MR
- Initial-velocity kinetics of succinoyl-coenzyme A-3-oxo acid coenzyme A-transferase from sheep kidney.
- Biochem J. 1983; 213: 179-85
- Display abstract
The initial-velocity kinetics of sheep kidney CoA-transferase are consistent with a Ping Pong mechanism. A KAcAc-CoA of 2.7 X 10(-5) M, KSucc-CoA of 1.6 X 10(-4) M, KSucc of 5.6 X 10(-3) M and KAcAc of 6.7 X 10(-5) M were determined by using a direct assay system that monitors the concentration of magnesium acetoacetyl-CoA enolate. However, product-inhibition kinetics of sheep kidney CoA-transferase are inconsistent with a Ping Pong mechanism. The possible involvement of separate binding sites for succinate and acetoacetate are discussed.
- Moore SA, Jencks WP
- Model reactions for CoA transferase involving thiol transfer. Anhydride formation from thiol esters and carboxylic acids.
- J Biol Chem. 1982; 257: 10882-92
- Display abstract
Rate and equilibrium constants were determined for anhydride formation from the thiol esters p-nitrophenyl thiosuccinate (PTS) and N-acetyl-S-succinyl-beta-mercaptoethylamine, and from p-nitrophenyl thioacetate in the presence of substituted acetates. These thiol esters undergo thiol transfer reactions through rate-determining anhydride formation that are models for the enzymic reaction catalyzed by CoA transferase. The same value of beta nuc approximately equal to 1.0 for the nucleophilic reactions of substituted acetates with p-nitrophenyl thioacetate and with enzyme-CoA supports the anhydride mechanism for the enzymic reactions. The bimolecular reaction of succinyl-CoA with enzyme is 10(13) times faster than the nonenzymic reaction of acetyl-CoA with acetate; the intramolecular reaction of bound substrate is accelerated by a factor of kcat/kN - 10(11) M. The nonenzymic intramolecular reaction of PTS is faster than the nucleophilic reaction of acetate with acetyl-CoA by a similar factor of 4.5 X 10(10) M, of which 6 X 10(5) M is caused by intramolecularity and 7 X 10(4) by the increased chemical reactivity of PTS compared to acetyl-CoA. The enzyme may utilize binding energy to increase the reaction rate by making the reaction intramolecular (decreasing the requirement for loss of entropy) and by destabilizing the bound substrate relative to the transition state in an analogous manner. An identical rate increase of 6 X 10(5) M from intramolecularity was observed for the reaction of N-acetyl-S-succinyl-beta-mercaptoethylamine compared with the corresponding acetate. The rate increase in the intramolecular reaction of PTS reflects more favorable values of T delta S identical = 5.0 +/- 1.4 kcal mol-1 and -delta H identical to = 2.9 +/- 1.3 kcal mol-1 compared with the bimolecular reaction.
- McCorkle GM, Yeh WK, Fletcher P, Ornston LN
- Repetitions in the NH2-terminal amino acid sequence of beta-ketoadipate enol-lactone hydrolase from Pseudomonas putida.
- J Biol Chem. 1980; 255: 6335-41
- Display abstract
Muconolactone delta-isomerase (EC 5.3.3.4) and beta-ketoadipate enol-lactone hydrolase (EC 3.1.1.24) mediate consecutive reactions in the beta-ketoadipate pathway of bacteria. An earlier investigation (Yeh, W.K., Davis, G., Fletcher, P., and Ornston, L.N. (1978) J. Biol. Chem. 253, 4920-4923) revealed that the respective NH2-terminal amino acid sequences of Pseudomonas putida muconolactone isomerase and Acinetobacter calcoaceticus beta-ketoadipate enol-lactone hydrolase II are evolutionarily homologous. In this report, we describe the purification of Pseudomonas beta-ketoadipate enol-lactone hydrolase and present evidence indicating that the protein is a trimer composed of identical 11,000-dalton subunits. The NH2-terminal amino acid sequences of Pseudomonas muconolactone isomerase and Pseudomonas enol-lactone hydrolase have diverged widely from each other, yet the two sequences contain different fragments of an ancestral sequence which is represented in Acinetobacter enol-lactone hydrolase II. The widely divergent Pseudomonas muconolactone isomerase and Pseudomonas enol-lactone hydrolase sequences each contain unique sets of repeated peptides. In principle, the repetitive sequences might have been introduced by elongation mutations which occurred early in the evolution of the proteins. However, the divergence of Pseudomonas muconolactone isomerase and Pseudomonas enol-lactone hydrolase is so extreme that the observed sequence repetitions cannot have been conserved from ancestral duplication mutations. Rather, the data favor the interpretation that copies of DNA were substituted into structural genes for the enzymes as they diverged.
- Wolodko WT, Brownie ER, Bridger WA
- Subunits of succinyl-coenzyme A synthetase: coordination of production in Escherichia coli and discovery of a factor that precludes refolding.
- J Bacteriol. 1980; 143: 231-7
- Display abstract
Succinyl-coenzyme A synthetase of Escherichia coli has an alpha 2 beta 2 subunit structure. By measuring reconstituted enzyme activity present after addition of purified alpha or beta subunits to cell extracts followed by refolding, we have shown that extracts contain no significant excess of either subunit species. This equivalence suggests that the expression of the respective structural genes for the subunits is coordinately controlled. The presence of cell extract does not affect the rate or extent of reassembly of the subunits, pointing to a high degree of specificity of mutual recognition by the refolding subunits. In the course of these experiments, we have detected the presence in cell extracts of a low-molecular-weight factor that specifically inactivates unfolded alpha or beta subunits or prevents their reassembly into catalytically active enzyme. Under conditions where the subunits are completely inactivated, the factor has no detectable effect on native or refolded tetrameric enzyme, suggesting that the factor may react only with unfolded protein.
- Hedges RW, Jacob AE, Crawford IP
- Wide ranging plasmid bearing the Pseudomonas aeruginosa tryptophan synthase genes.
- Nature. 1977; 267: 283-4
- White H, Jencks WP
- Properties of succinyl-CoA:3-ketoacid coenzyme A transferase.
- J Biol Chem. 1976; 251: 1708-11
- Display abstract
CoA transferase binds tightly to blue dextran; this facilitates purification. The enzyme has a molecular weight of 92,000 and consists of two subunits and 3 to 4 isozymes. Amino acid and carbohydrate analyses are reported.
- Sramek SJ, Frerman FE
- Escherichia coli coenzyme A-transferase: kinetics, catalytic pathway and structure.
- Arch Biochem Biophys. 1975; 171: 27-35
- Hosokawa K
- Regulation of synthesis of early enzymes of p-hydroxybenzoate pathway in Pseudomonas putida.
- J Biol Chem. 1970; 245: 5304-8
- Hersh LB, Jencks WP
- Isolation of an enzyme-coenzyme A intermediate from succinyl coenzyme A-acetoacetate coenzyme A transferase.
- J Biol Chem. 1967; 242: 339-40
- Ornston LN, Stanier RY
- The conversion of catechol and protocatechuate to beta-ketoadipate by Pseudomonas putida.
- J Biol Chem. 1966; 241: 3776-86