Secondary literature sources for GIDA_assoc_3
The following references were automatically generated.
- Yamada M, Watanabe T, Baba N, Takeuchi Y, Ohsawa F, Gomi S
- Crystal structures of biapenem and tebipenem complexed with penicillin-binding proteins 2X and 1A from Streptococcus pneumoniae.
- Antimicrob Agents Chemother. 2008; 52: 2053-60
- Display abstract
Biapenem is a parenteral carbapenem antibiotic that exhibits wide-ranging antibacterial activity, remarkable chemical stability, and extensive stability against human renal dehydropeptidase-I. Tebipenem is the active form of tebipenem pivoxil, a novel oral carbapenem antibiotic that has a high level of bioavailability in humans, in addition to the above-mentioned features. beta-lactam antibiotics, including carbapenems, target penicillin-binding proteins (PBPs), which are membrane-associated enzymes that play essential roles in peptidoglycan biosynthesis. To envisage the binding of carbapenems to PBPs, we determined the crystal structures of the trypsin-digested forms of both PBP 2X and PBP 1A from Streptococcus pneumoniae strain R6, each complexed with biapenem or tebipenem. The structures of the complexes revealed that the carbapenem C-2 side chains form hydrophobic interactions with Trp374 and Thr526 of PBP 2X and with Trp411 and Thr543 of PBP 1A. The Trp and Thr residues are conserved in PBP 2B. These results suggest that interactions between the C-2 side chains of carbapenems and the conserved Trp and Thr residues in PBPs play important roles in the binding of carbapenems to PBPs.
- Ross B et al.
- High resolution crystal structures of the p120 RasGAP SH3 domain.
- Biochem Biophys Res Commun. 2007; 353: 463-8
- Display abstract
X-ray structures of two crystal forms of the Src homology 3 domain (SH3) of the Ras GTPase activating protein (RasGAP) were determined at 1.5 and 1.8A resolution. The overall structure comprises a single domain with two tightly packed beta-sheets linked by a short helical segment. An important motif for peptide binding in other SH3 domains is not conserved in RasGAP. The RasGAP SH3 domain forms dimers in the crystal structures, which may provide new functional insight. The dimer interface involves residues also present in a peptide previously identified as an apoptotic sensitizer of tumor cells.
- Zimmer J, Li W, Rapoport TA
- A novel dimer interface and conformational changes revealed by an X-ray structure of B. subtilis SecA.
- J Mol Biol. 2006; 364: 259-65
- Display abstract
The SecA ATPase moves polypeptides post-translationally across the plasma membrane of eubacteria, but the mechanism of transport is still unclear. We describe the crystal structure of a novel dimeric form of Bacillus subtilis SecA. Dimerization of SecA occurs at the prominent groove formed by the nucleotide binding domain 2 (nbd2) and the preprotein cross-linking (ppx) domain. The dimer interface is very large, burying approximately 5400 A(2) of solvent accessible surface per monomer. Single cysteine disulfide cross-linking shows the presence of this novel SecA dimer in solution. In addition, other dimers also exist in solution, arguing that they all are in equilibrium with monomeric SecA and supporting the idea that the monomer may be the functional species. Dimerization of SecA causes an alpha-helix of one subunit to convert to a short beta-strand that participates in beta-sheet formation with strands in the other subunit. This conversion of secondary structure elements occurs close to the connection between the nbd1 and ppx domains, a potential site of interaction with translocation substrate. Comparing the different X-ray structures of B. subtilis SecA suggests that small changes in the nucleotide binding domains could be amplified via helix 1 of the helical scaffold domain (hsd) to generate larger movements of the domains involved in polypeptide binding.
- Saikatendu KS, Zhang X, Kinch L, Leybourne M, Grishin NV, Zhang H
- Structure of a conserved hypothetical protein SA1388 from S. aureus reveals a capped hexameric toroid with two PII domain lids and a dinuclear metal center.
- BMC Struct Biol. 2006; 6: 27-27
- Display abstract
BACKGROUND: The protein encoded by the SA1388 gene from Staphylococcus aureus was chosen for structure determination to elucidate its domain organization and confirm our earlier remote homology based prediction that it housed a nitrogen regulatory PII protein-like domain. SA1388 was predicted to contain a central PII-like domain and two flanking regions, which together belong to the NIF3-like protein family. Proteins like SA1388 remain a poorly studied group and their structural characterization could guide future investigations aimed at understanding their function. RESULTS: The structure of SA1388 has been solved to 2.0A resolution by single wavelength anomalous dispersion phasing method using selenium anomalous signals. It reveals a canonical NIF3-like fold containing two domains with a PII-like domain inserted in the middle of the polypeptide. The N and C terminal halves of the NIF3-like domains are involved in dimerization, while the PII domain forms trimeric contacts with symmetry related monomers. Overall, the NIF3-like domains of SA1388 are organized as a hexameric toroid similar to its homologs, E. coli ybgI and the hypothetical protein SP1609 from Streptococcus pneumoniae. The openings on either side of the toroid are partially covered by trimeric "lids" formed by the PII domains. The junction of the two NIF3 domains has two zinc ions bound at what appears to be a histidine rich active site. A well-defined electron density corresponding to an endogenously bound ligand of unknown identity is observed in close proximity to the metal site. CONCLUSION: SA1388 is the third member of the NIF3-like family of proteins to be structurally characterized, the other two also being hypothetical proteins of unknown function. The structure of SA1388 confirms our earlier prediction that the inserted domain that separates the two NIF3 domains adopts a PII-like fold and reveals an overall capped toroidal arrangement for the protein hexamer. The six PII-like domains form two trimeric "lids" that cap the central cavity of the toroid on either side and provide only small openings to allow regulated entry of small molecules into the occluded chamber. The presence of the electron density of the bound ligand may provide important clues on the likely function of NIF3-like proteins.
- Zhao G, Ali E, Sakka M, Kimura T, Sakka K
- Binding of S-layer homology modules from Clostridium thermocellum SdbA to peptidoglycans.
- Appl Microbiol Biotechnol. 2006; 70: 464-9
- Display abstract
S-layer homology (SLH) module polypeptides were derived from Clostridium josui xylanase Xyn10A, Clostridium stercorarium xylanase Xyn10B, and Clostridium thermocellum scafoldin dockerin binding protein SdbA as rXyn10A-SLH, rXyn10B-SLH, and rSdbA-SLH, respectively. Their binding specificities were investigated using various cell wall preparations. rXyn10A-SLH and rXyn10B-SLH bound to native peptidoglycan-containing sacculi consisting of peptidoglycan and secondary cell wall polymers (SCWP) prepared from these bacteria but not to hydrofluoric acid-extracted peptidoglycan-containing sacculi (HF-EPCS) lacking SCWP, suggesting that SCWP are responsible for binding with SLH modules. In contrast, rSdbA-SLH interacted with HF-EPCS, suggesting that this polypeptide had an affinity for peptidoglycans but not for SCWP. The affinity of rSdbA-SLH for peptidoglycans was confirmed by a binding assay using a peptidoglycan fraction prepared from Escherichia coli cells. The SLH modules of SdbA must be useful for cell surface engineering in bacteria that do not contain SCWP.
- Russ WP, Lowery DM, Mishra P, Yaffe MB, Ranganathan R
- Natural-like function in artificial WW domains.
- Nature. 2005; 437: 579-83
- Display abstract
Protein sequences evolve through random mutagenesis with selection for optimal fitness. Cooperative folding into a stable tertiary structure is one aspect of fitness, but evolutionary selection ultimately operates on function, not on structure. In the accompanying paper, we proposed a model for the evolutionary constraint on a small protein interaction module (the WW domain) through application of the SCA, a statistical analysis of multiple sequence alignments. Construction of artificial protein sequences directed only by the SCA showed that the information extracted by this analysis is sufficient to engineer the WW fold at atomic resolution. Here, we demonstrate that these artificial WW sequences function like their natural counterparts, showing class-specific recognition of proline-containing target peptides. Consistent with SCA predictions, a distributed network of residues mediates functional specificity in WW domains. The ability to recapitulate natural-like function in designed sequences shows that a relatively small quantity of sequence information is sufficient to specify the global energetics of amino acid interactions.
- Janke C et al.
- Tubulin polyglutamylase enzymes are members of the TTL domain protein family.
- Science. 2005; 308: 1758-62
- Display abstract
Polyglutamylation of tubulin has been implicated in several functions of microtubules, but the identification of the responsible enzyme(s) has been challenging. We found that the neuronal tubulin polyglutamylase is a protein complex containing a tubulin tyrosine ligase-like (TTLL) protein, TTLL1. TTLL1 is a member of a large family of proteins with a TTL homology domain, whose members could catalyze ligations of diverse amino acids to tubulins or other substrates. In the model protist Tetrahymena thermophila, two conserved types of polyglutamylases were characterized that differ in substrate preference and subcellular localization.
- Liepinsh E, Baryshev M, Sharipo A, Ingelman-Sundberg M, Otting G, Mkrtchian S
- Thioredoxin fold as homodimerization module in the putative chaperone ERp29: NMR structures of the domains and experimental model of the 51 kDa dimer.
- Structure. 2001; 9: 457-71
- Display abstract
BACKGROUND: ERp29 is a ubiquitously expressed rat endoplasmic reticulum (ER) protein conserved in mammalian species. Fold predictions suggest the presence of a thioredoxin-like domain homologous to the a domain of human protein disulfide isomerase (PDI) and a helical domain similar to the C-terminal domain of P5-like PDIs. As ERp29 lacks the double-cysteine motif essential for PDI redox activity, it is suggested to play a role in protein maturation and/or secretion related to the chaperone function of PDI. ERp29 self-associates into 51 kDa dimers and also higher oligomers. RESULTS: 3D structures of the N- and C-terminal domains determined by NMR spectroscopy confirmed the thioredoxin fold for the N-terminal domain and yielded a novel all-helical fold for the C-terminal domain. Studies of the full-length protein revealed a short, flexible linker between the two domains, homodimerization by the N-terminal domain, and the presence of interaction sites for the formation of higher molecular weight oligomers. A gadolinium-based relaxation agent is shown to present a sensitive tool for the identification of macromolecular interfaces by NMR. CONCLUSIONS: ERp29 is the first eukaryotic PDI-related protein for which the structures of all domains have been determined. Furthermore, an experimental model of the full-length protein and its association states was established. It is the first example of a protein where the thioredoxin fold was found to act as a specific homodimerization module, without covalent linkages or supporting interactions by further domains. A homodimerization module similar as in ERp29 may also be present in homodimeric human PDI.