Secondary literature sources for MA
The following references were automatically generated.
- Amer AO, Valvano MA
- The N-terminal region of the Escherichia coli WecA (Rfe) protein, containing three predicted transmembrane helices, is required for function but not for membrane insertion.
- J Bacteriol. 2000; 182: 498-503
- Display abstract
The correct site for translation initiation for Escherichia coli WecA (Rfe), presumably involved in catalyzing the transfer of N-acetylglucosamine 1-phosphate to undecaprenylphosphate, was determined by using its FLAG-tagged derivatives. The N-terminal region containing three predicted transmembrane helices was found to be necessary for function but not for membrane localization of this protein.
- Perazzona B, Spudich JL
- Identification of methylation sites and effects of phototaxis stimuli on transducer methylation in Halobacterium salinarum.
- J Bacteriol. 1999; 181: 5676-83
- Display abstract
The two transducers in the phototaxis system of the archaeon Halobacterium salinarum, HtrI and HtrII, are methyl-accepting proteins homologous to the chemotaxis transducers in eubacteria. Consensus sequences predict three glutamate pairs containing potential methylation sites in HtrI and one in HtrII. Mutagenic substitution of an alanine pair for one of these, Glu265-Glu266, in HtrI and for the homologous Glu513-Glu514 in HtrII eliminated methylation of these two transducers, as demonstrated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis autofluorography. Photostimulation of the repellent receptor sensory rhodopsin II (SRII) induced reversible demethylation of HtrII, while no detectable change in the extent of methylation of HtrI was observed in response to stimulation of its cognate sensory rhodopsin, the attractant receptor SRI. Cells containing HtrI or HtrII with all consensus sites replaced by alanine still exhibited phototaxis responses and behavioral adaptation, and methanol release assays showed that methyl group turnover was still induced in response to photostimulation of SRI or SRII. By pulse-chase experiments with in vivo L-[methyl-(3)H]methionine-labeled cells, we found that repetitive photostimulation of SRI complexed with wild-type (or nonmethylatable) HtrI induced methyl group turnover in transducers other than HtrI to the same extent as in wild-type HtrI. Both attractant and repellent stimuli cause a transient increase in the turnover rate of methyl groups in wild-type H. salinarum cells. This result is unlike that obtained with Escherichia coli, in which attractant stimuli decrease and repellent stimuli increase turnover rate, and is similar to that obtained with Bacillus subtilis, which also shows turnover rate increases regardless of the nature of the stimulus. We found that a CheY deletion mutant of H. salinarum exhibited the E. coli-like asymmetric pattern, as has recently also been observed in B. subtilis. Further, we demonstrate that the CheY-dependent feedback effect does not require the stimulated transducer to be methylatable and operates globally on other transducers present in the cell.
- Feng X, Lilly AA, Hazelbauer GL
- Enhanced function conferred on low-abundance chemoreceptor Trg by a methyltransferase-docking site.
- J Bacteriol. 1999; 181: 3164-71
- Display abstract
In Escherichia coli, high-abundance chemoreceptors are present in cellular amounts approximately 10-fold higher than those of low-abundance receptors. These two classes exhibit inherent differences in functional activity. As sole cellular chemoreceptors, high-abundance receptors are effective in methyl-accepting activity, in establishing a functional balance between the two directions of flagellar rotation, in timely adaptation, and in mediating efficient chemotaxis. Low-abundance receptors are not, even when their cellular content is increased. We found that the low-abundance receptor Trg acquired essential functional features of a high-abundance receptor by the addition of the final 19 residues of the high-abundance receptor Tsr. The carboxy terminus of this addition carried a methyltransferase-binding pentapeptide, NWETF, present in high-abundance receptors but absent in the low-abundance class. Provision of this docking site not only enhanced steady-state and adaptational methylation but also shifted the abnormal, counterclockwise bias of flagellar rotation toward a more normal rotational balance and vastly improved chemotaxis in spatial gradients. These improvements can be understood as the result of both enhanced kinase activation by the more methylated receptor and timely adaptation by more efficient methyl-accepting activity. We conclude that the crucial functional difference between the low-abundance receptor Trg and its high-abundance counterparts is the level of methyl-accepting activity conferred by the methyltransferase-docking site.
- Eisenbach M, Caplan SR
- Bacterial chemotaxis: unsolved mystery of the flagellar switch.
- Curr Biol. 1998; 8: 4446-4446
- Display abstract
Impressive progress has been made in understanding the mechanism of bacterial chemotaxis and function of the flagellar motor, but how the direction of rotation is reversed by the 'flagellar switch'--a central step in chemotaxis--remains obscure and calls for new experimental approaches.
- Panagiotidis CH, Shuman HA
- Maltose transport in Escherichia coli: mutations that uncouple ATP hydrolysis from transport.
- Methods Enzymol. 1998; 292: 30-9
- Bren A, Eisenbach M
- The N terminus of the flagellar switch protein, FliM, is the binding domain for the chemotactic response regulator, CheY.
- J Mol Biol. 1998; 278: 507-14
- Display abstract
A key event in signal transduction during chemotaxis of Salmonella typhimurium and related bacterial species is the interaction between the phosphorylated form of the response regulator CheY (CheY approximately P) and the switch of the flagellar motor, located at its base. The consequence of this interaction is a shift in the direction of flagellar rotation from the default, counterclockwise, to clockwise. The docking site of CheY approximately P at the switch is the protein FliM. The purpose of this study was to identify the CheY-binding domain of FliM. We cloned 17 fliM mutants, each defective in switching and having a point mutation at a different location, and then overexpressed and purified their products. The CheY-binding ability of each of the FliM mutant proteins was determined by chemical crosslinking. All the mutant proteins with an amino acid substitution at the N terminus, FliM6LI, FliM7SY and FliM10EG, bound CheY approximately P to a much lesser extent than did wild-type FliM. CheY approximately P-binding of the other mutant proteins was similar to wild-type FliM. To investigate whether the FliM domain that includes these three mutations is indeed the CheY-binding domain, we synthesized a peptide composed of the first 16 amino acid residues of FliM, including a highly conserved region of FliM (residues 6 to 15). The peptide bound CheY and, to a larger extent, CheY approximately P. It also competed with full-length FliM on CheY approximately P. These results indicate that the CheY-binding domain of FliM is located at the N terminus, within residues 1 to 16, and suggest that FliM monomers can form a complete site for CheY binding.
- Ames P, Yu YA, Parkinson JS
- Methylation segments are not required for chemotactic signalling by cytoplasmic fragments of Tsr, the methyl-accepting serine chemoreceptor of Escherichia coli.
- Mol Microbiol. 1996; 19: 737-46
- Display abstract
The serine chemoreceptor Tsr and other methyl-accepting chemotaxis proteins (MCPs) control the swimming behaviour of Escherichia coli by generating signals that influence the direction of flagellar rotation. MCPs produce clockwise (CW) signals by stimulating the autophosphorylation activity of CheA, a cytoplasmic histidine kinase, and counter-clockwise signals by inhibiting CheA. CheW couples CheA to chemoreceptor control by promoting formation of MCP/CheW/CheA ternary complexes. To identify MCP structural determinants essential for CheA stimulation, we inserted fragments of the tsr coding region into an inducible expression vector and used a swimming contest called 'pseudotaxis' to select for transformant cells carrying CW-signalling plasmids. The shortest active fragment we found, Tsr (350-470), stimulated CheA in a CheW-dependent manner, as full-length Tsr molecules do. It spans a highly conserved 'core' (370-420) that probably specifies the CheA and CheW contact sites and other determinants needed for stimulatory control of CheA. Tsr (350-470) also carries portions of the left and right arms flanking the core, which probably play roles in regulating MCP signalling state. However, this Tsr fragment lacks all of the methylation sites characteristic of MCP molecules, indicating that methylation segments are not essential for generating receptor output signals.
- Park C, Dutton DP, Hazelbauer GL
- Effects of glutamines and glutamates at sites of covalent modification of a methyl-accepting transducer.
- J Bacteriol. 1990; 172: 7179-87
- Display abstract
Chemotactic transducer proteins of Escherichia coli contain four or five methyl-accepting glutamates that are crucial for sensory adaptation and gradient sensing. Two residues arise from posttranslational deamidation of glutamines to yield methyl-accepting glutamates. We addressed the significance of this arrangement by creating two mutated trg genes: trg(5E), coding for a transducer in which all five modification sites were synthesized as glutamates, and trg(5Q), in which all five were glutamines. We found that the normal (3E,2Q) configuration was not an absolute requirement for synthesis, assembly, or stable maintenance of transducers. Both mutant proteins were methylated, although Trg(5Q) had a reduced number of methyl-accepting sites because two glutamines at adjacent residues were blocked for deamidation and thus could not become methyl-accepting glutamates. The glutamine-glutamate balance had striking effects on signaling state. Trg(5E) was in a strong counterclockwise signaling configuration, and Trg(5Q) was in a strong clockwise signaling induced by ligand binding, and alanines substituted at modification sites had an intermediate effect. Chemotactic migration by growing cells containing trg(5E) or trg(5Q) exhibited reduced effectiveness, probably reflecting perturbations of the counterclockwise/clockwise ratio caused by newly synthesized transducers not modified rapidly enough to produce a balanced signaling state during growth. These defects were evident for cells in which other transducers were not available to contribute to balanced signaling or were present at lower levels than the mutant proteins.
- Yamamoto K, Macnab RM, Imae Y
- Repellent response functions of the Trg and Tap chemoreceptors of Escherichia coli.
- J Bacteriol. 1990; 172: 383-8
- Display abstract
The chemoreceptors responsible for the repellent response of Escherichia coli to phenol were investigated. In the absence of all four known methyl-accepting chemoreceptors (Tar, Tsr, Trg, and Tap), cells showed no response to phenol. However, when Trg, which mediates the attractant response to ribose and galactose, was introduced via a plasmid, the cells acquired a repellent response to phenol. About 1 mM phenol induced a clear repellent response; this response was suppressed by 1 mM ribose. Thus, Trg mediates the repellent response to phenol. Mutant Trg proteins with altered sensing for ribose and galactose showed a normal response to phenol, indicating that the interaction site for phenol differs from that for the ribose- and galactose-binding proteins. Tap, which mediates the attractant response to dipeptides, mediated a weaker repellent response to phenol. Tsr, which mediates the attractant response to serine, mediated an even weaker response to phenol. Trg and Tap were also found to function as intracellular pH sensors. Upon a pH decrease, Trg mediated an attractant response, whereas Tap mediated a repellent response. These results indicate that all the receptors in E. coli have dual functions, mediating both attractant and repellent responses.
- Hazelbauer GL, Park C, Nowlin DM
- Adaptational "crosstalk" and the crucial role of methylation in chemotactic migration by Escherichia coli.
- Proc Natl Acad Sci U S A. 1989; 86: 1448-52
- Display abstract
We investigated roles of methylation in bacterial chemotaxis by characterizing a methyl-accepting transducer protein incapable of methylation because of amino acid substitutions at the modification sites. Mutant Trg protein recognized ligand and generated excitatory signals that affected flagella but was unable to mediate efficient adaptation or net cellular migration in a relevant chemical gradient. Defects caused by lack of methyl-accepting sites on Trg were suppressed by a sufficient cellular content of other transducer molecules with functional methyl-accepting sites. These observations establish directly that methylation is crucial for transducer-mediated chemotaxis and that neither phosphotransfer reactions among the soluble Che proteins nor other interaction among those chemotactic components can effectively fulfill the functions of methylation. Suppression was correlated with adaptational "crosstalk" in which unoccupied methyl-accepting transducers acquired methyl groups, thus apparently substituting effectively for blocked methyl-accepting sites on the transducer. A plausible model for this phenomenon is that increased methylation of unstimulated transducers results from global inhibition of the demethylating enzyme in a cell with a normally active methyltransferase and no available methyl-accepting sites on the stimulated, mutant transducer. Thus methylation can perform its roles in adaptation and gradient sensing even if modification occurs on molecules different from those that recognize the stimulating compound. This observation emphasizes the central role of methylation and the modular nature of the chemosensory system.
- Wolff C, Parkinson JS
- Aspartate taxis mutants of the Escherichia coli tar chemoreceptor.
- J Bacteriol. 1988; 170: 4509-15
- Display abstract
The Tar protein of Escherichia coli belongs to a family of methyl-accepting inner membrane proteins that mediate chemotactic responses to a variety of compounds. These transmembrane signalers monitor the chemical environment by means of specific ligand-binding sites arrayed on the periplasmic side of the membrane, and in turn control cytoplasmic signals that modulate the flagellar rotational machinery. The periplasmic receptor domain of Tar senses two quite different chemoeffectors, aspartate and maltose. Aspartate is detected through direct binding to Tar molecules, whereas maltose is detected indirectly when complexed with the periplasmic maltose-binding protein. Saturating levels of either aspartate or maltose do not block behavioral responses to the other compound, indicating that the detection sites for these two attractants are not identical. We initiated structure-function studies of these chemoreceptor sites by isolating tar mutants which eliminate aspartate or maltose taxis, while retaining the ability to respond to the other chemoeffector. Mutants with greatly reduced aspartate taxis are described and characterized in this report. When present in single copy in the chromosome, these tar mutations generally eliminated chemotactic responses to aspartate and structurally related compounds, such as glutamate and methionine. Residual responses to these compounds were shifted to higher concentrations, indicating a reduced affinity of the aspartate-binding site in the mutant receptors. Maltose responses in the mutants ranged from 10 to 80% of normal, but had no detectable threshold shifts, indicating that these receptor alterations may have little effect on maltose detection sensitivity. The mutational changes in 17 mutants were determined by DNA sequence analysis.(ABSTRACT TRUNCATED AT 250 WORDS)
- Nowlin DM, Bollinger J, Hazelbauer GL
- Site-directed mutations altering methyl-accepting residues of a sensory transducer protein.
- Proteins. 1988; 3: 102-12
- Display abstract
The Trg protein is one of a family of transducer proteins that mediate chemotactic response in Escherichia coli. Transducers are methyl-accepting proteins that gain or lose methyl esters on specific glutamyl residues during sensory adaptation. In this study, the significance of multiple sites of methylation on transducer proteins was addressed by using oligonucleotide-directed, site-specific mutagenesis to substitute an alanyl residue at each of the five methyl-accepting sites in Trg. The resulting collection of five mutations, each inactivating a single site, was analyzed for effects on covalent modification at the remaining sites on Trg and for the ability of the altered proteins to mediate sensory adaptation. Most of the alanyl substitutions had substantial biochemical effects, enhancing or reducing methyl-accepting activity of other sites, including one case of activation of a site not methylated in wild-type protein. Analysis of the altered proteins provided explanations for many features of the complex pattern of electrophoretic forms exhibited by Trg. The mutant proteins were less efficient than normal Trg in mediating adaptation. Correlation of biochemical and behavioral data indicated that reduction in the number of methyl-accepting sites on the transducer lengthened the time required to reach an adapted state.
- Ames P, Parkinson JS
- Transmembrane signaling by bacterial chemoreceptors: E. coli transducers with locked signal output.
- Cell. 1988; 55: 817-26
- Display abstract
Methyl-accepting chemotaxis proteins (MCPs) function as transmembrane signalers in bacteria. We isolated and characterized mutants of the E. coli Tsr protein that produce output signals in the absence of overt stimuli and that are refractory to sensory adaptation. The properties of these "locked" transducers indicate that MCP molecules are capable of generating signals that actively augment clockwise and counter-clockwise rotation of the flagellar motors. Transitions between MCP signaling states can be influenced by amino acid replacements in many parts of the molecule, including the methylation sites, at least one of the two membrane-spanning segments, and a linker region connecting the receptor and signaling domains. These findings suggest that transmembrane signaling may involve direct propagation of conformational changes between the periplasmic and cytoplasmic portions of the MCP molecule.
- Slocum MK, Halden NF, Parkinson JS
- Hybrid Escherichia coli sensory transducers with altered stimulus detection and signaling properties.
- J Bacteriol. 1987; 169: 2938-44
- Display abstract
The tar and tap loci of Escherichia coli encode methyl-accepting inner membrane proteins that mediate chemotactic responses to aspartate and maltose or to dipeptides. These genes lie adjacent to each other in the same orientation on the chromosome and have extensive sequence homology throughout the C-terminal portions of their coding regions. Many spontaneous deletions in the tar-tap region appear to be generated by recombination between these regions of homology, leading to gene fusions that produce hybrid transducer molecules in which the N terminus of Tar is joined to the C terminus of Tap. The properties of two such hybrids are described in this report. Although Tar and Tap molecules have homologous domain structures, these Tar-Tap hybrids exhibited defects in stimulus detection and flagellar signaling. Both hybrid transducers retained Tar receptor specificity, but had reduced detection sensitivity. This defect was correlated with the presence of the C-terminal methyl-accepting segment of Tap, which may have more methylation sites than its Tar counterpart, leading to elevated steady-state methylation levels in the hybrid molecules. One of the hybrids, which carried a more extensive segment from Tap, appeared to generate constitutive signals that locked the flagellar motors in a counterclockwise rotational mode. Changes in the methylation state of this transducer were ineffective in cancelling this aberrant signal. These findings implicate the conserved C-terminal domain of bacterial transducers in the generation or regulation of flagellar signals.
- Nowlin DM, Bollinger J, Hazelbauer GL
- Sites of covalent modification in Trg, a sensory transducer of Escherichia coli.
- J Biol Chem. 1987; 262: 6039-45
- Display abstract
The Trg protein mediates chemotactic response of Escherichia coli to the attractants ribose and galactose. Like other transducers, Trg is a transmembrane protein that undergoes post-translational covalent modification. The modifications are hydrolysis (deamidation) of certain glutamine side chains to create glutamate residues and methylation of specific glutamates to form carboxyl methyl esters. Analysis of radiolabeled, tryptic peptides by high performance liquid chromatography and gas-phase sequencing allowed direct identification of the modified residues of Trg. The protein has 5 methyl-accepting residues. Four, at positions 304, 310, 311, and 318, are contained in a 23-residue tryptic peptide ending in lysine. The fifth, at position 500, is within a 25-residue tryptic peptide ending in arginine. At two sites, 311 and 318, glutamines are deamidated to create methyl-accepting glutamates. There is not a required order of modification among the sites. However, there is a substantial preference for methylation on the arginine peptide and, among sites on the lysine peptide, for the middle pair. Comparison of sequences surrounding modified residues identified in this work for Trg and previously for Tsr and Tar suggests a consensus sequence for methyl-accepting sites of Ala/Ser-Xaa-Xaa-Glu-Glu*-Xaa-Ala/OH-Ala-OH/Ala, where OH signifies Ser or Thr and the asterick marks the site of modification.
- Boyd A, Kendall K, Simon MI
- Structure of the serine chemoreceptor in Escherichia coli.
- Nature. 1983; 301: 623-6
- Display abstract
Many biological processes depend on the function of proteins that detect changes in a cell's environment and transmit the information to the cytoplasm, for example, peptide hormone receptors. In Escherichia coli this class of proteins is exemplified by the sensory transducers (also called signalling proteins or methyl-accepting chemotaxis proteins) which have a central role in mediating chemotactic behaviour. The sensory transducers are the products of four genes: tsr, tar, tap and trg. Each transducer detects changes in the environmental concentration of one or a very few attractants: Tsr, serine; Tar, aspartate and maltose; Tap, unknown; and Trg, ribose and galactose. Tsr and Tar act directly as chemoreceptors for the amino acid attractants and signal changes in their degree of occupancy to the flagellar apparatus. Detection of these changes in occupancy is made possible as the transducers are methylated at multiple glutamate residues such that their level of methylation reflects the most recent chemoeffector concentration. Biochemical and genetic information concerning the serine transducer protein has been accumulating rapidly but little is known about the structure of the molecule. We present here the nucleotide sequence of the tsr gene of E. coli; the amino acid sequence derived from it suggests that the Tsr transducer protein has a relatively simple transmembrane structure that may place limits on the mechanisms available for the transmission of sensory information into the cell.
- Kehry MR, Engstrom P, Dahlquist FW, Hazelbauer GL
- Multiple covalent modifications of Trg, a sensory transducer of Escherichia coli.
- J Biol Chem. 1983; 258: 5050-5
- Display abstract
The sensory transducers of Escherichia coli are integral membrane proteins that mediate the tactic response of cells to chemical stimuli. Adaptation to environmental stimuli is correlated with methylation of the transducer proteins. Two transducer genes, tsr and tar, exhibit extensive homologies while no homology has been detected between a third transducer, trg, and those genes. The Tsr and Tar proteins have been shown to contain multiple sites for methylation as well as two sites for another modification that requires an active cheB gene product and is designated the CheB-dependent modification. In this study, covalent modifications of the Trg protein were characterized by analysis of tryptic peptides. We found that methylation occurred at several sites on the Trg protein and that the protein contained at least three sites for CheB-dependent modification, two of which were located on a tryptic peptide that contains both methionine and lysine. This tryptic peptide is analogous to the methionine- and lysine-containing methyl-accepting peptides isolated from the Tsr and Tar proteins and like those peptides may contain several methyl-accepting sites. We estimated the pKa of the group created by the CheB-dependent modification on the methionine- and lysine-containing peptide of Trg to be between pH 2.2 and 5.8. This result supports the idea that the CheB-dependent modification is an enzymatic deamidation of glutamine to glutamic acid.
- Kehry MR, Bond MW, Hunkapiller MW, Dahlquist FW
- Enzymatic deamidation of methyl-accepting chemotaxis proteins in Escherichia coli catalyzed by the cheB gene product.
- Proc Natl Acad Sci U S A. 1983; 80: 3599-603
- Display abstract
The methyl-accepting chemotaxis proteins (MCPs) of Escherichia coli undergo reversible methylation that has been correlated with adaptation of cells to environmental stimuli. MCPI, the product of the tsr gene, accepts methyl groups at multiple sites that are located on two tryptic peptides, denoted K1 and R1. A second modification of the MCPs, which is not methylation, has been designated the CheB-dependent modification. A CheB-dependent modification occurs on methyl-accepting peptide K1 and allows additional methyl groups to be incorporated into this peptide. We have performed partial amino acid sequence analyses on radiolabeled peptides K1 and R1 derived from MCPI and have identified several methyl-accepting sites. We found that, in the absence of CheB-dependent modification, a site in peptide K1 is unable to accept methyl groups. Correlation of this protein sequence data with the nucleotide sequence of the tsr gene [Boyd, A., Kendall, K. & Simon, M.I. (1983) Nature (London) 301, 623-626] suggests that CheB-dependent modification of MCPI is the enzymatic deamidation of glutamine to methyl-accepting glutamic acid. Possible roles for this deamidation in bacterial chemotaxis are discussed.
- Kehry MR, Dahlquist FW
- Adaptation in bacterial chemotaxis: CheB-dependent modification permits additional methylations of sensory transducer proteins.
- Cell. 1982; 29: 761-72
- Display abstract
Sensory transduction in E. coli consists of two phases, excitation and adaptation, both of which involve the methyl-accepting chemotaxis proteins (MCPs). These molecules relay transmembrane signals and are reversibly methylated during adaptation of E. coli to environmental stimuli. Each MCP contains multiple sites of methylation, and we identified six of these sites in MCPI. Recently, a second covalent modification of MCPs has been identified, which is not methylation. This modification, designated CheB-dependent modification, is stimulated by repellents and causes a net increase in the negative charge of MCPI and MCPII by one or two charges. We demonstrate that one CheB modification occurs on the methyl-accepting methionine-and lysine-containing tryptic peptide in MCPI and MCPII, and the second CheB modification is on an arginine-containing tryptic peptide. The CheB modification allows three additional methyl groups to be incorporated into the methyl-accepting methionine-lysine peptide, while not actually creating all of these methylation sites. The two CheB modifications occur sequentially. A possible mechanism by which CheB modification permits additional methylations and the role of CheB modification in bacterial chemotaxis are discussed.
- Hazelbauer GL, Engstrom P
- Multiple forms of methyl-accepting chemotaxis proteins distinguished by a factor in addition to multiple methylation.
- J Bacteriol. 1981; 145: 35-42
- Display abstract
Methyl-accepting chemotaxis proteins are central to both the excitation and adaptation phases of chemotactic behavior. Using null mutations in the genes coding for the two major methyl-accepting proteins (tsr and tar), we identified the gene products among the membrane proteins of Escherichia coli visualized on one- and two-dimensional gels. On two-dimensional gels, both the tsr and the tar proteins appeared as a group of multiple spots arranged in two to four diagonal arrays. The multiplicity of forms could not be completely explained by the previously documented heterogeneity of the methylated proteins resulting from different numbers of methylated glutamyl residues per polypeptide chain. We suggest that there is at least one other way besides extent of methylation in which the polypeptides of a methylated protein can differ.
- Hazelbauer GL, Engstrom P, Harayama S
- Methyl-accepting chemotaxis protein III and transducer gene trg.
- J Bacteriol. 1981; 145: 43-9
- Display abstract
A comparison of the two-dimensional gel patterns of methyl-3H- and 35S-labeled membrane proteins from trg+ and trg null mutant strains of Escherichia coli indicated that the product of trg is probably methyl-accepting chemotaxis protein III. Like the other known methyl-accepting chemotaxis proteins, the trg product is a membrane protein that migrates as more than one species in sodium dodecyl sulfate-polyacrylamide gel electrophoresis, implying that it too is multiple methylated. It appears likely that all chemoreceptors are linked to the tumble regulator through a single class of membrane protein transducers which are methyl-accepting proteins. Three transducers are coded for by genes tsr, tar, and, probably, trg. Another methyl-accepting protein, which is not related to any of these genes, was observed.