Secondary literature sources for Rapamycin_bind
The following references were automatically generated.
- Prakash A, Shin J, Yoon HS
- (1)H, (13)C and (15)N resonance assignments of human FK506 binding protein 25.
- Biomol NMR Assign. 2015; 9: 43-6
- Display abstract
Human FKBP25, a nuclear protein, is a member of FK506 binding protein family (FKBP) and binds to immunosuppressive drugs such as FK506 and rapamycin. Human FKBP25 interacts with several nuclear proteins and regulates nuclear events. To understand the molecular basis of such interactions, we have performed NMR studies. Here, we report (1)H, (15)N and (13)C resonance assignments of the full-length human FKBP25 protein.
- Serbus LR et al.
- The impact of host diet on Wolbachia titer in Drosophila.
- PLoS Pathog. 2015; 11: 1004777-1004777
- Display abstract
While a number of studies have identified host factors that influence endosymbiont titer, little is known concerning environmental influences on titer. Here we examined nutrient impact on maternally transmitted Wolbachia endosymbionts in Drosophila. We demonstrate that Drosophila reared on sucrose- and yeast-enriched diets exhibit increased and reduced Wolbachia titers in oogenesis, respectively. The yeast-induced Wolbachia depletion is mediated in large part by the somatic TOR and insulin signaling pathways. Disrupting TORC1 with the small molecule rapamycin dramatically increases oocyte Wolbachia titer, whereas hyper-activating somatic TORC1 suppresses oocyte titer. Furthermore, genetic ablation of insulin-producing cells located in the Drosophila brain abolished the yeast impact on oocyte titer. Exposure to yeast-enriched diets altered Wolbachia nucleoid morphology in oogenesis. Furthermore, dietary yeast increased somatic Wolbachia titer overall, though not in the central nervous system. These findings highlight the interactions between Wolbachia and germline cells as strongly nutrient-sensitive, and implicate conserved host signaling pathways by which nutrients influence Wolbachia titer.
- Syed DN et al.
- Fisetin inhibits human melanoma cell growth through direct binding to p70S6K and mTOR: findings from 3-D melanoma skin equivalents and computational modeling.
- Biochem Pharmacol. 2014; 89: 349-60
- Display abstract
The incidence of melanoma continues to rise. Inspite of treatment advances, the prognosis remains grim once the disease has metastasized, emphasizing the need to explore additional therapeutic strategies. One such approach is through the use of mechanism-based dietary intervention. We previously showed that the flavonoid fisetin inhibits melanoma cell proliferation, in vitro and in vivo. Here, we studied fisetin-mediated regulation of kinases involved in melanoma growth and progression. Time-course analysis in 3-D melanoma constructs that transitioned from radial to vertical growth showed that fisetin treatment resulted in significant decrease in melanocytic lesions in contrast to untreated controls that showed large tumor nests and invading disseminated cells. Further studies in melanoma cultures and mouse xenografts showed that fisetin-mediated growth inhibition was associated with dephosphorylation of AKT, mTOR and p70S6K proteins. In silico modeling indicated direct interaction of fisetin with mTOR and p70S6K with favorable free energy values. These findings were validated by cell-free competition assays that established binding of fisetin to p70S6K and mTOR while little affinity was detected with AKT. Kinase activity studies reflected similar trend with % inhibition observed for p70S6K and mTOR at lower doses than AKT. Our studies characterized, for the first time, the differential interactions of any botanical agent with kinases involved in melanoma growth and demonstrate that fisetin inhibits mTOR and p70S6K through direct binding while the observed inhibitory effect of fisetin on AKT is mediated indirectly, through targeting interrelated pathways.
- Liu Q et al.
- Characterization of Torin2, an ATP-competitive inhibitor of mTOR, ATM, and ATR.
- Cancer Res. 2013; 73: 2574-86
- Display abstract
mTOR is a highly conserved serine/threonine protein kinase that serves as a central regulator of cell growth, survival, and autophagy. Deregulation of the PI3K/Akt/mTOR signaling pathway occurs commonly in cancer and numerous inhibitors targeting the ATP-binding site of these kinases are currently undergoing clinical evaluation. Here, we report the characterization of Torin2, a second-generation ATP-competitive inhibitor that is potent and selective for mTOR with a superior pharmacokinetic profile to previous inhibitors. Torin2 inhibited mTORC1-dependent T389 phosphorylation on S6K (RPS6KB1) with an EC(50) of 250 pmol/L with approximately 800-fold selectivity for cellular mTOR versus phosphoinositide 3-kinase (PI3K). Torin2 also exhibited potent biochemical and cellular activity against phosphatidylinositol-3 kinase-like kinase (PIKK) family kinases including ATM (EC(50), 28 nmol/L), ATR (EC(50), 35 nmol/L), and DNA-PK (EC(50), 118 nmol/L; PRKDC), the inhibition of which sensitized cells to Irradiation. Similar to the earlier generation compound Torin1 and in contrast to other reported mTOR inhibitors, Torin2 inhibited mTOR kinase and mTORC1 signaling activities in a sustained manner suggestive of a slow dissociation from the kinase. Cancer cell treatment with Torin2 for 24 hours resulted in a prolonged block in negative feedback and consequent T308 phosphorylation on Akt. These effects were associated with strong growth inhibition in vitro. Single-agent treatment with Torin2 in vivo did not yield significant efficacy against KRAS-driven lung tumors, but the combination of Torin2 with mitogen-activated protein/extracellular signal-regulated kinase (MEK) inhibitor AZD6244 yielded a significant growth inhibition. Taken together, our findings establish Torin2 as a strong candidate for clinical evaluation in a broad number of oncologic settings where mTOR signaling has a pathogenic role.
- Santulli G, Totary-Jain H
- Tailoring mTOR-based therapy: molecular evidence and clinical challenges.
- Pharmacogenomics. 2013; 14: 1517-26
- Display abstract
The mTOR signaling pathway integrates inputs from a variety of upstream stimuli to regulate diverse cellular processes including proliferation, growth, survival, motility, autophagy, protein synthesis and metabolism. The mTOR pathway is dysregulated in a number of human pathologies including cancer, diabetes, obesity, autoimmune disorders, neurological disease and aging. Ongoing clinical trials testing mTOR-targeted treatments number in the hundreds and underscore its therapeutic potential. To date mTOR inhibitors are clinically approved to prevent organ rejection, to inhibit restenosis after angioplasty, and to treat several advanced cancers. In this review we discuss the continuously evolving field of mTOR pharmacogenomics, as well as highlight the emerging efforts in identifying diagnostic and prognostic markers, including miRNAs, in order to assess successful therapeutic responses.
- Huang Z et al.
- A functional variomics tool for discovering drug-resistance genes and drug targets.
- Cell Rep. 2013; 3: 577-85
- Display abstract
Comprehensive discovery of genetic mechanisms of drug resistance and identification of in vivo drug targets represent significant challenges. Here we present a functional variomics technology in the model organism Saccharomyces cerevisiae. This tool analyzes numerous genetic variants and effectively tackles both problems simultaneously. Using this tool, we discovered almost all genes that, due to mutations or modest overexpression, confer resistance to rapamycin, cycloheximide, and amphotericin B. Most significant among the resistance genes were drug targets, including multiple targets of a given drug. With amphotericin B, we discovered the highly conserved membrane protein Pmp3 as a potent resistance factor and a possible target. Widespread application of this tool should allow rapid identification of conserved resistance mechanisms and targets of many more compounds. New genes and alleles that confer resistance to other stresses can also be discovered. Similar tools in other systems, such as human cell lines, will also be useful.
- Xie H et al.
- Discovery of the novel mTOR inhibitor and its antitumor activities in vitro and in vivo.
- Mol Cancer Ther. 2013; 12: 950-8
- Display abstract
The phosphoinositide 3-kinase (PI3-K)/Akt and mTOR signaling pathway plays a critical role in cell survival and proliferation and is often aberrantly activated in many types of cancer. The mTOR kinase protein, one of the key molecules in this pathway, has been shown to be an important target for cancer therapy. In the present study, a ligand docking method was used to screen for novel scaffold mTOR inhibitors. Sixty thousand compounds in the Natural Product Database were screened against the mTOR homologous structure, and 13 commercially available compounds listed in the top-ranked 100 compounds were selected for further examination. Compound [(E)-3-(4-(benzo[d][1,3]dioxol-5-yl)-2-oxobut-3-en-1-yl)- 3-hydroxyindolin-2-one; designated herein as 3HOI-BA-01] was then selected for further study of its antitumor activity. An in vitro study has shown that 3HOI-BA-01 inhibited mTOR kinase activity in a dose-dependent manner by directly binding with mTOR. In a panel of non-small cell lung cancer cells, the compound also attenuated mTOR downstream signaling, including the phosphorylation of p70S6K, S6, and Akt, resulting in G1 cell-cycle arrest and growth inhibition. Results of an in vivo study have shown that intraperitoneal injection of 3HOI-BA-01 in A549 lung tumor-bearing mice effectively suppressed cancer growth without affecting the body weight of the mice. The expression of downstream signaling molecules in the mTOR pathway in tumor tissues was also reduced after 3HOI-BA-01 treatment. Taken together, we identified 3HOI-BA-01 as a novel and effective mTOR inhibitor.
- Fonseca BD et al.
- Structure-activity analysis of niclosamide reveals potential role for cytoplasmic pH in control of mammalian target of rapamycin complex 1 (mTORC1) signaling.
- J Biol Chem. 2012; 287: 17530-45
- Display abstract
Mammalian target of rapamycin complex 1 (mTORC1) signaling is frequently dysregulated in cancer. Inhibition of mTORC1 is thus regarded as a promising strategy in the treatment of tumors with elevated mTORC1 activity. We have recently identified niclosamide (a Food and Drug Administration-approved antihelminthic drug) as an inhibitor of mTORC1 signaling. In the present study, we explored possible mechanisms by which niclosamide may inhibit mTORC1 signaling. We tested whether niclosamide interferes with signaling cascades upstream of mTORC1, the catalytic activity of mTOR, or mTORC1 assembly. We found that niclosamide does not impair PI3K/Akt signaling, nor does it inhibit mTORC1 kinase activity. We also found that niclosamide does not interfere with mTORC1 assembly. Previous studies in helminths suggest that niclosamide disrupts pH homeostasis of the parasite. This prompted us to investigate whether niclosamide affects the pH balance of cancer cells. Experiments in both breast cancer cells and cell-free systems demonstrated that niclosamide possesses protonophoric activity in cells and in vitro. In cells, niclosamide dissipated protons (down their concentration gradient) from lysosomes to the cytosol, effectively lowering cytoplasmic pH. Notably, analysis of five niclosamide analogs revealed that the structural features of niclosamide required for protonophoric activity are also essential for mTORC1 inhibition. Furthermore, lowering cytoplasmic pH by means other than niclosamide treatment (e.g. incubation with propionic acid or bicarbonate withdrawal) recapitulated the inhibitory effects of niclosamide on mTORC1 signaling, lending support to a possible role for cytoplasmic pH in the control of mTORC1. Our data illustrate a potential mechanism for chemical inhibition of mTORC1 signaling involving modulation of cytoplasmic pH.
- Xiong Y, Sheen J
- Rapamycin and glucose-target of rapamycin (TOR) protein signaling in plants.
- J Biol Chem. 2012; 287: 2836-42
- Display abstract
Target of rapamycin (TOR) kinase is an evolutionarily conserved master regulator that integrates energy, nutrients, growth factors, and stress signals to promote survival and growth in all eukaryotes. The reported land plant resistance to rapamycin and the embryo lethality of the Arabidopsis tor mutants have hindered functional dissection of TOR signaling in plants. We developed sensitive cellular and seedling assays to monitor endogenous Arabidopsis TOR activity based on its conserved S6 kinase (S6K) phosphorylation. Surprisingly, rapamycin effectively inhibits Arabidopsis TOR-S6K1 signaling and retards glucose-mediated root and leaf growth, mimicking estradiol-inducible tor mutants. Rapamycin inhibition is relieved in transgenic plants deficient in Arabidopsis FK506-binding protein 12 (FKP12), whereas FKP12 overexpression dramatically enhances rapamycin sensitivity. The role of Arabidopsis FKP12 is highly specific as overexpression of seven closely related FKP proteins fails to increase rapamycin sensitivity. Rapamycin exerts TOR inhibition by inducing direct interaction between the TOR-FRB (FKP-rapamycin binding) domain and FKP12 in plant cells. We suggest that variable endogenous FKP12 protein levels may underlie the molecular explanation for longstanding enigmatic observations on inconsistent rapamycin resistance in plants and in various mammalian cell lines or diverse animal cell types. Integrative analyses with rapamycin and conditional tor and fkp12 mutants also reveal a central role of glucose-TOR signaling in root hair formation. Our studies demonstrate the power of chemical genetic approaches in the discovery of previously unknown and pivotal functions of glucose-TOR signaling in governing the growth of cotyledons, true leaves, petioles, and primary and secondary roots and root hairs.
- Xie H et al.
- Identification of mammalian target of rapamycin as a direct target of fenretinide both in vitro and in vivo.
- Carcinogenesis. 2012; 33: 1814-21
- Display abstract
N-(4-hydroxyphenyl) retinamide (4HPR, fenretinide) is a synthetic retinoid that has been tested in clinical trials as a cancer therapeutic and chemopreventive agent. Although 4HPR has been shown to be cytotoxic to many kinds of cancer cells, the underlying molecular mechanisms are only partially understood. Until now, no direct cancer-related molecular target has been reported to be involved in the antitumor activities of 4HPR. Herein, we found that 4HPR inhibited mammalian target of rapamycin (mTOR) kinase activity by directly binding with mTOR, which suppressed the activities of both the mTORC1 and the mTORC2 complexes. The predicted binding mode of 4HPR with mTOR was based on a homology computer model, which showed that 4HPR could bind in the ATP-binding pocket of the mTOR protein through hydrogen bonds and hydrophobic interactions. In vitro studies also showed that 4HPR attenuated mTOR downstream signaling in a panel of non-small-cell lung cancer cells, resulting in growth inhibition. Moreover, knockdown of mTOR in cancer cells decreased their sensitivity to 4HPR. Results of an in vivo study demonstrated that i.p. injection of 4HPR in A549 lung tumor-bearing mice effectively suppressed cancer growth. The expression of mTOR downstream signaling molecules in tumor tissues was also decreased after 4HPR treatment. Taken together, our results are the first to identify mTOR as a direct antitumor target of 4HPR both in vitro and in vivo, providing a valuable rationale for guiding the clinical uses of 4HPR.
- Chang-Ileto B, Frere SG, Di Paolo G
- Acute manipulation of phosphoinositide levels in cells.
- Methods Cell Biol. 2012; 108: 187-207
- Display abstract
Phosphoinositides are membrane-bound signaling phospholipids that function in a myriad of cellular processes, including membrane trafficking, cytoskeletal dynamics, ion channel and transporter function, and signal transduction. In order to better understand the role of phosphoinositides in cellular processes, different approaches to study the effects of the presence or absence of these lipids must be devised. Conventional approaches of manipulating phosphoinositide levels such as over-expression or genetic ablation of lipid enzymes cause prolonged exposure of the cells to changes in lipid levels that could result in compensatory actions by the cell or downstream alterations in cell physiology. In this chapter we present an approach used recently by various laboratories, including our own, to acutely manipulate phosphoinositide levels at target locations using chemically induced dimerization (CID) that can be spatially and temporally controlled. We discuss considerations when designing expression constructs for targeting specific cellular compartment membranes and present examples from the literature on different ways of perturbing phosphoinositide levels at particular organelle membranes using CID. In addition, we provide details on image acquisition, data collection, and data interpretation. CID technology can be applied to many lipid enzymes to broaden the understanding of the role lipid signaling plays in cell physiology.
- Li W, Bhat S, Liu JO
- A simple and efficient route to the FKBP-binding domain from rapamycin.
- Tetrahedron Lett. 2011; 52: 5070-5072
- Display abstract
A simple and highly efficient route to the FKBP-binding domain (FKBD) from the natural product rapamycin has been developed, which entails a sequence of ozonolysis/Baeyer-Villiger/Wittig reactions. The newly synthesized FKBD may serve as a core to assemble hybrid macrocyclic libraries for the discovery of novel probes of protein function and to synthesize new ligands for the FKBP family of proteins.
- Hernandez-Aya LF, Gonzalez-Angulo AM
- Targeting the phosphatidylinositol 3-kinase signaling pathway in breast cancer.
- Oncologist. 2011; 16: 404-14
- Display abstract
The phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) network plays a key regulatory function in cell survival, proliferation, migration, metabolism, angiogenesis, and apoptosis. Genetic aberrations found at different levels, either with activation of oncogenes or inactivation of tumor suppressors, make this pathway one of the most commonly disrupted in human breast cancer. The PI3K-dependent phosphorylation and activation of the serine/threonine kinase AKT is a key activator of cell survival mechanisms. The activation of the oncogene PIK3CA and the loss of regulators of AKT including the tumor suppressor gene PTEN are mutations commonly found in breast tumors. AKT relieves the negative regulation of mTOR to activate protein synthesis and cell proliferation through S6K and 4EBP1. The common activation of the PI3K pathway in breast cancer has led to the development of compounds targeting the effector mechanisms of the pathway including selective and pan-PI3K/pan-AKT inhibitors, rapamycin analogs for mTOR inhibition, and TOR-catalytic subunit inhibitors. The influences of other oncogenic pathways such as Ras-Raf-Mek on the PI3K pathway and the known feedback mechanisms of activation have prompted the use of compounds with broader effect at multiple levels and rational combination strategies to obtain a more potent antitumor activity and possibly a meaningful clinical effect. Here, we review the biology of the network, its role in the development and progression of breast cancer, and the evaluation of targeted therapies in clinical trials.
- Wu X et al.
- Creating diverse target-binding surfaces on FKBP12: synthesis and evaluation of a rapamycin analogue library.
- ACS Comb Sci. 2011; 13: 486-95
- Display abstract
FK506 and rapamycin are immunosuppressive drugs with a unique mode of action. Prior to binding to their protein targets, these drugs form a complex with an endogenous chaperone FK506-binding protein 12 (FKBP12). The resulting composite FK506-FKBP and rapamycin-FKBP binding surfaces recognize the relatively flat target surfaces of calcineurin and mTOR, respectively, with high affinity and specificity. To test whether this mode of action may be generalized to inhibit other protein targets, especially those that are challenging to inhibit by conventional small molecules, we have developed a parallel synthesis method to generate a 200-member library of bifunctional cyclic peptides as FK506 and rapamycin analogues, which were referred to as "rapalogs". Each rapalog consists of a common FKBP-binding moiety and a variable effector domain. The rapalogs were tested for binding to FKBP12 by a fluorescence polarization competition assay. Our results show that FKBP12 binds to most of the rapalogs with high affinity (K(I) values in the nanomolar to low micromolar range), creating a large repertoire of composite surfaces for potential recognition of macromolecular targets such as proteins.
- Soliman GA et al.
- mTOR Ser-2481 autophosphorylation monitors mTORC-specific catalytic activity and clarifies rapamycin mechanism of action.
- J Biol Chem. 2010; 285: 7866-79
- Display abstract
The mammalian target of rapamycin (mTOR) Ser/Thr kinase signals in at least two multiprotein complexes distinguished by their different partners and sensitivities to rapamycin. Acute rapamycin inhibits signaling by mTOR complex 1 (mTORC1) but not mTOR complex 2 (mTORC2), which both promote cell growth, proliferation, and survival. Although mTORC2 regulation remains poorly defined, diverse cellular mitogens activate mTORC1 signaling in a manner that requires sufficient levels of amino acids and cellular energy. Before the identification of distinct mTOR complexes, mTOR was reported to autophosphorylate on Ser-2481 in vivo in a rapamycin- and amino acid-insensitive manner. These results suggested that modulation of mTOR intrinsic catalytic activity does not universally underlie mTOR regulation. Here we re-examine the regulation of mTOR Ser-2481 autophosphorylation (Ser(P)-2481) in vivo by studying mTORC-specific Ser(P)-2481 in mTORC1 and mTORC2, with a primary focus on mTORC1. In contrast to previous work, we find that acute rapamycin and amino acid withdrawal markedly attenuate mTORC1-associated mTOR Ser(P)-2481 in cycling cells. Although insulin stimulates both mTORC1- and mTORC2-associated mTOR Ser(P)-2481 in a phosphatidylinositol 3-kinase-dependent manner, rapamycin acutely inhibits insulin-stimulated mTOR Ser(P)-2481 in mTORC1 but not mTORC2. By interrogating diverse mTORC1 regulatory input, we find that without exception mTORC1-activating signals promote, whereas mTORC1-inhibitory signals decrease mTORC1-associated mTOR Ser(P)-2481. These data suggest that mTORC1- and likely mTORC2-associated mTOR Ser-2481 autophosphorylation directly monitors intrinsic mTORC-specific catalytic activity and reveal that rapamycin inhibits mTORC1 signaling in vivo by reducing mTORC1 catalytic activity.
- Irannejad R, Wedegaertner PB
- Regulation of constitutive cargo transport from the trans-Golgi network to plasma membrane by Golgi-localized G protein betagamma subunits.
- J Biol Chem. 2010; 285: 32393-404
- Display abstract
Observations of Golgi fragmentation upon introduction of G protein betagamma (Gbetagamma) subunits into cells have implicated Gbetagamma in a pathway controlling the fission at the trans-Golgi network (TGN) of plasma membrane (PM)-destined transport carriers. However, the subcellular location where Gbetagamma acts to provoke Golgi fragmentation is not known. Additionally, a role for Gbetagamma in regulating TGN-to-PM transport has not been demonstrated. Here we report that constitutive or inducible targeting of Gbetagamma to the Golgi, but not other subcellular locations, causes phospholipase C- and protein kinase D-dependent vesiculation of the Golgi in HeLa cells; Golgi-targeted beta(1)gamma(2) also activates protein kinase D. Moreover, the novel Gbetagamma inhibitor, gallein, and the Gbetagamma-sequestering protein, GRK2ct, reveal that Gbetagamma is required for the constitutive PM transport of two model cargo proteins, VSV-G and ss-HRP. Importantly, Golgi-targeted GRK2ct, but not a PM-targeted GRK2ct, also blocks protein transport to the PM. To further support a role for Golgi-localized Gbetagamma, endogenous Gbeta was detected at the Golgi in HeLa cells. These results are the first to establish a role for Golgi-localized Gbetagamma in regulating protein transport from the TGN to the cell surface.
- Kristof AS
- mTOR signaling in lymphangioleiomyomatosis.
- Lymphat Res Biol. 2010; 8: 33-42
- Display abstract
The protein mammalian target of rapamycin (mTOR) plays a central role in cell growth and proliferation. Excessive mTOR activity is a prominent feature of many neoplasms and hamartoma syndromes, including lymphangioleiomyomatosis (LAM), a destructive lung disease that causes progressive respiratory failure in women. Although pharmacological inhibitors of mTOR should directly target the pathogenesis of these disorders, their clinical efficacy has been suboptimal. Recent scientific findings reviewed here have greatly improved our understanding of mTOR signaling mechanisms, provided new insights into the control of cell growth and proliferation, and facilitated the development of new therapeutic approaches in LAM, as well as other neoplastic disorders that exhibit excessive mTOR activity.
- Geest CR, Zwartkruis FJ, Vellenga E, Coffer PJ, Buitenhuis M
- Mammalian target of rapamycin activity is required for expansion of CD34+ hematopoietic progenitor cells.
- Haematologica. 2009; 94: 901-10
- Display abstract
BACKGROUND: The mammalian target of rapamycin is a conserved protein kinase known to regulate protein synthesis, cell size and proliferation. Aberrant regulation of mammalian target of rapamycin activity has been observed in hematopoietic malignancies, including acute leukemias and myelodysplastic syndromes, suggesting that correct regulation of mammalian target of rapamycin is critical for normal hematopoiesis. DESIGN AND METHODS: An ex vivo granulocyte differentiation system was utilized to investigate the role of mammalian target of rapamycin in the regulation of myelopoiesis. RESULTS: Inhibition of mammalian target of rapamycin activity, with the pharmacological inhibitor rapamycin, dramatically reduced hematopoietic progenitor expansion, without altering levels of apoptosis or maturation. Moreover, analysis of distinct hematopoietic progenitor populations revealed that rapamycin treatment inhibited the expansion potential of committed CD34(+) lineage-positive progenitors, but did not affect early hematopoietic progenitors. Further examinations showed that these effects of rapamycin on progenitor expansion might involve differential regulation of protein kinase B and mammalian target of rapamycin signaling. CONCLUSIONS: Together, these results indicate that mammalian target of rapamycin activity is essential for expansion of CD34(+) hematopoietic progenitor cells during myelopoiesis. Modulation of the mammalian target of rapamycin pathway may be of benefit in the design of new therapies to control hematologic malignancies.
- Xie J, Thapa R, Reverdatto S, Burz DS, Shekhtman A
- Screening of small molecule interactor library by using in-cell NMR spectroscopy (SMILI-NMR).
- J Med Chem. 2009; 52: 3516-22
- Display abstract
We developed an in-cell NMR assay for screening small molecule interactor libraries (SMILI-NMR) for compounds capable of disrupting or enhancing specific interactions between two or more components of a biomolecular complex. The method relies on the formation of a well-defined biocomplex and utilizes in-cell NMR spectroscopy to identify the molecular surfaces involved in the interaction at atomic scale resolution. Changes in the interaction surface caused by a small molecule interfering with complex formation are used as a read-out of the assay. The in-cell nature of the experimental protocol insures that the small molecule is capable of penetrating the cell membrane and specifically engaging the target molecule(s). Utility of the method was demonstrated by screening a small dipeptide library against the FKBP-FRB protein complex involved in cell cycle arrest. The dipeptide identified by SMILI-NMR showed biological activity in a functional assay in yeast.
- Veverka V et al.
- Structural characterization of the interaction of mTOR with phosphatidic acid and a novel class of inhibitor: compelling evidence for a central role of the FRB domain in small molecule-mediated regulation of mTOR.
- Oncogene. 2008; 27: 585-95
- Display abstract
The mammalian target of rapamycin (mTOR) is a large, multidomain protein kinase, which plays a central role in the regulation of cell growth and has recently emerged as an essential target of survival signals in many types of human cancer cells. Here, we report the solution structures of complexes formed between the FKBP12-rapamycin binding (FRB) domain of mTOR and phosphatidic acid, an important cellular activator of the kinase, and between the FRB domain and a novel inhibitor (HTS-1). The overall structure of the FRB domain is very similar to that seen in the ternary complex formed with FKBP12 and the immunosuppressive drug rapamycin; however, there are significant changes within the rapamycin-binding site with important consequences for rational drug design. The surface of the FRB domain contains a number of distinctive features that have previously escaped attention, including a potential new regulatory site on the opposite face to that involved in the binding of rapamycin, which displays the features expected for a specific binding site for a small molecule. The interaction sites for phosphatidic acid and HTS-1 were found to closely match the site responsible for rapamycin binding. In addition, the structures determined for the FRB-phosphatidic acid and FRB-HTS-1 complexes revealed a striking similarity between the conformations of buried portions of the ligands and that seen for the rapamycin backbone in contact with the domain. Our findings further highlight the importance of the FRB domain in small molecule-mediated regulation of mTOR, demonstrate the ability to identify novel inhibitors of mTOR that bind tightly to the rapamycin-binding site in the absence of FKBP12, and identify a potential new regulatory site that may be exploited in the design of new anticancer drugs.
- Cho JY, Park J
- Contribution of natural inhibitors to the understanding of the PI3K/PDK1/PKB pathway in the insulin-mediated intracellular signaling cascade.
- Int J Mol Sci. 2008; 9: 2217-30
- Display abstract
The critical initial steps in insulin action include phosphorylation of adapter proteins and activation of phosphatidylinositol 3-kinase (PI3K). One of important components in this process is a protein called Akt/protein kinase B (PKB). The work of numerous different researchers indicates a role of PKB in regulating insulin-stimulated glucose uptake. The crucial role of lipid second messengers in PKB activation has been dissected through the use of the PI3K-specific inhibitors wortmannin and LY294002. Receptor-activated PI3K synthesizes the lipid second messenger PtdIns[3,4,5]-trisphosphate, leading to the recruitment of PKB to the membrane. Membrane attachment of PKB is mediated by its pleckstrin homology domain binding to PtdIns[3,4,5]-trisphosphate or PtdIns[3,4]-bisphosphate with high affinity. Activation of PKB alpha is then achieved at the plasma membrane by phosphorylation of Thr308 in the activation-loop of the kinase domain and Ser473 in the carboxy-terminal regulatory region, respectively. 3-Phosphoinositide-dependent protein kinase-1 (PDK1) is responsible for T308 phosphorylation. The usage of specific inhibitors and natural compound has significantly contributed to investigate the molecular mechanism of PI3K/PDK1/PKB signaling pathway, leading to the putative therapeutics benefits of patients. This review focuses on the contribution of natural inhibitor or compound in our understanding of the mechanism by which insulin induces, especially in PI3K/PDK1/PKB signaling.
- Stead MA, Rosbrook GO, Hadden JM, Trinh CH, Carr SB, Wright SC
- Structure of the wild-type human BCL6 POZ domain.
- Acta Crystallogr Sect F Struct Biol Cryst Commun. 2008; 64: 1101-4
- Display abstract
BCL6 is a transcriptional repressor that is overexpressed in diffuse large B-cell lymphoma and follicular lymphoma. The N-terminal POZ domain of BCL6 interacts with transcriptional corepressors and targeting these associations is a promising therapeutic strategy. Previous structural studies of the BCL6 POZ domain have used a mutant form because of the low solubility of the wild-type recombinant protein. A method for the purification and crystallization of the wild-type BCL6 POZ domain is described and the crystal structure to 2.1 A resolution is reported. This will be relevant for the design of therapeutics that target BCL6 POZ-domain interaction interfaces.
- Slep KC, Vale RD
- Structural basis of microtubule plus end tracking by XMAP215, CLIP-170, and EB1.
- Mol Cell. 2007; 27: 976-91
- Display abstract
Microtubule plus end binding proteins (+TIPs) localize to the dynamic plus ends of microtubules, where they stimulate microtubule growth and recruit signaling molecules. Three main +TIP classes have been identified (XMAP215, EB1, and CLIP-170), but whether they act upon microtubule plus ends through a similar mechanism has not been resolved. Here, we report crystal structures of the tubulin binding domains of XMAP215 (yeast Stu2p and Drosophila Msps), EB1 (yeast Bim1p and human EB1), and CLIP-170 (human), which reveal diverse tubulin binding interfaces. Functional studies, however, reveal a common property that native or artificial dimerization of tubulin binding domains (including chemically induced heterodimers of EB1 and CLIP-170) induces tubulin nucleation/assembly in vitro and, in most cases, plus end tracking in living cells. We propose that +TIPs, although diverse in structure, share a common property of multimerizing tubulin, thus acting as polymerization chaperones that aid in subunit addition to the microtubule plus end.
- Stankunas K, Crabtree GR
- Exploiting protein destruction for constructive use.
- Proc Natl Acad Sci U S A. 2007; 104: 11511-2
- Sarbassov DD et al.
- Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB.
- Mol Cell. 2006; 22: 159-68
- Display abstract
The drug rapamycin has important uses in oncology, cardiology, and transplantation medicine, but its clinically relevant molecular effects are not understood. When bound to FKBP12, rapamycin interacts with and inhibits the kinase activity of a multiprotein complex composed of mTOR, mLST8, and raptor (mTORC1). The distinct complex of mTOR, mLST8, and rictor (mTORC2) does not interact with FKBP12-rapamycin and is not thought to be rapamycin sensitive. mTORC2 phosphorylates and activates Akt/PKB, a key regulator of cell survival. Here we show that rapamycin inhibits the assembly of mTORC2 and that, in many cell types, prolonged rapamycin treatment reduces the levels of mTORC2 below those needed to maintain Akt/PKB signaling. The proapoptotic and antitumor effects of rapamycin are suppressed in cells expressing an Akt/PKB mutant that is rapamycin resistant. Our work describes an unforeseen mechanism of action for rapamycin that suggests it can be used to inhibit Akt/PKB in certain cell types.
- Thervet E
- Sirolimus therapy following early cyclosporine withdrawal in transplant patients: mechanisms of action and clinical results.
- Int J Nanomedicine. 2006; 1: 269-81
- Display abstract
Cyclosporine (CsA), a member of the family of calcineurin inhibitors, is a cornerstone of the immunosuppressive treatments used after organ transplantation. However, it exhibits significant toxicity, including nephrotoxicity and increased cardiovascular risk factors. CsA withdrawal has been used as a strategy to improve renal allograft function and other CsA-related toxicities. In order to maintain adequate immunosuppression levels, sirolimus may be used in association with CsA withdrawal. Sirolimus is a member of the mammalian target of rapamycin (mTOR) family. It presents a good immunosuppressive efficacy associated with antiproliferative actions. Early withdrawal of CsA with sirolimus is associated with a significant improvement of renal function. Despite numerically a higher incidence of acute rejection episodes, this maneuver seems also to be associated with a better allograft survival in the long-term, and improvement of renal histology and blood pressure. However, CsA withdrawal is only feasible in a selected population. Furthermore, the use of sirolimus is associated with other side-effects including lipid abnormalities, abnormal liver tests, and thrombocytopenia. Other studies are mandatory to define the population who can benefit from this maneuver. Finally, complete CsA avoidance has been already reported and is currently under clinical investigation.
- Ritacco FV et al.
- Production of novel rapamycin analogs by precursor-directed biosynthesis.
- Appl Environ Microbiol. 2005; 71: 1971-6
- Display abstract
The natural product rapamycin, produced during fermentation by Streptomyces hygroscopicus, is known for its potent antifungal, immunosuppressive, and anticancer activities. During rapamycin biosynthesis, the amino acid l-pipecolate is incorporated into the rapamycin molecule. We investigated the use of precursor-directed biosynthesis to create new rapamycin analogs by substitution of unusual l-pipecolate analogs in place of the normal amino acid. Our results suggest that the l-pipecolate analog (+/-)-nipecotic acid inhibits the biosynthesis of l-pipecolate, thereby limiting the availability of this molecule for rapamycin biosynthesis. We used (+/-)-nipecotic acid in our precursor-directed biosynthesis studies to reduce l-pipecolate availability and thereby enhance the incorporation of other pipecolate analogs into the rapamycin molecule. We describe here the use of this method for production of two new sulfur-containing rapamycin analogs, 20-thiarapamycin and 15-deoxo-19-sulfoxylrapamycin, and report measurement of their binding to FKBP12.
- Drenan RM, Liu X, Bertram PG, Zheng XF
- FKBP12-rapamycin-associated protein or mammalian target of rapamycin (FRAP/mTOR) localization in the endoplasmic reticulum and the Golgi apparatus.
- J Biol Chem. 2004; 279: 772-8
- Display abstract
FKBP12-rapamycin-associated protein (FRAP) or mammalian target of rapamycin (mTOR) and its effector proteins form a critical signaling pathway that regulates eukaryotic cell growth and proliferation. Although the protein components in this pathway have begun to be identified, little is known about their subcellular localization or the physiological significance of their localization. By immunofluorescence, we find that both endogenous and recombinant FRAP/mTOR proteins show localization predominantly in the endoplasmic reticulum (ER) and the Golgi apparatus. Consistent with this finding, FRAP/mTOR is cofractionated with calnexin, an ER marker protein. Biochemical characterization suggests that FRAP/mTOR is a peripheral ER/Golgi protein with tight membrane association. Finally, we have identified domains of FRAP/mTOR which may mediate its association with the ER and the Golgi apparatus.
- Horswill AR, Savinov SN, Benkovic SJ
- A systematic method for identifying small-molecule modulators of protein-protein interactions.
- Proc Natl Acad Sci U S A. 2004; 101: 15591-6
- Display abstract
Discovering small-molecule modulators of protein-protein interactions is a challenging task because of both the generally noncontiguous, large protein surfaces that form these interfaces and the shortage of high-throughput approaches capable of identifying such rare inhibitors. We describe here a robust and flexible methodology that couples disruption of protein-protein complexes to host cell survival. The feasibility of this approach was demonstrated through monitoring a small-molecule-mediated protein-protein association (FKBP12-rapamycin-FRAP) and two cases of dissociation (homodimeric HIV-1 protease and heterodimeric ribonucleotide reductase). For ribonucleotide reductase, we identified cyclic peptide inhibitors from genetically encoded libraries that dissociated the enzyme subunits. A solid-phase synthetic strategy and peptide ELISAs were developed to characterize these inhibitors, resulting in the discovery of cyclic peptides that operate in an unprecedented manner, thus highlighting the strengths of a functional approach. The ability of this method to process large libraries, coupled with the benefits of a genetic selection, allowed us to identify rare, uniquely active small-molecule modulators of protein-protein interactions at a frequency of less than one in 10 million.
- Sehgal SN
- Sirolimus: its discovery, biological properties, and mechanism of action.
- Transplant Proc. 2003; 35: 714-714
- Display abstract
Sirolimus is the USAN-assigned generic name for the natural product rapamycin. Sirolimus is produced by a strain of Streptomyces hygroscopicus, isolated from a soil sample collected from Rapa Nui commonly known as Easter Island. Although sirolimus was isolated as an antifungal agent with potent anticandida activity, subsequent studies revealed impressive antitumor and immunosuppressive activities. Sirolimus demonstrates activity against several murine tumors, such as B16 43 melanocarcinoma, Colon 26 tumor, EM ependymoblastoma, and mammary and colon 38 solid tumors. Sirolimus is a potent inhibitor of antigen-induced proliferation of T cells, B cells, and antibody production. Demonstration of the potent immunosuppressive activity of sirolimus in animal models of organ transplantation led to clinical trials and subsequent approval by regulatory authorities for prophylaxis of renal graft rejection. Interest in sirolimus as an immunosuppressive therapy in organ transplantation derives from its unique mechanism of action, its unique side-effect profile, and its ability to synergize with other immunosuppressive agents. The molecular mechanism underlying the antifungal, antiproliferative, and immunosuppressive activities of sirolimus is the same. Sirolimus forms an immunosuppressive complex with intracellular protein, FKBP12. This complex blocks the activation of the cell-cycle-specific kinase, TOR. The downstream events that follow the inactivation of TOR result in the blockage of cell-cycle progression at the juncture of G1 and S phase.
- Galarneau A, Primeau M, Trudeau LE, Michnick SW
- Beta-lactamase protein fragment complementation assays as in vivo and in vitro sensors of protein protein interactions.
- Nat Biotechnol. 2002; 20: 619-22
- Display abstract
We have previously described a strategy for detecting protein protein interactions based on protein interaction assisted folding of rationally designed fragments of enzymes. We call this strategy the protein fragment complementation assay (PCA). Here we describe PCAs based on the enzyme TEM-1 beta-lactamase (EC: 3.5.2.6), which include simple colorimetric in vitro assays using the cephalosporin nitrocefin and assays in intact cells using the fluorescent substrate CCF2/AM (ref. 6). Constitutive protein protein interactions of the GCN4 leucine zippers and of apoptotic proteins Bcl2 and Bad, and the homodimerization of Smad3, were tested in an in vitro assay using cell lysates. With the same in vitro assay, we also demonstrate interactions of protein kinase PKB with substrate Bad. The in vitro assay is facile and amenable to high-throughput modes of screening with signal-to-background ratios in the range of 10:1 to 250:1, which is superior to other PCAs developed to date. Furthermore, we show that the in vitro assay can be used for quantitative analysis of a small molecule induced protein interaction, the rapamycin-induced interaction of FKBP and yeast FRB (the FKBP-rapamycin binding domain of TOR (target of rapamycin)). The assay reproduces the known dissociation constant and number of sites for this interaction. The combination of in vitro colorimetric and in vivo fluorescence assays of beta-lactamase in mammalian cells suggests a wide variety of sensitive and high-throughput large-scale applications, including in vitro protein array analysis of protein protein or enzyme protein interactions and in vivo applications such as clonal selection for cells expressing interacting protein partners.
- Fingar DC, Salama S, Tsou C, Harlow E, Blenis J
- Mammalian cell size is controlled by mTOR and its downstream targets S6K1 and 4EBP1/eIF4E.
- Genes Dev. 2002; 16: 1472-87
- Display abstract
The coordinated action of cell cycle progression and cell growth (an increase in cell size and cell mass) is critical for sustained cellular proliferation, yet the biochemical signals that control cell growth are poorly defined, particularly in mammalian systems. We find that cell growth and cell cycle progression are separable processes in mammalian cells and that growth to appropriate cell size requires mTOR- and PI3K-dependent signals. Expression of a rapamycin-resistant mutant of mTOR rescues the reduced cell size phenotype induced by rapamycin in a kinase-dependent manner, showing the evolutionarily conserved role of mTOR in control of cell growth. Expression of S6K1 mutants that possess partial rapamycin-resistant activity or overexpression of eIF4E individually and additively partially rescues the rapamycin-induced decrease in cell size. In the absence of rapamycin, overexpression of S6K1 or eIF4E increases cell size, and, when coexpressed, they cooperate to increase cell size further. Expression of a phosphorylation site-defective mutant of 4EBP1 that constitutively binds the eIF4E-Cap complex to inhibit translation initiation reduces cell size and blocks eIF4E effects on cell size. These data show that mTOR signals downstream to at least two independent targets, S6K1 and 4EBP1/eIF4E, that function in translational control to regulate mammalian cell size.
- Otto KG, Jin L, Spencer DM, Blau CA
- Cell proliferation through forced engagement of c-Kit and Flt-3.
- Blood. 2001; 97: 3662-4
- Display abstract
To investigate the potential for functional interactions between heterologous receptors, the cytoplasmic domains of 2 different receptors (c-Kit and Flt-3) were coexpressed in the interleukin-3-dependent cell line Ba/F3. The receptor signaling domains were presented in the context of fusion proteins, with c-Kit linked to the FK506 binding protein (FKBP12) and Flt-3 linked to the FRB domain of the FKBP12-rapamycin-associated protein. The fusions were brought into apposition with the use of chemical inducers of dimerization (CIDs). Two classes of CID were employed. FK1012 and its synthetic analogue AP1510 bring together 2 copies of the FKBP12 domain, thereby inducing homodimerization of the c-Kit(FKBP12) fusion. A second type of CID, rapamycin, brings together one FKBP12 domain and one FRB domain, resulting in heterodimerization of the c-Kit(FKBP12) and Flt-3(FRB) fusions. Ba/F3 cell growth was promoted not only by FK1012- or AP1510-induced homodimerization of the c-Kit(FKBP12) fusion (as reported previously), but also by rapamycin-induced c-Kit(FKBP12)-Flt-3(FRB) heterodimerization. These findings demonstrate the potential for a direct functional interaction between c-Kit and Flt-3. (Blood. 2001;97:3662-3664)
- Lechler T, Jonsdottir GA, Klee SK, Pellman D, Li R
- A two-tiered mechanism by which Cdc42 controls the localization and activation of an Arp2/3-activating motor complex in yeast.
- J Cell Biol. 2001; 155: 261-70
- Display abstract
The establishment of cell polarity in budding yeast involves assembly of actin filaments at specified cortical domains. Elucidation of the underlying mechanism requires an understanding of the machinery that controls actin polymerization and how this machinery is in turn controlled by signaling proteins that respond to polarity cues. We showed previously that the yeast orthologue of the Wiskott-Aldrich Syndrome protein, Bee1/Las17p, and the type I myosins are key regulators of cortical actin polymerization. Here, we demonstrate further that these proteins together with Vrp1p form a multivalent Arp2/3-activating complex. During cell polarization, a bifurcated signaling pathway downstream of the Rho-type GTPase Cdc42p recruits and activates this complex, leading to local assembly of actin filaments. One branch, which requires formin homologues, mediates the recruitment of the Bee1p complex to the cortical site where the activated Cdc42p resides. The other is mediated by the p21-activated kinases, which activate the motor activity of myosin-I through phosphorylation. Together, these findings provide insights into the essential processes leading to polarization of the actin cytoskeleton.
- Yarosh DB et al.
- FRAP DNA-dependent protein kinase mediates a late signal transduced from ultraviolet-induced DNA damage.
- J Invest Dermatol. 2000; 114: 1005-10
- Display abstract
Ultraviolet radiation induces signal transduction at both early (<6 h) and late (>6 h) times after exposure. The inflammatory and immunosuppressive cytokine tumor necrosis factor alpha is induced at late times, and is induced by ultraviolet-induced DNA damage, as defects in DNA repair increase, and enhanced photoproduct repair reduces, tumor necrosis factor alpha expression. Here we show that late tumor necrosis factor alpha gene expression is sensitive to rapamycin, implicating FKBP12-rapamycin-associated protein, a member of the DNA protein kinase family, as a signal transducer of ultraviolet-induced DNA damage. FKBP12-rapamycin-associated protein was localized in the nucleus of keratinocytes and its level was increased following ultraviolet irradiation. Immuno- precipitated FKBP12-rapamycin-associated protein was stimulated by ultraviolet-irradiated DNA to phosphorylate p53 in vitro, and in vivo rapamycin reduced ultraviolet induction of p53 by 20%. Rapamycin further inhibited the ultraviolet-induced phosphorylation of the FKBP12-rapamycin-associated protein downstream target kinase p70S6K. In mice, topical application of rapamycin before ultraviolet exposure protected against suppression of the contact hypersensitivity that is a hallmark of ultraviolet-induced cytokine gene expression. These results demonstrate that the FKBP12-rapamycin-associated DNA protein kinase transduces the signal of ultraviolet-induced DNA damage into production of immunosuppressive cytokines at late times after ultraviolet irradiation.
- Alarcon CM, Heitman J, Cardenas ME
- Protein kinase activity and identification of a toxic effector domain of the target of rapamycin TOR proteins in yeast.
- Mol Biol Cell. 1999; 10: 2531-46
- Display abstract
In complex with FKBP12, the immunosuppressant rapamycin binds to and inhibits the yeast TOR1 and TOR2 proteins and the mammalian homologue mTOR/FRAP/RAFT1. The TOR proteins promote cell cycle progression in yeast and human cells by regulating translation and polarization of the actin cytoskeleton. A C-terminal domain of the TOR proteins shares identity with protein and lipid kinases, but only one substrate (PHAS-I), and no regulators of the TOR-signaling cascade have been identified. We report here that yeast TOR1 has an intrinsic protein kinase activity capable of phosphorylating PHAS-1, and this activity is abolished by an active site mutation and inhibited by FKBP12-rapamycin or wortmannin. We find that an intact TOR1 kinase domain is essential for TOR1 functions in yeast. Overexpression of a TOR1 kinase-inactive mutant, or of a central region of the TOR proteins distinct from the FRB and kinase domains, was toxic in yeast, and overexpression of wild-type TOR1 suppressed this toxic effect. Expression of the TOR-toxic domain leads to a G1 cell cycle arrest, consistent with an inhibition of TOR function in translation. Overexpression of the PLC1 gene, which encodes the yeast phospholipase C homologue, suppressed growth inhibition by the TOR-toxic domains. In conclusion, our findings identify a toxic effector domain of the TOR proteins that may interact with substrates or regulators of the TOR kinase cascade and that shares sequence identity with other PIK family members, including ATR, Rad3, Mei-41, and ATM.
- Clackson T et al.
- Redesigning an FKBP-ligand interface to generate chemical dimerizers with novel specificity.
- Proc Natl Acad Sci U S A. 1998; 95: 10437-42
- Display abstract
FKBP ligand homodimers can be used to activate signaling events inside cells and animals that have been engineered to express fusions between appropriate signaling domains and FKBP. However, use of these dimerizers in vivo is potentially limited by ligand binding to endogenous FKBP. We have designed ligands that bind specifically to a mutated FKBP over the wild-type protein by remodeling an FKBP-ligand interface to introduce a specificity binding pocket. A compound bearing an ethyl substituent in place of a carbonyl group exhibited sub-nanomolar affinity and 1,000-fold selectivity for a mutant FKBP with a compensating truncation of a phenylalanine residue. Structural and functional analysis of the new pocket showed that recognition is surprisingly relaxed, with the modified ligand only partially filling the engineered cavity. We incorporated the specificity pocket into a fusion protein containing FKBP and the intracellular domain of the Fas receptor. Cells expressing this modified chimeric protein potently underwent apoptosis in response to AP1903, a homodimer of the modified ligand, both in culture and when implanted into mice. Remodeled dimerizers such as AP1903 are ideal reagents for controlling the activities of cells that have been modified by gene therapy procedures, without interference from endogenous FKBP.
- Sedrani R, Cottens S, Kallen J, Schuler W
- Chemical modification of rapamycin: the discovery of SDZ RAD.
- Transplant Proc. 1998; 30: 2192-4
- Rivera VM et al.
- A humanized system for pharmacologic control of gene expression.
- Nat Med. 1996; 2: 1028-32
- Display abstract
Gene therapy was originally conceived as a medical intervention to replace or correct defective genes in patients with inherited disorders. However, it may have much broader potential as an alternative delivery platform for protein therapeutics, such as cytokines, hormones, antibodies and novel engineered proteins. One key technical barrier to the widespread implementation of this form of therapy is the need for precise control over the level of protein production. A suitable system for pharmacologic control of therapeutic gene expression would permit precise titration of gene product dosage, intermittent or pulsatile treatment, and ready termination of therapy by withdrawal of the activating drug. We set out to design such a system with the following properties: (1) low baseline expression and high induction ratio; (2) positive control by an orally bioavailable small-molecule drug; (3) reduced potential for immune recognition through the exclusive use of human proteins; and (4) modularity to allow the independent optimization of each component using the tools of protein engineering. We report here the properties of this system and demonstrate its use to control circulating levels of human growth hormone in mice implanted with engineered human cells.
- Stoddard BL, Flick KE
- Calcineurin-immunosuppressor complexes.
- Curr Opin Struct Biol. 1996; 6: 770-5
- Display abstract
Crystal structures of the Ser/Thr phosphatase calcineurin (protein phosphatase 2B) have recently been solved by X-ray crystallography, both in the free-protein state, and complexed with the immunophilin/immunosuppressant FKBP12/FK506. Core elements of the calcineurin phosphatase have been found to be similar to the corresponding elements of Ser/Thr phosphatase 1 and purple acid phosphatase. The structures provide a basis for understanding calcineurin inhibition by a ternary complex of immunophilin and immunosuppressant proteins.
- Taylor P, Mikol V, Kallen J, Burkhard P, Walkinshaw MD
- Conformational polymorphism in peptidic and nonpeptidic drug molecules.
- Biopolymers. 1996; 40: 585-92
- Display abstract
Macrolide ligands that bind FK506 binding proteins and cyclosporins that a bind cyclophilins are chemically dissimilar but can share a number of structural and biological properties. Both families of ligands have very different conformations in the free state compared to those adopted when complexed with their binding protein. These transformations involve twisting from cis to trans about specific amide bonds, which result in significant changes in the hydrogen-bonding capabilities of the molecular surfaces. The three-dimensional structure of a new cyclosporin-like ligand (SDZ214 - 103) is described in the free crystalline state and bound to cyclophilin, and is shown to have a very different conformation from cyclosporin A in the free crystal, but a very similar conformation when bound to cyclophilin.
- Moore PA, Rosen CA, Carter KC
- Assignment of the human FKBP12-rapamycin-associated protein (FRAP) gene to chromosome 1p36 by fluorescence in situ hybridization.
- Genomics. 1996; 33: 331-2
- Silva ND Jr, Prendergast FG
- Tryptophan dynamics of the FK506 binding protein: time-resolved fluorescence and simulations.
- Biophys J. 1996; 70: 1122-37
- Display abstract
The FK506-binding protein (FKBP12) is important in the immunosuppressant action of FK506 and rapamycin. We have investigated Trp side chain dynamics in FKBP12, with and without a bound immunosuppressant, by measuring the Trp time-resolved fluorescence anisotropy decay r(t). The r(t) for W59 in aqueous uncomplexed FKBP12 at 20 degrees C is well described by a single exponential with a recovered initial anisotropy, r(eff)o, of 0.192 and an overall rotational correlation time for the protein, phi p, of 4.7 ns; r(eff)o = 0.214 and phi p = 4.2 ns for the FKBP12/FK506 complex. Using an expression for the order parameter squared, namely S2 = r(eff)o/rTo, where rTo is the vitrified steady-state excitation anisotropy, we recovered an S2 of 0.75 for W59 fluorescence in uncomplexed FKBP12 and S2 approximately equal to 1 in the FKBP12/FK506 complex. Results obtained for the FKBP12/rapamycin complex are similar to those found for the FKBP12/FK506 complex. Minimum perturbation mapping simulations were performed on the free and complexed forms of FKBP12 and the results were generally in agreement with the experimental data.
- Freeman K, Livi GP
- Missense mutations at the FKBP12-rapamycin-binding site of TOR1.
- Gene. 1996; 172: 143-7
- Display abstract
The TOR genes were first identified in Saccharomyces cerevisiae by the isolation of mutants which exhibit dominant resistance to the immunosuppressive and antifungal drug rapamycin (Rm). The originally characterized Rm-resistant (RmR) TOR1-1 and TOR2-1 alleles contain an Arg in place of a conserved Ser residue, which lies adjacent to the phosphatidylinositol (PI) kinase-related domain of TOR (Ser1972 in TOR1; Ser1975 in TOR2). Additional spontaneous RmR mutants containing Lys, Ile or Asn substitutions were subsequently isolated. As this Ser is a potential site for protein kinase C phosphorylation, we were interested in determining whether the observed RmR is due to steric hindrance of the FKBP12-Rm-TOR interaction or whether phosphorylation at this site is required to mediate the interaction. Using site-directed mutagenesis, we replaced the Ser1972 residue of TOR1 with either a conservative residue, Ala, an alternative potential phosphorylation site, Thr, or Asp to mimic phosphorylation. The TOR1 (S1972A) mutant protein retained Rm sensitivity (RmS), whereas both the Thr and Asp substitutions conferred RmR. RmS correlated with the ability to interact with FKBP12-Rm in a two-hybrid assay: both wild-type TOR1 and the S1972A mutant retained the ability to interact with FKBP12-Rm, whereas the S1972T, S1972D and S1972R mutants failed to interact. All mutant TOR1 proteins were able to complement the growth defect of tor1 null alleles, suggesting that the Ser1972 residue may not be required for TOR1 function in cycling cells. Since a TOR1(S1972A) mutant protein confers a RmS phenotype, interacts with FKBP12-Rm in a two-hybrid assay, and functions in vivo, we conclude that phosphorylation at Ser1972 is not necessary for the interaction between TOR1 and FKBP12-Rm.
- Fehr T et al.
- Antascomicins A, B, C, D and E. Novel FKBP12 binding compounds from a Micromonospora strain.
- J Antibiot (Tokyo). 1996; 49: 230-3
- Display abstract
5 novel ascomycin-like compounds, antascomicins A, B, C, D and E were isolated from a strain of Micromonospora. The antascomicins bind strongly to the FK506-binding protein FKBP12 and antagonize the immunosuppressive activity of FK506 and rapamycin. The strain description, fermentation, structure elucidation and biological activity of these compounds are described.
- Griffith JP et al.
- X-ray structure of calcineurin inhibited by the immunophilin-immunosuppressant FKBP12-FK506 complex.
- Cell. 1995; 82: 507-22
- Display abstract
The X-ray structure of the ternary complex of a calcineurin A fragment, calcineurin B, FKBP12, and the immunosuppressant drug FK506 (also known as tacrolimus) has been determined at 2.5 A resolution, providing a description of how FK506 functions at the atomic level. In the structure, the FKBP12-FK506 binary complex does not contact the phosphatase active site on calcineurin A that is more than 10 A removed. Instead, FKBP12-FK506 is so positioned that it can inhibit the dephosphorylation of its macromolecular substrates by physically hindering their approach to the active site. The ternary complex described here represents the three-dimensional structure of a Ser/Thr protein phosphatase and provides a structural basis for understanding calcineurin inhibition by FKBP12-FK506.
- Faerman CH, Karplus PA
- Consensus preferred hydration sites in six FKBP12-drug complexes.
- Proteins. 1995; 23: 1-11
- Display abstract
A set of consensus hydration sites for the FK506-FKBP12 complex are derived by comparing six FKBP12-drug complexes. These hydration sites include a subset of the observed water molecules plus some sites that are occupied by neighboring protein atoms in the FK506-FKBP12 crystal structure. Two hydration prediction algorithms, AUTO-SOL and AQUARIUS2, showed significant increases in apparent efficacy using these consensus water sites, suggesting that our proposed set of consensus hydration sites is truly a better representation of the hydration properties of FKBP12 in solution. Predictably, the consensus hydration sites include all buried water molecules. Otherwise, the features of solvation sites included in the consensus list versus those discarded reveal no distinctive features that would allow them to be selected unambiguously without reference to multiple crystal forms. We suggest that analyses such as this one are a crucial prelude to any theoretical analysis aimed at understanding hydration properties.
- Luengo JI et al.
- Structure-activity studies of rapamycin analogs: evidence that the C-7 methoxy group is part of the effector domain and positioned at the FKBP12-FRAP interface.
- Chem Biol. 1995; 2: 471-81
- Display abstract
BACKGROUND: Rapamycin is an immunosuppressant natural product, which blocks T-cell mitogenesis and yeast proliferation. In the cytoplasm, rapamycin binds to the immunophilin FKBP12 and the complex of these two molecules binds to a recently discovered protein, FRAP. The rapamycin molecule has two functional domains, defined by their interaction with FKBP12 (binding domain) or with FRAP (effector domain). We previously showed that the allylic methoxy group at C-7 of rapamycin could be replaced by a variety of different substituents. We set out to examine the effects of such substitutions on FKBP12 binding and on biological activity. RESULTS: Rapamycin C-7-modified analogs of both R and S configurations were shown to have high affinities for FKBP12, yet these congeners displayed a wide range of potencies in splenocyte and yeast proliferation assays. The X-ray crystal structures of four rapamycin analogs in complexes with FKBP12 were determined and revealed that protein and ligand backbone conformations were essentially the same as those observed for the parent rapamycin-FKBP12 complex and that the C-7 group remained exposed to solvent. We then prepared a rapamycin analog with a photoreactive functionality as part of the C-7 substituent. This compound specifically labeled, in an FKBP12-dependent manner, a protein of approximately 250 kDa, which comigrates with recombinant FRAP. CONCLUSIONS: We conclude that the C-7 methoxy group of rapamycin is part of the effector domain. In the ternary complex, this group is situated in close proximity to FRAP, at the interface between FRAP and FKBP12.
- Cardenas ME, Heitman J
- FKBP12-rapamycin target TOR2 is a vacuolar protein with an associated phosphatidylinositol-4 kinase activity.
- EMBO J. 1995; 14: 5892-907
- Display abstract
In complex with the immunophilin FKBP12, the natural product rapamycin inhibits signal transduction events required for G1 to S phase cell cycle progression in yeast and mammalian cells. Genetic studies in yeast first implicated the TOR1 and TOR2 proteins as targets of the FKBP12-rapamycin complex. We report here that the TOR2 protein is membrane associated and localized to the surface of the yeast vacuole. Immunoprecipitated TOR2 protein contains readily detectable phosphatidylinositol-4 (PI-4) kinase activity attributable to either a TOR2 intrinsic activity or to a PI-4 kinase tightly associated with TOR2. Importantly, we find that rapamycin stimulates FKBP12 binding to wild-type TOR2 but not to a rapamycin-resistant TOR2-1 mutant protein. Surprisingly, FKBP12-rapamycin binding does not markedly inhibit the PI kinase activity associated with TOR2, but does cause a delocalization of TOR2 from the vacuolar surface, which may deprive the TOR2-associated PI-4 kinase activity of its in vivo substrate. Several additional findings indicate that vacuolar localization is important for TOR2 function and, conversely, that TOR2 modulates vacuolar morphology and segregation. These studies demonstrate that TOR2 is an essential, highly conserved component of a signal transduction pathway regulating cell cycle progression conserved from yeast to man.
- Chen J, Zheng XF, Brown EJ, Schreiber SL
- Identification of an 11-kDa FKBP12-rapamycin-binding domain within the 289-kDa FKBP12-rapamycin-associated protein and characterization of a critical serine residue.
- Proc Natl Acad Sci U S A. 1995; 92: 4947-51
- Display abstract
Complexed with its intracellular receptor, FKBP12, the natural product rapamycin inhibits G1 progression of the cell cycle in a variety of mammalian cell lines and in the yeast Saccharomyces cerevisae. Previously, a mammalian protein that directly associates with FKBP12-rapamycin has been identified and its encoding gene has been cloned from both human (designated FRAP) [Brown, E.J., Albers, M.W., Shin, T.B., Ichikawa, K., Keith, C.T., Lane, W.S. & Schreiber, S.L. (1994) Nature (London) 369, 756-758] and rat (designated RAFT) [Sabatini, D.M., Erdjument-Bromage, H., Lui, M., Tempst, P. & Snyder, S.H. (1994) Cell 78, 35-43]. The full-length FRAP is a 289-kDa protein containing a putative phosphatidylinositol kinase domain. Using an in vitro transcription/translation assay method coupled with proteolysis studies, we have identified an 11-kDa FKBP12-rapamycin-binding domain within FRAP. This minimal binding domain lies N-terminal to the kinase domain and spans residues 2025-2114. In addition, we have carried out mutagenesis studies to investigate the role of Ser2035, a potential phosphorylation site for protein kinase C within this domain. We now show that the FRAP Ser2035-->Ala mutant displays similar binding affinity when compared with the wild-type protein, whereas all other mutations at this site, including mimics of phosphoserine, abolish binding, presumably due to either unfavorable steric interactions or induced conformational changes.
- Stan R, McLaughlin MM, Cafferkey R, Johnson RK, Rosenberg M, Livi GP
- Interaction between FKBP12-rapamycin and TOR involves a conserved serine residue.
- J Biol Chem. 1994; 269: 32027-30
- Display abstract
The yeast TOR1 and TOR2 proteins were previously discovered as putative targets of the immunosuppressive drug rapamycin. Although their cellular function is unknown, they are predicted to be at least 215 kDa in size and possess a C-terminal phosphatidylinositol (PI) kinase-related domain. We previously identified a conserved Ser residue, within the PI kinase-related domain of both yeast TOR proteins (Ser1972 in TOR1; Ser1975 in TOR2), as being the site of missense mutations conferring dominant rapamycin resistance. The Ser1972/1975 residue of yeast TOR is conserved in mammalian TOR homologs. One possibility is that this residue is critical for a direct interaction between TOR and the FKBP12-rapamycin complex. There is very recent biochemical evidence for an interaction between mammalian TOR and FKBP12-rapamycin (Brown, E. J., Albers, M. W., Shin, T. B., Ichikawa, K., Keith, C. T., Lane, W. S., and Schreiber, S. L. (1994) Nature 369, 756-758; Sabatini, D. M., Erdjument-Bromage, H., Lui, M., Tempst, P., and Snyder, S. H. (1994) Cell 78, 35-43). Using the yeast two-hybrid system, we now have obtained genetic proof of a physical interaction between FKBP12-rapamycin and TOR and have demonstrated that this interaction requires the conserved Ser residue. We have found that a small fragment of wild-type yeast TOR2 spanning Ser1975 is capable of interacting with human FKBP12 in the presence of rapamycin, whereas an Arg1975 mutant fails to interact. This effect is dependent upon rapamycin and is antagonized by FK506.
- Benton BM, Zang JH, Thorner J
- A novel FK506- and rapamycin-binding protein (FPR3 gene product) in the yeast Saccharomyces cerevisiae is a proline rotamase localized to the nucleolus.
- J Cell Biol. 1994; 127: 623-39
- Display abstract
The gene (FPR3) encoding a novel type of peptidylpropyl-cis-trans-isomerase (PPIase) was isolated during a search for previously unidentified nuclear proteins in Saccharomyces cerevisiae. PPIases are thought to act in conjunction with protein chaperones because they accelerate the rate of conformational interconversions around proline residues in polypeptides. The FPR3 gene product (Fpr3) is 413 amino acids long. The 111 COOH-terminal residues of Fpr3 share greater than 40% amino acid identity with a particular class of PPIases, termed FK506-binding proteins (FKBPs) because they are the intracellular receptors for two immunosuppressive compounds, rapamycin and FK506. When expressed in and purified from Escherichia coli, both full-length Fpr3 and its isolated COOH-terminal domain exhibit readily detectable PPIase activity. Both fpr3 delta null mutants and cells expressing FPR3 from its own promoter on a multicopy plasmid have no discernible growth phenotype and do not display any alteration in sensitivity to the growth-inhibitory effects of either FK506 or rapamycin. In S. cerevisiae, the gene for a 112-residue cytosolic FKBP (FPR1) and the gene for a 135-residue ER-associated FKBP (FPR2) have been described before. Even fpr1 fpr2 fpr3 triple mutants are viable. However, in cells carrying an fpr1 delta mutation (which confers resistance to rapamycin), overexpression from the GAL1 promoter of the C-terminal domain of Fpr3, but not full-length Fpr3, restored sensitivity to rapamycin. Conversely, overproduction from the GAL1 promoter of full-length Fpr3, but not its COOH-terminal domain, is growth inhibitory in both normal cells and fpr1 delta mutants. In fpr1 delta cells, the toxic effect of Fpr3 overproduction can be reversed by rapamycin. Overproduction of the NH2-terminal domain of Fpr3 is also growth inhibitory in normal cells and fpr1 delta mutants, but this toxicity is not ameliorated in fpr1 delta cells by rapamycin. The NH2-terminal domain of Fpr3 contains long stretches of acidic residues alternating with blocks of basic residues, a structure that resembles sequences found in nucleolar proteins, including S. cerevisiae NSR1 and mammalian nucleolin. Indirect immunofluorescence with polyclonal antibodies raised against either the NH2- or the COOH-terminal segments of Fpr3 expressed in E. coli demonstrated that Fpr3 is located exclusively in the nucleolus.
- Leach KL, Ruff VA, Yem AW, Deibel MR Jr
- A soluble binding assay for measuring 3H-FK506 binding to the hsp56 immunophilin.
- J Immunoassay. 1994; 15: 339-55
- Display abstract
Heat shock protein 56 (hsp56) was previously identified as an immunophilin based on its ability to specifically bind to FK506-Affi-Gel 10. In this report, we have quantitated human Jurkat T cell hsp56 binding to 3H-FK506, as well as to the immunosuppressant rapamycin. Binding was measured utilizing immunoadsorbed hsp56, and, in addition, we demonstrate that 3H-FK506 binds to hsp56 in solution. Hsp56 bound to an antibody-Sepharose column binds 3H-FK506 with an affinity of 19.4 +/- 4.6 nM, as compared to 23.2 +/- 6.8 nM for soluble hsp56. In competition experiments, the apparent affinity constant for rapamycin was 11.6 +/- 2.8 nM, using immobilized hsp56, and 17.3 +/- 7.7 nM, using the soluble hsp56 preparation. These results demonstrate that hsp56 binds FK506 and rapamycin with similar affinities, and suggest that hsp56 may play a role in mediating the cellular function of both of these drugs.
- Koser PL et al.
- The tyrosine89 residue of yeast FKBP12 is required for rapamycin binding.
- Gene. 1993; 129: 159-65
- Display abstract
Rapamycin (Rm) is a macrolide antifungal agent related to FK506 that exhibits potent immunosuppressive properties which are mediated through interaction with specific cytoplasmic receptors (FKBPs or RBPs, for FK506- and Rm-binding proteins, respectively). These proteins possess peptidyl-prolyl cis-trans isomerase (PPIase) activity in vitro which is inhibited by the binding of Rm and FK506. In Saccharomyces cerevisiae, Rm sensitivity (Rms) is mediated by binding of the drug to RBP1, a homolog of the 12-kDa human FK506-binding protein (FKBP12); null mutations in the yeast RBP1 gene result in a recessive drug resistance phenotype. To identify missense mutations that define amino acid (aa) residues in RBP1 involved in drug sensitivity, we selected and genetically characterized over 250 independent RmR rbp1 mutants and screened them for both RBP1-specific mRNA and protein expression. Whereas all rbp1 mutants expressed abundant levels of RBP1 mRNA, stable RBP1 protein production was detected in only one mutant strain. The RBP1 gene was PCR-generated (in triplicate) from several rbp1 mutants and independent clones were sequenced. Most of the immunoblot-negative alleles were found to contain various types of null mutations; however, some alleles contained specific missense mutations that apparently affect protein stability in vivo. The single immunoblot-positive allele was found to contain a mutation altering a specific residue (Tyr89) which is conserved among the known FKBPs, and which, based on the solution and x-ray structures of human FKBP12, has been proposed to be part of a hydrophobic drug-binding pocket for FK506 and Rm.(ABSTRACT TRUNCATED AT 250 WORDS)
- Jin YJ, Albers MW, Lane WS, Bierer BE, Schreiber SL, Burakoff SJ
- Molecular cloning of a membrane-associated human FK506- and rapamycin-binding protein, FKBP-13.
- Proc Natl Acad Sci U S A. 1991; 88: 6677-81
- Display abstract
The 12-kDa FK506-binding protein (FKBP-12) is a cytosolic receptor for the immunosuppressants FK506 and rapamycin. Here we report the molecular cloning and subcellular localization of a 13-kDa FKBP (FKBP-13), which has a 21-amino acid signal peptide and appears to be membrane-associated. Although no internal hydrophobic region, and thus no transmembrane domain, is apparent within the 120 amino acids of mature FKBP-13, a potential endoplasmic reticulum retention sequence (Arg-Thr-Glu-Leu) is found at its C terminus. FKBP-13 has 51% nucleotide sequence identity and 43% amino acid sequence identity to FKBP-12; the N-terminal sequences are divergent, but the 92-amino acid C-terminal sequence of FKBP-13 has 46 identical and 20 related residues when compared with FKBP-12. The conserved residues that comprise the drug binding site and rotamase active site of FKBP-12 are completely conserved in FKBP-13. Therefore, the three-dimensional structures of FKBP-12 and the FKBP-12/FK506 complex are likely to be excellent models of the corresponding FKBP-13 structure.