Secondary literature sources for MAPKK1_Int
The following references were automatically generated.
- Scheffler JM et al.
- LAMTOR2 regulates dendritic cell homeostasis through FLT3-dependent mTOR signalling.
- Nat Commun. 2014; 5: 5138-5138
- Display abstract
The receptor tyrosine kinase Flt3 and its ligand are crucial for dendritic cell (DC) homeostasis by activating downstream effectors including mammalian target of Rapamycin (mTOR) signalling. LAMTOR2 is a member of the Ragulator/LAMTOR complex known to regulate mTOR and extracellular signal-regulated kinase activation on the late endosome as well as endosomal biogenesis. Here we show in mice that conditional ablation of LAMTOR2 in DCs results in a severe disturbance of the DC compartment caused by accumulation of Flt3 on the cell surface. This results in an increased downstream activation of the AKT/mTOR signalling pathway and subsequently to a massive expansion of conventional DCs and plasmacytoid DCs in ageing mice. Finally, we can revert the symptoms in vivo by inhibiting the activation of Flt3 and its downstream target mTOR.
- Boggiatto PM et al.
- Targeted extracellular signal-regulated kinase activation mediated by Leishmania amazonensis requires MP1 scaffold.
- Microbes Infect. 2014; 16: 328-36
- Display abstract
Leishmania amazonensis infection promotes alteration of host cellular signaling and intracellular parasite survival, but specific mechanisms are poorly understood. We previously demonstrated that L. amazonensis infection of dendritic cells (DC) activated extracellular signal-regulated kinase (ERK), an MAP-kinase kinase kinase, leading to altered DC maturation and non-healing cutaneous leishmaniasis. Studies using growth factors and cell lines have shown that targeted, robust, intracellular phosphorylation of ERK1/2 from phagolysosomes required recruitment and association with scaffolding proteins, including p14/MP1 and MORG1, on the surface of late endosomes. Based on the intracellular localization of L. amazonensis within a parasitophorous vacuole with late endosome characteristics, we speculated that scaffolding proteins would be important for intracellular parasite-mediated ERK signaling. Our findings demonstrate that MP1, MORG1, and ERK all co-localized on the surface of parasite-containing LAMP2-positive phagolysosomes. Infection of MEK1 mutant fibroblasts unable to bind MP1 demonstrated dramatically reduced ERK1/2 phosphorylation following L. amazonensis infection but not following positive control EGF treatment. This novel mechanism for localization of intracellular L. amazonensis-mediated ERK1/2 phosphorylation required the endosomal scaffold protein MP1 and localized to L. amazonensis parasitophorous vacuoles. Understanding how L. amazonensis parasites hijack host cell scaffold proteins to modulate signaling cascades provides targets for antiprotozoal drug development.
- Sparber F et al.
- The late endosomal adaptor molecule p14 (LAMTOR2) represents a novel regulator of Langerhans cell homeostasis.
- Blood. 2014; 123: 217-27
- Display abstract
Langerhans cells (LCs) are dendritic cells (DCs) residing in epithelia, where they critically regulate immunity and tolerance. The p14 adaptor molecule is part of the late endosomal/LAMTOR (lysosomal adaptor and mitogen-activated protein kinase and mammalian target of rapamycin [mTOR] activator/regulator) complex, thereby contributing to the signal transduction of the extracellular signaling-regulated kinase (ERK) and the mTOR cascade. Furthermore, p14 represents an important regulator for endosomal sorting processes within the cell. Mutated, dysfunctional p14 leads to a human immunodeficiency disorder with endosomal/lysosomal defects in immune cells. Because p14 participates in the regulation of endosomal trafficking, growth factor signaling, and cell proliferation, we investigated the role of p14 in mouse DCs/LCs using a conditional knockout mouse model. p14-deficient animals displayed a virtually complete loss of LCs in the epidermis early after birth due to impaired proliferation and increased apoptosis of LCs. Repopulation analysis after application of contact sensitizer leads to the recruitment of a transient LC population, predominantly consisting of short-term LCs. The underlying molecular mechanism involves the p14-mediated disruption of the LAMTOR complex which results in the malfunction of both ERK and mTOR signal pathways. Hence, we conclude that p14 acts as a novel and essential regulator of LC homeostasis in vivo.
- Jewell JL, Guan KL
- Nutrient signaling to mTOR and cell growth.
- Trends Biochem Sci. 2013; 38: 233-42
- Display abstract
The mammalian target of rapamycin (mTOR) is a conserved protein kinase involved in a multitude of cellular processes including cell growth. Increased mTOR activation is observed in multiple human cancers and inhibition of mTOR has proven efficacious in numerous clinical trials. mTOR comprises two complexes, termed mTORC1 and mTORC2. Both complexes respond to growth factors, whereas only mTORC1 is controlled by nutrients, such as glucose and amino acids. Since the discovery of mTOR, extensive studies have intricately detailed the molecular mechanisms by which mTORC1 is regulated. Somewhat paradoxically, amino acid (AA)-induced mTORC1 activation -arguably the most essential stimulus leading to mTORC1 activation - is the least understood. Here we review the current knowledge of nutrient-dependent regulation of mTORC1.
- Witzel F, Maddison L, Bluthgen N
- How scaffolds shape MAPK signaling: what we know and opportunities for systems approaches.
- Front Physiol. 2012; 3: 475-475
- Display abstract
Scaffolding proteins add a new layer of complexity to the dynamics of cell signaling. Above their basic function to bring several components of a signaling pathway together, recent experimental research has found that scaffolds influence signaling in a much more complex way: scaffolds can exert some catalytic function, influence signaling by allosteric mechanisms, are feedback-regulated, localize signaling activity to distinct regions of the cell or increase pathway fidelity. Here we review experimental and theoretical approaches that address the function of two MAPK scaffolds, Ste5, a scaffold of the yeast mating pathway and KSR1/2, a scaffold of the classical mammalian MAPK signaling pathway. For the yeast scaffold Ste5, detailed mechanistic models have been valuable for the understanding of its function. For scaffolds in mammalian signaling, however, models have been rather generic and sketchy. For example, these models predicted narrow optimal scaffold concentrations, but when revisiting these models by assuming typical concentrations, rather a range of scaffold levels optimally supports signaling. Thus, more realistic models are needed to understand the role of scaffolds in mammalian signal transduction, which opens a big opportunity for systems biology.
- Nada S et al.
- The novel lipid raft adaptor p18 controls endosome dynamics by anchoring the MEK-ERK pathway to late endosomes.
- EMBO J. 2009; 28: 477-89
- Display abstract
The regulation of endosome dynamics is crucial for fundamental cellular functions, such as nutrient intake/digestion, membrane protein cycling, cell migration and intracellular signalling. Here, we show that a novel lipid raft adaptor protein, p18, is involved in controlling endosome dynamics by anchoring the MEK1-ERK pathway to late endosomes. p18 is anchored to lipid rafts of late endosomes through its N-terminal unique region. p18(-/-) mice are embryonic lethal and have severe defects in endosome/lysosome organization and membrane protein transport in the visceral endoderm. p18(-/-) cells exhibit apparent defects in endosome dynamics through perinuclear compartment, such as aberrant distribution and/or processing of lysosomes and impaired cycling of Rab11-positive recycling endosomes. p18 specifically binds to the p14-MP1 complex, a scaffold for MEK1. Loss of p18 function excludes the p14-MP1 complex from late endosomes, resulting in a downregulation of the MEK-ERK activity. These results indicate that the lipid raft adaptor p18 is essential for anchoring the MEK-ERK pathway to late endosomes, and shed new light on a role of endosomal MEK-ERK pathway in controlling endosome dynamics.
- Pincet F
- Membrane recruitment of scaffold proteins drives specific signaling.
- PLoS One. 2007; 2: 977-977
- Display abstract
Cells must give the right response to each stimulus they receive. Scaffolding, a signaling process mediated by scaffold proteins, participates in the decoding of the cues by specifically directing signal transduction. The aim of this paper is to describe the molecular mechanisms of scaffolding, i.e. the principles by which scaffold proteins drive a specific response of the cell. Since similar scaffold proteins are found in many species, they evolved according to the purpose of each organism. This means they require adaptability. In the usual description of the mechanisms of scaffolding, scaffold proteins are considered as reactors where molecules involved in a cascade of reactions are simultaneously bound with the right orientation to meet and interact. This description is not realistic: (i) it is not verified by experiments and (ii) timing and orientation constraints make it complex which seems to contradict the required adaptability. A scaffold protein, Ste5, is used in the MAPK pathway of Saccharomyces cerevisiae for the cell to provide a specific response to stimuli. The massive amount of data available for this pathway makes it ideal to investigate the actual mechanisms of scaffolding. Here, a complete treatment of the chemical reactions allows the computation of the distributions of all the proteins involved in the MAPK pathway when the cell receives various cues. These distributions are compared to several experimental results. It turns out that the molecular mechanisms of scaffolding are much simpler and more adaptable than previously thought in the reactor model. Scaffold proteins bind only one molecule at a time. Then, their membrane recruitment automatically drives specific, amplified and localized signal transductions. The mechanisms presented here, which explain how the membrane recruitment of a protein can produce a drastic change in the activity of cells, are generic and may be commonly used in many biological processes.
- Pullikuth AK, Catling AD
- Scaffold mediated regulation of MAPK signaling and cytoskeletal dynamics: a perspective.
- Cell Signal. 2007; 19: 1621-32
- Display abstract
Cell migration is critical for many physiological processes and is often misregulated in developmental disorders and pathological conditions including cancer and neurodegeneration. MAPK signaling and the Rho family of proteins are known regulators of cell migration that exert their influence on cellular cytoskeleton during cell adhesion and migration. Here we review data supporting the view that localized ERK signaling mediated through recently identified scaffold proteins may regulate cell migration.
- Kundrotas PJ, Alexov E
- Electrostatic properties of protein-protein complexes.
- Biophys J. 2006; 91: 1724-36
- Display abstract
Statistical electrostatic analysis of 37 protein-protein complexes extracted from the previously developed database of protein complexes (ProtCom, http://www.ces.clemson.edu/compbio/protcom) is presented. It is shown that small interfaces have a higher content of charged and polar groups compared to large interfaces. In a vast majority of the cases the average pKa shifts for acidic residues induced by the complex formation are negative, indicating that complex formation stabilizes their ionizable states, whereas the histidines are predicted to destabilize the complex. The individual pKa shifts show the same tendency since 80% of the interfacial acidic groups were found to lower their pKas, whereas only 25% of histidines raise their pKa upon the complex formation. The interfacial groups have been divided into three sets according to the mechanism of their pKa shift, and statistical analysis of each set was performed. It was shown that the optimum pH values (pH of maximal stability) of the complex tend to be the same as the optimum pH values of the complex components. This finding can be used in the homology-based prediction of the 3D structures of protein complexes, especially when one needs to evaluate and rank putative models. It is more likely for a model to be correct if both components of the model complex and the entire complex have the same or at least similar values of the optimum pH.
- Kelkar N, Standen CL, Davis RJ
- Role of the JIP4 scaffold protein in the regulation of mitogen-activated protein kinase signaling pathways.
- Mol Cell Biol. 2005; 25: 2733-43
- Display abstract
The c-Jun NH2-terminal kinase (JNK)-interacting protein (JIP) group of scaffold proteins (JIP1, JIP2, and JIP3) can interact with components of the JNK signaling pathway and potently activate JNK. Here we describe the identification of a fourth member of the JIP family. The primary sequence of JIP4 is most closely related to that of JIP3. Like other members of the JIP family of scaffold proteins, JIP4 binds JNK and also the light chain of the microtubule motor protein kinesin-1. However, the function of JIP4 appears to be markedly different from other JIP proteins. Specifically, JIP4 does not activate JNK signaling. In contrast, JIP4 serves as an activator of the p38 mitogen-activated protein (MAP) kinase pathway by a mechanism that requires the MAP kinase kinases MKK3 and MKK6. The JIP4 scaffold protein therefore appears to be a new component of the p38 MAP kinase signaling pathway.
- Pullikuth A, McKinnon E, Schaeffer HJ, Catling AD
- The MEK1 scaffolding protein MP1 regulates cell spreading by integrating PAK1 and Rho signals.
- Mol Cell Biol. 2005; 25: 5119-33
- Display abstract
How the extracellular signal-regulated kinase (ERK) cascade regulates diverse cellular functions, including cell proliferation, survival, and motility, in a context-dependent manner remains poorly understood. Compelling evidence indicates that scaffolding molecules function in yeast to channel specific signals through common components to appropriate targets. Although a number of putative ERK scaffolding proteins have been identified in mammalian systems, none has been linked to a specific biological response. Here we show that the putative scaffold protein MEK partner 1 (MP1) and its partner p14 regulate PAK1-dependent ERK activation during adhesion and cell spreading but are not required for ERK activation by platelet-derived growth factor. MP1 associates with active but not inactive PAK1 and controls PAK1 phosphorylation of MEK1. Our data further show that MP1, p14, and MEK1 serve to inhibit Rho/Rho kinase functions necessary for the turnover of adhesion structures and cell spreading and reveal a signal-channeling function for a MEK1/ERK scaffold in orchestrating cytoskeletal rearrangements important for cell motility.
- Pawson T
- Specificity in signal transduction: from phosphotyrosine-SH2 domain interactions to complex cellular systems.
- Cell. 2004; 116: 191-203
- Display abstract
Over the last two decades, a new and unifying concept of cellular organization has emerged in which modular protein-protein interactions provide an underlying framework through which signaling pathways are assembled and controlled. In this scheme, posttranslational modifications such as phosphorylation commonly exert their biological effects by regulating molecular interactions, exemplified by the ability of phosphotyrosine sites to bind selectively to SH2 domains. Although these interactions are rather simple in isolation, they can nonetheless be exploited to generate complex cellular systems. Here, I discuss experiments that have led to this view of dynamic cellular behavior and identify some current and future areas of interest in cell signaling.
- Lehr S et al.
- Identification of major ERK-related phosphorylation sites in Gab1.
- Biochemistry. 2004; 43: 12133-40
- Display abstract
Gab1 (Grb2-associated binder1) belongs to a family of multifunctional docking proteins that play a central role in the integration of receptor tyrosine kinase (RTK) signaling, i.e., mediating cellular growth response, transformation, and apoptosis. In addition to RTK-specific tyrosine phosphorylation, these docking proteins also can be phosphorylated on serine/threonine residues affecting signal transduction. Since serine and threonine phosphorylation are capable of modulating the initial signal one major task to elucidate signal transduction via Gab1 is to determine the exact localization of distinct phosphorylation sites. To address this question in this report we examined extracellular signal-regulated kinases 1/2 (ERK) specific serine/threonine phosphorylation of the entire Gab1 engaged in insulin signaling in more detail in vitro. To elucidate the ERK1/2-specific phosphorylation pattern of Gab1, we used phosphopeptide mapping by two-dimensional HPLC analysis. Subsequently, phosphorylated serine/threonine residues were identified by sequencing the separated phosphopeptides using matrix assisted laser desorption ionization mass spectrometry (MALDI-MS) and Edman degradation. Our results demonstrate that ERK1/2 phosphorylate Gab1 at six serine/threonine residues (T312, S381, S454, T476, S581, S597) in consensus motifs for MAP kinase phosphorylation. Serine residues S454, S581, S597, and threonine residue T476 represent nearly 80% of overall incorporated phosphate. These sites are located adjacent to src homology region-2 (SH2) binding motifs (YVPM-motif: Y447, Y472, Y619) specific for the phosphatidylinositol 3kinase (PI3K). The biological role of identified phosphorylation sites was proven by PI3K and Akt activity in intact cells. These data demonstrate that ERK1/2 modulate insulin action via Gab1 by targeting serine and threonine residues beside YXXM motifs. Accordingly, insulin signaling is blocked at the level of PI3K.
- Eblen ST, Slack-Davis JK, Tarcsafalvi A, Parsons JT, Weber MJ, Catling AD
- Mitogen-activated protein kinase feedback phosphorylation regulates MEK1 complex formation and activation during cellular adhesion.
- Mol Cell Biol. 2004; 24: 2308-17
- Display abstract
Cell adhesion and spreading depend on activation of mitogen-activated kinase, which in turn is regulated both by growth factor and integrin signaling. Growth factors, such as epidermal growth factor, are capable of activating Ras and Raf, but integrin signaling is required to couple Raf to MEK and MEK to extracellular signal-regulated protein kinase (ERK). It was previously shown that Rac-p21-activated kinase (PAK) signaling regulated the physical association of MEK1 with ERK2 through phosphorylation sites in the proline-rich sequence (PRS) of MEK1. It was also shown that activation of MEK1 and ERK by integrins depends on PAK phosphorylation of S298 in the PRS. Here we report a novel MEK1-specific regulatory feedback mechanism that provides a means by which activated ERK can terminate continued PAK phosphorylation of MEK1. Activated ERK can phosphorylate T292 in the PRS, and this blocks the ability of PAK to phosphorylate S298 and of Rac-PAK signaling to enhance MEK1-ERK complex formation. Preventing ERK feedback phosphorylation on T292 during cellular adhesion prolonged phosphorylation of S298 by PAK and phosphorylation of S218 and S222, the MEK1 activating sites. We propose that activation of ERK during adhesion creates a feedback system in which ERK phosphorylates MEK1 on T292, and this in turn blocks additional S298 phosphorylation in response to integrin signaling.
- Imamura Y, Katahira T, Kitamura D
- Identification and characterization of a novel BASH N terminus-associated protein, BNAS2.
- J Biol Chem. 2004; 279: 26425-32
- Display abstract
A B cell-specific adaptor protein, BASH (also known as BLNK or SLP-65), is crucial for B cell receptor (BCR) signaling. BASH binds to various signaling intermediates, such as Btk, PLCgamma2, Vav, and Grb2, through its well defined motifs. Although functional significance of such interactions has been documented, BASH-mediated signal transduction mechanism is not fully understood. Using the yeast two-hybrid system, we have identified a novel protein that binds to a conserved N-terminal domain of BASH, which we named BNAS2 (BASH N terminus associated protein 2). From its deduced amino acid sequence, BNAS2 is presumed to contain four transmembrane domains, which are included in a central MARVEL domain, and to localize to endoplasmic reticulum. BNAS2 was co-precipitated with BASH as well as Btk and ERK2 from a lysate of mouse B cell line. In the transfected cells, the exogenous BNAS2 was localized in a mesh-like structure in the cytoplasm resembling that of endoplasmic reticulum (ER) and nuclear membrane. BASH was co-localized with BNAS2 in a manner dependent on its N-terminal domain. RT-PCR analysis indicated that BNAS2 mRNA is expressed ubiquitously except for plasma cells. In chicken B cell line DT40, overexpression of BNAS2 resulted in an enhancement of BCR ligation-mediated transcriptional activation of Elk1, but not of NF-kappaB, in a manner dependent on the dose of BNAS2. Thus BNAS2 may serve as a scaffold for signaling proteins such as BASH, Btk, and ERK at the ER and nuclear membrane and may facilitate ERK activation by signaling from cell-surface receptors.
- Piiper A et al.
- Cholecystokinin stimulates extracellular signal-regulated kinase through activation of the epidermal growth factor receptor, Yes, and protein kinase C. Signal amplification at the level of Raf by activation of protein kinase Cepsilon.
- J Biol Chem. 2003; 278: 7065-72
- Display abstract
Cholecystokinin (CCK) and related peptides are potent growth factors in the gastrointestinal tract and may be important for human cancer. CCK exerts its growth modulatory effects through G(q)-coupled receptors (CCK(A) and CCK(B)) and activation of extracellular signal-regulated protein kinase 1/2 (ERK1/2). In the present study, we investigated the different mechanisms participating in CCK-induced activation of ERK1/2 in pancreatic AR42J cells expressing both CCK(A) and CCK(B). CCK activated ERK1/2 and Raf-1 to a similar extent as epidermal growth factor (EGF). Inhibition of EGF receptor (EGFR) tyrosine kinase or expression of dominant-negative Ras reduced CCK-induced ERK1/2 activation, indicating participation of the EGFR and Ras in CCK-induced ERK1/2 activation. However, compared with EGF, CCK caused only small increases in tyrosine phosphorylation of the EGFR and Shc, Shc-Grb2 complex formation, and Ras activation. Signal amplification between Ras and Raf in a CCK-induced ERK cascade appears to be mediated by activation of protein kinase Cepsilon (PKCepsilon), because 1) down-modulation of phorbol ester-sensitive PKCs inhibited CCK-induced activation of Ras, Raf, and ERK1/2 without influencing Shc-Grb2 complex formation; 2) PKCepsilon, but not PKCalpha or PKCdelta, was detectable in Raf-1 immunoprecipitates, although CCK activated all three PKC isoenzymes. In addition, the present study provides evidence that the Src family tyrosine kinase Yes is activated by CCK and mediates CCK-induced tyrosine phosphorylation of Shc. Furthermore, we show that CCK-induced activation of the EGFR and Yes is achieved through the CCK(B) receptor. Together, our data show that different signals emanating from the CCK receptors mediate ERK1/2 activation; activation of Yes and the EGFR mediate Shc-Grb2 recruitment, and activation of PKC, most likely PKCepsilon, augments CCK-stimulated ERK1/2 activation at the Ras/Raf level.
- Roux PP, Richards SA, Blenis J
- Phosphorylation of p90 ribosomal S6 kinase (RSK) regulates extracellular signal-regulated kinase docking and RSK activity.
- Mol Cell Biol. 2003; 23: 4796-804
- Display abstract
Stimulation of the Ras/extracellular signal-regulated kinase (ERK) pathway can modulate cell growth, proliferation, survival, and motility. The p90 ribosomal S6 kinases (RSKs) comprise a family of serine/threonine kinases that lie at the terminus of the ERK pathway. Efficient RSK activation by ERK requires its interaction through a docking site located near the C terminus of RSK, but the regulation of this interaction remains unknown. In this report we show that RSK1 and ERK1/2 form a complex in quiescent HEK293 cells that transiently dissociates upon mitogen stimulation. Complex dissociation requires phosphorylation of RSK1 serine 749, which is a mitogen-regulated phosphorylation site located near the ERK docking site. Using recombinant RSK1 proteins, we find that serine 749 is phosphorylated by the N-terminal kinase domain of RSK1 in vitro, suggesting that ERK1/2 dissociation is mediated through RSK1 autophosphorylation of this residue. Consistent with this hypothesis, we find that inactivating mutations in the RSK1 kinase domains disrupted the mitogen-regulated dissociation of ERK1/2 in vivo. Analysis of different RSK isoforms revealed that RSK1 and RSK2 readily dissociate from ERK1/2 following mitogen stimulation but that RSK3 remains associated with active ERK1/2. RSK activity assays revealed that RSK3 also remains active longer than RSK1 and RSK2, suggesting that prolonged ERK association increased the duration of RSK3 activation. These results provide new evidence for the regulated nature of ERK docking interactions and reveal important differences among the closely related RSK family members.
- Park SH, Zarrinpar A, Lim WA
- Rewiring MAP kinase pathways using alternative scaffold assembly mechanisms.
- Science. 2003; 299: 1061-4
- Display abstract
How scaffold proteins control information flow in signaling pathways is poorly understood: Do they simply tether components, or do they precisely orient and activate them? We found that the yeast mitogen-activated protein (MAP) kinase scaffold Ste5 is tolerant to major stereochemical perturbations; heterologous protein interactions could functionally replace native kinase recruitment interactions, indicating that simple tethering is largely sufficient for scaffold-mediated signaling. Moreover, by engineering a scaffold that tethers a unique kinase set, we could create a synthetic MAP kinase pathway with non-natural input-output properties. These findings demonstrate that scaffolds are highly flexible organizing factors that can facilitate pathway evolution and engineering.
- Ishihara K, Tsutsumi K, Kawane S, Nakajima M, Kasaoka T
- The receptor for advanced glycation end-products (RAGE) directly binds to ERK by a D-domain-like docking site.
- FEBS Lett. 2003; 550: 107-13
- Display abstract
The receptor for advanced glycation end-products (RAGE)-mediated cellular activation through the mitogen-activated protein kinase (MAPK) cascade, activation of NF-kappaB and Rho family small G-proteins, cdc42/Rac, is implicated in the pathogenesis of inflammatory disorders and tumor growth/metastasis. However, the precise molecular mechanisms for the initiation of cell signaling by RAGE remain to be elucidated. In this study, proteins which directly bind to the cytoplasmic C-terminus of RAGE were purified from rat lung extracts using an affinity chromatography technique and identified to be extracellular signal-regulated protein kinase-1 and -2 (ERK-1/2). Their interactions were confirmed by immunoprecipitation of ERK-1/2 from RAGE-expressing HT1080 cell extracts with anti-RAGE antibody. Furthermore, the augmentation of kinase activity of RAGE-bound ERK upon the stimulation of cells with amphoterin was demonstrated by determining the phosphorylation level of myelin basic protein, an ERK substrate. In vitro binding studies using a series of C-terminal deletion mutants of human RAGE revealed the importance of the membrane-proximal cytoplasmic region of RAGE for the direct ERK-RAGE interaction. This region contained a sequence similar to the D-domain, a ERK docking site which is conserved in some ERK substrates including MAPK-interacting kinase-1/2, mitogen- and stress-activated protein kinase-1, and ribosomal S6 kinase. These data suggest that ERK may play a role in RAGE signaling through direct interaction with RAGE.
- Morrison DK, Davis RJ
- Regulation of MAP kinase signaling modules by scaffold proteins in mammals.
- Annu Rev Cell Dev Biol. 2003; 19: 91-118
- Display abstract
The mitogen-activated protein kinase (MAPK) group of serine/threonine protein kinases mediates the response of cells to many extracellular stimuli such as cytokines and growth factors. These protein kinases include the extracellular signal-regulated protein kinases (ERK) and two stress-activated protein kinases (SAPK), the c-Jun N-terminal kinases (JNK), and the p38 MAPK. The enzymes are evolutionarily conserved and are activated by a common mechanism that involves a protein kinase cascade. Scaffold proteins have been proposed to interact with MAPK pathway components to create a functional signaling module and to control the specificity of signal transduction. Here we critically evaluate the evidence that supports a physiologically relevant role of MAPK scaffold proteins in mammals.
- Wakabayashi M et al.
- Interaction of lp-dlg/KIAA0583, a membrane-associated guanylate kinase family protein, with vinexin and beta-catenin at sites of cell-cell contact.
- J Biol Chem. 2003; 278: 21709-14
- Display abstract
Vinexin is a recently identified cytoskeletal protein and plays a key role in the regulation of cytoskeletal organization and signal transduction. Vinexin localizes at sites of cell-extracellular matrix adhesion in NIH3T3 fibroblasts and at sites of cell-cell contact in epithelial LLC-PK1 cells. Expression of vinexin promotes the formation of actin stress fiber, but the role of vinexin at sites of cell-cell contact is unclear. Here we identified lp-dlg/KIAA0583 as a novel binding partner for vinexin by using yeast two-hybrid screening. lp-dlg/KIAA0583 has a NH2-terminal coiled-coil-like domain, in addition to four PDZ domains, an Src homology (SH) 3 domain, and a guanylate kinase domain, which are conserved structures in membrane-associated guanylate kinase family proteins. The third SH3 domain of vinexin bound to the region between the second and third PDZ domain of lp-dlg, which contains a proline-rich sequence. lp-dlg colocalized with vinexin at sites of cell-cell contact in LLC-PK1 cells. Furthermore, lp-dlg colocalized with beta-catenin, a major adherens junction protein, in LLC-PK1 cells. Co-immunoprecipitation experiments revealed that both endogenous and epitope-tagged deletion mutants of lp-dlg/KIAA0583 associated with beta-catenin. We also showed that these three proteins could form a ternary complex. Together these findings suggest that lp-dlg/KIAA0583 is a novel scaffolding protein that can link the vinexin-vinculin complex and beta-catenin at sites of cell-cell contact.
- Felberbaum-Corti M, Gruenberg J
- Signaling from the far side.
- Mol Cell. 2002; 10: 1259-60
- Display abstract
Signaling by cell surface receptors is often turned off by receptor endocytosis and downregulation. However, it appears that some signaling pathways continue to fire from within cells. A recent study now suggests that a late endosomal p14/MP1-MAPK scaffold complex is critical for the ERK signaling pathway.
- Antonin W, Fasshauer D, Becker S, Jahn R, Schneider TR
- Crystal structure of the endosomal SNARE complex reveals common structural principles of all SNAREs.
- Nat Struct Biol. 2002; 9: 107-11
- Display abstract
SNARE proteins are crucial for intracellular membrane fusion in all eukaryotes. These proteins assemble into tight complexes that connect membranes and may induce fusion. The crystal structure of the neuronal core complex is represented by an unusually long bundle of four alpha-helices connected by 16 layers of mostly hydrophobic amino acids. Here we report the 1.9 A resolution crystal structure of an endosomal SNARE core complex containing four SNAREs: syntaxin 7, syntaxin 8, vti1b and endobrevin/VAMP-8. Despite limited sequence homology, the helix alignment and the layer structure of the endosomal complex are remarkably similar to those of the neuronal complex. However, subtle variations are evident that characterize different SNARE subfamilies. We conclude that the structure of the SNARE core complex is an evolutionarily conserved hallmark of all SNARE complexes and is intimately associated with the general role of SNAREs in membrane fusion.
- Niiro H, Maeda A, Kurosaki T, Clark EA
- The B lymphocyte adaptor molecule of 32 kD (Bam32) regulates B cell antigen receptor signaling and cell survival.
- J Exp Med. 2002; 195: 143-9
- Display abstract
The B lymphocyte-associated adaptor protein 32 kD in size (Bam32) is expressed at high levels in germinal center (GC) B cells. It has an NH(2)-terminal src homology 2 (SH2) domain which binds phospholipase C (PLC)gamma 2, and a COOH-terminal pleckstrin homology (PH) domain. Thus, Bam32 may function to integrate protein tyrosine kinase (PTK) and phosphatidylinositol 3-kinase (PI3K) signaling pathways in B cells. To further define the role Bam32 plays in B cells, we generated Bam32-deficient DT40 cells. These Bam32(-/-) cells exhibited lower levels of B cell antigen receptor (BCR)-induced calcium mobilization with modest decreases in tyrosine phosphorylation of phospholipase C (PLC)gamma 2. Moreover, BCR-induced activation of extracellular signal-regulated kinase (ERK), c-jun NH2-terminal kinase (JNK), and p38 mitogen-activated protein kinase (MAPK) pathways was impaired in Bam32(-/-) cells but not the activation of Akt-related pathways. Activation of downstream transcription factors such as nuclear factor of activated T cells (NF-AT) and nuclear factor of kappa binding (NF-kappa B) was also impaired in Bam32(-/-) cells. Furthermore, Bam32(-/-) cells were more susceptible to BCR-induced death. Taken together, these findings suggest that Bam32 functions to regulate BCR-induced signaling and cell survival most likely in germinal centers.
- Lee CM, Onesime D, Reddy CD, Dhanasekaran N, Reddy EP
- JLP: A scaffolding protein that tethers JNK/p38MAPK signaling modules and transcription factors.
- Proc Natl Acad Sci U S A. 2002; 99: 14189-94
- Display abstract
Extracellular signals are transduced into cells through mitogen-activated protein kinases (MAPKs), which are activated by their upstream kinases. Recently, families of scaffolding proteins have been identified to tether specific combinations of these kinases along specific signaling pathways. Here we describe a protein, JLP (c-Jun NH2-terminal kinase-associated leucine zipper protein), which acts as a scaffolding protein to bring together Max and c-Myc along with JNK (c-Jun NH2-terminal kinase) and p38MAPK, as well as their upstream kinases MKK4 (MAPK kinase 4) and MEKK3 (MAPK kinase kinase 3). Thus, JLP defines a family of scaffolding proteins that bring MAPKs and their target transcription factors together for the execution of specific signaling pathways.
- Szedlacsek SE, Aricescu AR, Fulga TA, Renault L, Scheidig AJ
- Crystal structure of PTP-SL/PTPBR7 catalytic domain: implications for MAP kinase regulation.
- J Mol Biol. 2001; 311: 557-68
- Display abstract
Protein tyrosine phosphatases PTP-SL and PTPBR7 are isoforms belonging to cytosolic membrane-associated and to receptor-like PTPs (RPTPs), respectively. They represent a new family of PTPs with a major role in activation and translocation of MAP kinases. Specifically, the complex formation between PTP-SL and ERK2 involves an unusual interaction leading to the phosphorylation of PTP-SL by ERK2 at Thr253 and the inactivating dephosphorylation of ERK2 by PTP-SL. This interaction is strictly dependent upon a kinase interaction motif (KIM) (residues 224-239) situated at the N terminus of the PTP-SL catalytic domain. We report the first crystal structure of the catalytic domain for a member of this family (PTP-SL, residues 254-549, identical with residues 361-656 of PTPBR7), providing an example of an RPTP with single cytoplasmic domain, which is monomeric, having an unhindered catalytic site. In addition to the characteristic PTP-core structure, PTP-SL has an N-terminal helix, possibly orienting the KIM motif upon interaction with the target ERK2. An unusual residue in the catalytically important WPD loop promotes formation of a hydrophobically and electrostatically stabilised clamp. This could induce increased rigidity to the WPD loop and therefore reduced catalytic activity, in agreement with our kinetic measurements. A docking model based on the PTP-SL structure suggests that, in the complex with ERK2, the phosphorylation of PTP-SL should be accomplished first. The subsequent dephosphorylation of ERK2 seems to be possible only if a conformational rearrangement of the two interacting partners takes place.
- Schultheiss U et al.
- TRAF6 is a critical mediator of signal transduction by the viral oncogene latent membrane protein 1.
- EMBO J. 2001; 20: 5678-91
- Display abstract
The oncogenic latent membrane protein 1 (LMP1) of the Epstein-Barr virus recruits tumor necrosis factor-receptor (TNFR)-associated factors (TRAFs), the TNFR-associated death domain protein (TRADD) and JAK3 to induce intracellular signaling pathways. LMP1 serves as the prototype of a TRADD-binding receptor that transforms cells but does not induce apoptosis. Here we show that TRAF6 critically mediates LMP1 signaling to p38 mitogen-activated protein kinase (MAPK) via a MAPK kinase 6-dependent pathway. In addition, NF-kappaB but not c-Jun N-terminal kinase 1 (JNK1) induction by LMP1 involves TRAF6. The PxQxT motif of the LMP1 C-terminal activator region 1 (CTAR1) and tyrosine 384 of CTAR2 together are essential for full p38 MAPK activation and for TRAF6 recruitment to the LMP1 signaling complex. Dominant-negative TRADD blocks p38 MAPK activation by LMP1. The data suggest that entry of TRAF6 into the LMP1 complex is mediated by TRADD and TRAF2. In TRAF6-knockout fibroblasts, significant induction of p38 MAPK by LMP1 is dependent on the ectopic expression of TRAF6. We describe a novel role of TRAF6 as an essential signaling mediator of a transforming oncogene, downstream of TRADD and TRAF2.
- Pei J, Grishin NV
- AL2CO: calculation of positional conservation in a protein sequence alignment.
- Bioinformatics. 2001; 17: 700-12
- Display abstract
MOTIVATION: Amino acid sequence alignments are widely used in the analysis of protein structure, function and evolutionary relationships. Proteins within a superfamily usually share the same fold and possess related functions. These structural and functional constraints are reflected in the alignment conservation patterns. Positions of functional and/or structural importance tend to be more conserved. Conserved positions are usually clustered in distinct motifs surrounded by sequence segments of low conservation. Poorly conserved regions might also arise from the imperfections in multiple alignment algorithms and thus indicate possible alignment errors. Quantification of conservation by attributing a conservation index to each aligned position makes motif detection more convenient. Mapping these conservation indices onto a protein spatial structure helps to visualize spatial conservation features of the molecule and to predict functionally and/or structurally important sites. Analysis of conservation indices could be a useful tool in detection of potentially misaligned regions and will aid in improvement of multiple alignments. RESULTS: We developed a program to calculate a conservation index at each position in a multiple sequence alignment using several methods. Namely, amino acid frequencies at each position are estimated and the conservation index is calculated from these frequencies. We utilize both unweighted frequencies and frequencies weighted using two different strategies. Three conceptually different approaches (entropy-based, variance-based and matrix score-based) are implemented in the algorithm to define the conservation index. Calculating conservation indices for 35522 positions in 284 alignments from SMART database we demonstrate that different methods result in highly correlated (correlation coefficient more than 0.85) conservation indices. Conservation indices show statistically significant correlation between sequentially adjacent positions i and i + j, where j < 13, and averaging of the indices over the window of three positions is optimal for motif detection. Positions with gaps display substantially lower conservation properties. We compare conservation properties of the SMART alignments or FSSP structural alignments to those of the ClustalW alignments. The results suggest that conservation indices should be a valuable tool of alignment quality assessment and might be used as an objective function for refinement of multiple alignments. AVAILABILITY: The C code of the AL2CO program and its pre-compiled versions for several platforms as well as the details of the analysis are freely available at ftp://iole.swmed.edu/pub/al2co/.
- Miller WE, McDonald PH, Cai SF, Field ME, Davis RJ, Lefkowitz RJ
- Identification of a motif in the carboxyl terminus of beta -arrestin2 responsible for activation of JNK3.
- J Biol Chem. 2001; 276: 27770-7
- Display abstract
Accumulating evidence indicates that the beta-arrestins act as scaffold molecules that couple G-protein-coupled receptors to mitogen-activated protein (MAP) kinase signaling pathways. Recently, we identified the c-Jun N-terminal kinase 3 (JNK3) as a beta-arrestin2-interacting protein in yeast-two hybrid and co-immunoprecipitation studies. Beta-arrestin2 acts as a scaffold to enhance signaling to JNK3 stimulated by overexpression of the MAP3 kinase ASK1 or by agonist activation of the angiotensin 1A receptor. Whereas beta-arrestin2 is a very strong activator of JNK3 signaling, beta-arrestin1 is very weak in this regard. The data also indicate that the specific step enhanced by beta-arrestin2 involves phosphorylation of JNK3 by the MAP2 kinase MKK4. We reasoned that defining the region (or domain) in beta-arrestin2 responsible for high level JNK3 activation would provide insight into the mechanism by which beta-arrestin2 enhances the activity of this signaling pathway. Using chimeric beta-arrestins, we have determined that sequences in the carboxyl-terminal region of beta-arrestin2 are important for the enhancement of JNK3 phosphorylation. More detailed analysis of the carboxyl-terminal domains of the beta-arrestins indicated that beta-arrestin2, but not beta-arrestin1, contains a sequence (RRSLHL) highly homologous to the conserved docking motif present in many MAP kinase-binding proteins. Replacement of the beta-arrestin2 RRS residues with the corresponding KP residues present in beta-arrestin1 dramatically reduced both JNK3 interaction and enhancement of JNK3 phosphorylation. Conversely, replacement of the KP residues in beta-arrestin1 with RRS significantly increased both JNK3 binding and enhancement of JNK3 phosphorylation. These results delineate a mechanism by which beta-arrestin2 functions as a scaffold protein in the JNK3 signaling pathway and implicate the conserved docking site in beta-arrestin2 as an important factor in binding JNK3 and stimulating the phosphorylation of JNK3 by MKK4.
- Chang L, Karin M
- Mammalian MAP kinase signalling cascades.
- Nature. 2001; 410: 37-40
- Display abstract
Mitogen-activated protein kinases (MAPKs) are important signal transducing enzymes, unique to eukaryotes, that are involved in many facets of cellular regulation. Initial research concentrated on defining the components and organization of MAPK signalling cascades, but recent studies have begun to shed light on the physiological functions of these cascades in the control of gene expression, cell proliferation and programmed cell death.
- Ikeda A et al.
- Mixed lineage kinase LZK forms a functional signaling complex with JIP-1, a scaffold protein of the c-Jun NH(2)-terminal kinase pathway.
- J Biochem. 2001; 130: 773-81
- Display abstract
Leucine zipper-bearing kinase (LZK) is a novel member of the mixed lineage kinase (MLK) protein family, the cDNA of which was first cloned from a human brain cDNA library [Sakuma, H., Ikeda, A., Oka, S., Kozutsumi, Y., Zanetta, J.-P., and Kawasaki, T. (1997) J. Biol. Chem. 272, 28622-28629]. Several MLK family proteins have been proposed to function as MAP kinase kinase kinases in the c-Jun NH(2) terminal kinase (JNK)/stress-activated protein kinase (SAPK) pathway. In the present study, we demonstrated that, like other MLKs, LZK activated the JNK/SAPK pathway but not the ERK pathway. LZK directly phosphorylated and activated MKK7, one of the two MAPKKs in the JNK/SAPK pathway, to a comparable extent to a constitutive active form of MEKK1 (MEKK1DeltaN), suggesting a biological role of LZK as a MAPKKK in the JNK/SAPK pathway. Recent studies have revealed the essential roles of scaffold proteins in intracellular signaling pathways including MAP kinase pathways. JIP-1, one of the scaffold proteins, has been shown to be associated with MLKs, MKK7, and JNK [Whitmarsh, A.J., Cavanagh, J., Tournier, C., Yasuda, J., and Davis, R.J. (1998) Science 281, 1671-1674], suggesting the presence of a selective signaling pathway including LZK, MKK7, and JNK. Consistent with this hypothesis, we provided evidence that LZK is associated with the C-terminal region of JIP-1 through its kinase catalytic domain. In addition, LZK-induced JNK activation was markedly enhanced when LZK and JNK were co-expressed with JIP-1. These results constituted important clues for understanding the molecular mechanisms regulating the signaling specificities of various JNK activators under different cellular conditions.
- Antonin W, Holroyd C, Fasshauer D, Pabst S, Von Mollard GF, Jahn R
- A SNARE complex mediating fusion of late endosomes defines conserved properties of SNARE structure and function.
- EMBO J. 2000; 19: 6453-64
- Display abstract
Sets of SNARE proteins mediate membrane fusion by assembling into core complexes. Multiple SNAREs are thought to function in different intracellular trafficking steps but it is often unclear which of the SNAREs cooperate in individual fusion reactions. We report that syntaxin 7, syntaxin 8, vti1b and endobrevin/VAMP-8 form a complex that functions in the fusion of late endosomes. Antibodies specific for each protein coprecipitate the complex, inhibit homotypic fusion of late endosomes in vitro and retard delivery of endocytosed epidermal growth factor to lysosomes. The purified proteins form core complexes with biochemical and biophysical properties remarkably similar to the neuronal core complex, although each of the four proteins carries a transmembrane domain and three have independently folded N-terminal domains. Substitution experiments, sequence and structural comparisons revealed that each protein occupies a unique position in the complex, with syntaxin 7 corresponding to syntaxin 1, and vti1b and syntaxin 8 corresponding to the N- and C-terminal domains of SNAP-25, respectively. We conclude that the structure of core complexes and their molecular mechanism in membrane fusion is highly conserved between distant SNAREs.
- Smith JA, Poteet-Smith CE, Lannigan DA, Freed TA, Zoltoski AJ, Sturgill TW
- Creation of a stress-activated p90 ribosomal S6 kinase. The carboxyl-terminal tail of the MAPK-activated protein kinases dictates the signal transduction pathway in which they function.
- J Biol Chem. 2000; 275: 31588-93
- Display abstract
Mitogen-activated protein kinase-activated protein kinases (MAPKAPKs) lie immediately downstream of the mitogen-activated protein kinases (MAPKs), extracellular signal-regulated kinase (ERK), and p38 MAPK. Although the family of MAPKAPKs shares sequence similarity, it demonstrates selectivity for the upstream activator. Here we demonstrate that each of the ERK- and p38 MAPK-regulated MAPKAPKs contains a MAPK docking site positioned distally to the residue(s) phosphorylated by MAPKs. The isolated MAPK docking sites show specificity for the upstream activator similar to that reported for the full-length proteins. Moreover, replacement of the ERK docking site of p90 ribosomal S6 kinase with the p38 MAPK docking site of MAPKAPK2 converts p90 ribosomal S6 kinase into a stress-activated kinase in vivo. It is apparent that mechanisms controlling events downstream of the proline-directed MAPKs involve specific MAPK docking sites within the carboxyl termini of the MAPKAPKs that determine the cascade in which the MAPKAPK functions.
- Therrien M, Wong AM, Rubin GM
- CNK, a RAF-binding multidomain protein required for RAS signaling.
- Cell. 1998; 95: 343-53
- Display abstract
Kinase suppressor of ras (ksr) is required for efficient signal transmission within the RAS/MAPK cascade. A screen for mutations that modify a ksr-dependent phenotype identified a novel gene, connector enhancer of ksr (cnk), that functions upstream or in parallel to RAF in the RAS pathway. cnk encodes a protein containing several protein-protein interaction domains, suggesting that it brings different signaling molecules together. CNK is required in multiple receptor tyrosine kinase pathways where it appears to be a tyrosine phosphorylation target. Finally, CNK physically interacts with RAF and appears to localize to cell-cell contact regions. Together, these findings suggest that CNK is a novel component of a RAS-dependent signaling pathway that regulates RAF function and/or targets RAF to a specific subcellular compartment upon RAS activation.
- Chang ZL, Lin MQ, Wang MZ, Yao Z
- [Studies on cell signaling immunomodulated murine peritoneal suppressor macrophages: LPS and PMA mediate the activation of RAF-1, MAPK p44 and MAPK p42 and p38 MAPK].
- Shi Yan Sheng Wu Xue Bao. 1997; 30: 73-81
- Display abstract
Monocytes-macrophages which serve as host immune cells to kill pathogens can often be "activated" after exposing to viruses, bacteria, cytokines as well as chemical substances, However, it is paradoxical that highly activated macrophages can be induced to become the suppressor ones by live microbes, microbial products, tumor, and autoimmune disease, although the mechanism remains unknown. Our previous experimental studies have shown that immuno-suppressor activities of suppressor macrophages on T, B and NK cells can be prevented by the treatment with LPS or supernatant in vitro from mitogen-stimulated lymphocytes, while, at the same time, the tumoricidal activities of those macrophages can be kept or even enhanced following the same treatment. This phenomenon was then termed as "immune modulation" For the understanding of its mechanism, we are now undertaking signal transduction in modulated macrophages. Since mitogen-activated protein kinase (MAPK) is an integration point of different signal transduction pathways, its cascade and regulation of activation are being investigated extensively by the assay of electrophoresis mobility shift. Recent results suggested that interaction of ligand-receptor triggers protein tyrosine kinase(PTK) activation leading to Ras-GTP binding with Raf-1 to phosphorylate MAPK kinase (MAPKK), the specific activator of MAPK. It is reported that PKC-alpha can directly phosphorylate or activate Raf-1 in NIH3 T3 cells. Raf-1 (74 KDa), with an intrinsic serine (Ser)-threonine (The) kinase activity, becomes hyperphosphorylated after activation which can be followed by gel mobility shift test. It has also been shown that a variety of extracellular factors stimulate a pair of MAPK p44 and MAPK p42 of MAPK family members. A significant property of activation of ERK 1 and ERK 2 is the requirement for the phosphorylation of both Thr-183 and Tyr-185 (at TEY motif) within in its protein kinase subdomain VIII. More recently, two other MAPK subtypes, p38 MAPK (mammalian equivalents of HOG1 in yeast) and JNK MAPK have been discovered. The requirement for activation of p38 MAPK for both Thr-180 and Tyr-182 (at TGY motif) has been shown. p38 MAPK is important in certain transcriptional regulatory pathways, since it can phosphorylate the following transcriptional factors: 1) Elk at Ser 383/389 for binding with SRE motif; 2). ATF 2 at Ser 69/71, forming a complex with Myc for DNA binding at CRE motif; 3) Max at Ser-62 to combine DNA of E-Box motif. p38 MAPK can be activated by LPS, inflammatory cytokines, such as TNF and IL-1, osmolarity. To examine the possibility that whether activation of Raf-1 and ERK 1, ERK2 and p38 MAPK can be regulated directly or/and differently by PKC and PKA pathways, herbimycin A (Ki = 0.9 mumol/L), a potent PTK inhibitor (J. Immunol. 155:3944-4003, 1995) at 2 mumol/L concentration was utilized to block Ras/Raf-1/MAPK cascade. After pre-incubation of macrophages with herbimycin A for 30 min or 90 min, cells were treated with LPS (10 micrograms/ml) and PMA (100 nmol/L) for 15 min. No inhibition of phosphorylation of Raf-1, MAPK p44 and MAPK p42 in response to LPS and PMA was observed (Fig. 1 and 3). However, forskolin, a cAMP inducer for protein kinase A (PKA) activation, inhibited the phosphorylation of LPS- and PMA-stimulated Raf-1, MAPK p44 and MAPK p42 (Fig. 2 and 4). Similarly, in agreement with a very recent report from David, M et al in NIH, in which they indicated that forskolin (30 mumol/L) inhibited IFN-beta-stimulated ERK activity by U 266 cells (J. Biol. Chem. 271: 4585-4588 1996), we found that the levels of phosphorylations of Raf-1 and ERK1 and ERK2 were declined when forskolin (30 mumol/L) was added to macrophages for 20 min at 37 degrees C prior to the stimulation by LPS and PMA. Interestingly, under the same condition, forskolin (30 mumol/L) stimulated the phosphorylation of LPS- and PMA-triggered p38 MAPK of murine peritoneal suppressor macrophages, suggesting that activatio
- Pawson T, Scott JD
- Signaling through scaffold, anchoring, and adaptor proteins.
- Science. 1997; 278: 2075-80
- Display abstract
The process by which extracellular signals are relayed from the plasma membrane to specific intracellular sites is an essential facet of cellular regulation. Many signaling pathways do so by altering the phosphorylation state of tyrosine, serine, or threonine residues of target proteins. Recently, it has become apparent that regulatory mechanisms exist to influence where and when protein kinases and phosphatases are activated in the cell. The role of scaffold, anchoring, and adaptor proteins that contribute to the specificity of signal transduction events by recruiting active enzymes into signaling networks or by placing enzymes close to their substrates is discussed.
- Schievella AR, Chen JH, Graham JR, Lin LL
- MADD, a novel death domain protein that interacts with the type 1 tumor necrosis factor receptor and activates mitogen-activated protein kinase.
- J Biol Chem. 1997; 272: 12069-75
- Display abstract
The death domain of the type 1 tumor necrosis factor receptor (TNFR1) mediates interactions with several proteins involved in signaling the downstream effects of TNF. We have used the yeast interaction trap to isolate a protein, MADD, that associates with the death domain of TNFR1 through its own C-terminal death domain. MADD interacts with TNFR1 residues that are critical for signal generation and coimmunoprecipitates with TNFR1, implicating MADD as a component of the TNFR1 signaling complex. Importantly, we have found that overexpression of MADD activates the mitogen-activated protein (MAP) kinase extracellular signal-regulated kinase (ERK), and expression of the MADD death domain stimulates both the ERK and c-JUN N-terminal kinase MAP kinases and induces the phosphorylation of cytosolic phospholipase A2. These data indicate that MADD links TNFR1 with MAP kinase activation and arachidonic acid release and provide further insight into the mechanisms by which TNF exerts its pleiotropic effects.
- Holt KH, Kasson BG, Pessin JE
- Insulin stimulation of a MEK-dependent but ERK-independent SOS protein kinase.
- Mol Cell Biol. 1996; 16: 577-83
- Display abstract
The Ras guanylnucleotide exchange protein SOS undergoes feedback phosphorylation and dissociation from Grb2 following insulin receptor kinase activation of Ras. To determine the serine/threonine kinase(s) responsible for SOS phosphorylation in vivo, we assessed the role of mitogen-activated, extracellular-signal-regulated protein kinase kinase (MEK), extracellular-signal-regulated protein kinase (ERK), and the c-JUN protein kinase (JNK) in this phosphorylation event. Expression of a dominant-interfering MEK mutant, in which lysine 97 was replaced with arginine (MEK/K97R), resulted in an inhibition of insulin-stimulated SOS and ERK phosphorylation, whereas expression of a constitutively active MEK mutant, in which serines 218 and 222 were replaced with glutamic acid (MEK/EE), induced basal phosphorylation of both SOS and ERK. Although expression of the mitogen-activated protein kinase-specific phosphatase (MKP-1) completely inhibited the insulin stimulation of ERK activity both in vitro and in vivo, SOS phosphorylation and the dissociation of the Grb2-SOS complex were unaffected. In addition, insulin did not activate the related protein kinase JNK, demonstrating the specificity of insulin for the ERK pathway. The insulin-stimulated and MKP-1-insensitive SOS-phosphorylating activity was reconstituted in whole-cell extracts and did not bind to a MonoQ anion-exchange column. In contrast, ERK1/2 protein was retained by the MonoQ column, eluted with approximately 200 mM NaCl, and was MKP-1 sensitive. Although MEK also does not bind to MonoQ, immunodepletion analysis demonstrated that MEK is not the insulin-stimulated SOS-phosphorylating activity. Together, these data demonstrate that at least one of the kinases responsible for SOS phosphorylation and functional dissociation of the Grb2-SOS complex is an ERK-independent but MEK-dependent insulin-stimulated protein kinase.