Secondary literature sources for Raptor_N
The following references were automatically generated.
- Zalila H et al.
- Processing of metacaspase into a cytoplasmic catalytic domain mediating cell death in Leishmania major.
- Mol Microbiol. 2011; 79: 222-39
- Display abstract
Metacaspases are cysteine peptidases that could play a role similar to caspases in the cell death programme of plants, fungi and protozoa. The human protozoan parasite Leishmania major expresses a single metacaspase (LmjMCA) harbouring a central domain with the catalytic dyad histidine and cysteine as found in caspases. In this study, we investigated the processing sites important for the maturation of LmjMCA catalytic domain, the cellular localization of LmjMCA polypeptides, and the functional role of the catalytic domain in the cell death pathway of Leishmania parasites. Although LmjMCA polypeptide precursor form harbours a functional mitochondrial localization signal (MLS), we determined that LmjMCA polypeptides are mainly localized in the cytoplasm. In stress conditions, LmjMCA precursor forms were extensively processed into soluble forms containing the catalytic domain. This domain was sufficient to enhance sensitivity of parasites to hydrogen peroxide by impairing the mitochondrion. These data provide experimental evidences of the importance of LmjMCA processing into an active catalytic domain and of its role in disrupting mitochondria, which could be relevant in the design of new drugs to fight leishmaniasis and likely other protozoan parasitic diseases.
- Aramini JM et al.
- Solution NMR structure of the NlpC/P60 domain of lipoprotein Spr from Escherichia coli: structural evidence for a novel cysteine peptidase catalytic triad.
- Biochemistry. 2008; 47: 9715-7
- Display abstract
Escherichia coli Spr is a membrane-anchored cell wall hydrolase. The solution NMR structure of the C-terminal NlpC/P60 domain of E. coli Spr described here reveals that the protein adopts a papain-like alpha+beta fold and identifies a substrate-binding cleft featuring several highly conserved residues. The active site features a novel Cys-His-His catalytic triad that appears to be a unique structural signature of this cysteine peptidase family. Moreover, the relative orientation of these catalytic residues is similar to that observed in the analogous Ser-His-His triad, a variant of the classic Ser-His-Asp charge relay system, suggesting the convergent evolution of a catalytic mechanism in quite distinct peptidase families.
- Carrington PE et al.
- The structure of FADD and its mode of interaction with procaspase-8.
- Mol Cell. 2006; 22: 599-610
- Display abstract
The structure of FADD has been solved in solution, revealing that the death effector domain (DED) and death domain (DD) are aligned with one another in an orthogonal, tail-to-tail fashion. Mutagenesis of FADD and functional reconstitution with its binding partners define the interaction with the intracellular domain of CD95 and the prodomain of procaspase-8 and reveal a self-association surface necessary to form a productive complex with an activated "death receptor." The identification of a procaspase-specific binding surface on the FADD DED suggests a preferential interaction with one, but not both, of the DEDs of procaspase-8 in a perpendicular arrangement. FADD self-association is mediated by a "hydrophobic patch" in the vicinity of F25 in the DED. The structure of FADD and its functional characterization, therefore, illustrate the architecture of key components in the death-inducing signaling complex.
- Romanyuk ND et al.
- Mutagenic definition of a papain-like catalytic triad, sufficiency of the N-terminal domain for single-site core catalytic enzyme acylation, and C-terminal domain for augmentative metal activation of a eukaryotic phytochelatin synthase.
- Plant Physiol. 2006; 141: 858-69
- Display abstract
Phytochelatin (PC) synthases are gamma-glutamylcysteine (gamma-Glu-Cys) dipeptidyl transpeptidases that catalyze the synthesis of heavy metal-binding PCs, (gamma-Glu-Cys)nGly polymers, from glutathione (GSH) and/or shorter chain PCs. Here it is shown through investigations of the enzyme from Arabidopsis (Arabidopsis thaliana; AtPCS1) that, although the N-terminal half of the protein, alone, is sufficient for core catalysis through the formation of a single-site enzyme acyl intermediate, it is not sufficient for acylation at a second site and augmentative stimulation by free Cd2+. A purified N-terminally hexahistidinyl-tagged AtPCS1 truncate containing only the first 221 N-terminal amino acid residues of the enzyme (HIS-AtPCS1_221tr) is competent in the synthesis of PCs from GSH in media containing Cd2+ or the synthesis of S-methyl-PCs from S-methylglutathione in media devoid of heavy metal ions. However, whereas its full-length hexahistidinyl-tagged equivalent, HIS-AtPCS1, undergoes gamma-Glu-Cys acylation at two sites during the Cd2+-dependent synthesis of PCs from GSH and is stimulated by free Cd2+ when synthesizing S-methyl-PCs from S-methylglutathione, HIS-AtPCS1_221tr undergoes gamma-Glu-Cys acylation at only one site when GSH is the substrate and is not directly stimulated, but instead inhibited, by free Cd2+ when S-methylglutathione is the substrate. Through the application of sequence search algorithms capable of detecting distant homologies, work we reported briefly before but not in its entirety, it has been determined that the N-terminal half of AtPCS1 and its equivalents from other sources have the hallmarks of a papain-like, Clan CA Cys protease. Whereas the fold assignment deduced from these analyses, which substantiates and is substantiated by the recent determination of the crystal structure of a distant prokaryotic PC synthase homolog from the cyanobacterium Nostoc, is capable of explaining the strict requirement for a conserved Cys residue, Cys-56 in the case of AtPCS1, for formation of the biosynthetically competent gamma-Glu-Cys enzyme acyl intermediate, the primary data from experiments directed at determining whether the other two residues, His-162 and Asp-180 of the putative papain-like catalytic triad of AtPCS1, are essential for catalysis have yet to be presented. This shortfall in our basic understanding of AtPCS1 is addressed here by the results of systematic site-directed mutagenesis studies that demonstrate that not only Cys-56 but also His-162 and Asp-180 are indeed required for net PC synthesis. It is therefore established experimentally that AtPCS1 and, by implication, other eukaryotic PC synthases are papain Cys protease superfamily members but ones, unlike their prokaryotic counterparts, which, in addition to having a papain-like N-terminal catalytic domain that undergoes primary gamma-Glu-Cys acylation, contain an auxiliary metal-sensing C-terminal domain that undergoes secondary gamma-Glu-Cys acylation.
- Clarke CA, Bennett LN, Clarke PR
- Cleavage of claspin by caspase-7 during apoptosis inhibits the Chk1 pathway.
- J Biol Chem. 2005; 280: 35337-45
- Display abstract
Claspin is required for the phosphorylation and activation of the Chk1 protein kinase by ATR during DNA replication and in response to DNA damage. This checkpoint pathway plays a critical role in the resistance of cells to genotoxic stress. Here, we show that human Claspin is cleaved by caspase-7 during the initiation of apoptosis. In cells, induction of DNA damage by etoposide at first produced rapid phosphorylation of Chk1 at a site targeted by ATR. Subsequently, etoposide caused activation of caspase-7, cleavage of Claspin, and dephosphorylation of Chk1. In apoptotic cell extracts, Claspin was cleaved by caspase-7 at a single aspartate residue into a large N-terminal fragment and a smaller C-terminal fragment that contain different functional domains. The large N-terminal fragment was heavily phosphorylated in a human cell-free system in response to double-stranded DNA oligonucleotides, and this fragment retained Chk1 binding activity. In contrast, the smaller C-terminal fragment did not bind Chk1, but did associate with DNA and inhibited the DNA-dependent phosphorylation of Chk1 associated with its activation. These results indicate that cleavage of Claspin by caspase-7 inactivates the Chk1 signaling pathway. This mechanism may regulate the balance between cell cycle arrest and induction of apoptosis during the response to genotoxic stress.
- Dames SA, Mulet JM, Rathgeb-Szabo K, Hall MN, Grzesiek S
- The solution structure of the FATC domain of the protein kinase target of rapamycin suggests a role for redox-dependent structural and cellular stability.
- J Biol Chem. 2005; 280: 20558-64
- Display abstract
The target of rapamycin (TOR) is a highly conserved Ser/Thr kinase that plays a central role in the control of cellular growth. TOR has a characteristic multidomain structure. Only the kinase domain has catalytic function; the other domains are assumed to mediate interactions with TOR substrates and regulators. Except for the rapamycin-binding domain, there are no high-resolution structural data available for TOR. Here, we present a structural, biophysical, and mutagenesis study of the extremely conserved COOH-terminal FATC domain. The importance of this domain for TOR function has been highlighted in several publications. We show that the FATC domain, in its oxidized form, exhibits a novel structural motif consisting of an alpha-helix and a COOH-terminal disulfide-bonded loop between two completely conserved cysteine residues. Upon reduction, the flexibility of the loop region increases dramatically. The structural data, the redox potential of the disulfide bridge, and the biochemical data of a cysteine to serine mutant indicate that the intracellular redox potential can affect the cellular amount of the TOR protein via the FATC domain. Because the amount of TOR mRNA is not changed, the redox state of the FATC disulfide bond is probably influencing the degradation of TOR.
- Ghosh M, Meiss G, Pingoud A, London RE, Pedersen LC
- Structural insights into the mechanism of nuclease A, a betabeta alpha metal nuclease from Anabaena.
- J Biol Chem. 2005; 280: 27990-7
- Display abstract
Nuclease A (NucA) is a nonspecific endonuclease from Anabaena sp. capable of degrading single- and double-stranded DNA and RNA in the presence of divalent metal ions. We have determined the structure of the delta(2-24),D121A mutant of NucA in the presence of Zn2+ and Mn2+ (PDB code 1ZM8). The mutations were introduced to remove the N-terminal signal peptide and to reduce the activity of the nonspecific nuclease, thereby reducing its toxicity to the Escherichia coli expression system. NucA contains a betabeta alpha metal finger motif and a hydrated Mn2+ ion at the active site. Unexpectedly, NucA was found to contain additional metal binding sites approximately 26 A apart from the catalytic metal binding site. A structural comparison between NucA and the closest analog for which structural data exist, the Serratia nuclease, indicates several interesting differences. First, NucA is a monomer rather than a dimer. Second, there is an unexpected structural homology between the N-terminal segments despite a poorly conserved sequence, which in Serratia includes a cysteine bridge thought to play a regulatory role. In addition, although a sequence alignment had suggested that NucA lacks a proposed catalytic residue corresponding to Arg57 in Serratia, the structure determined here indicates that Arg93 in NucA is positioned to fulfill this role. Based on comparison with DNA-bound nuclease structures of the betabeta alpha metal finger nuclease family and available mutational data on NucA, we propose that His124 acts as a catalytic base, and Arg93 participates in the catalysis possibly through stabilization of the transition state.
- Sarbassov DD et al.
- Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton.
- Curr Biol. 2004; 14: 1296-302
- Display abstract
The mammalian TOR (mTOR) pathway integrates nutrient- and growth factor-derived signals to regulate growth, the process whereby cells accumulate mass and increase in size. mTOR is a large protein kinase and the target of rapamycin, an immunosuppressant that also blocks vessel restenosis and has potential anticancer applications. mTOR interacts with the raptor and GbetaL proteins to form a complex that is the target of rapamycin. Here, we demonstrate that mTOR is also part of a distinct complex defined by the novel protein rictor (rapamycin-insensitive companion of mTOR). Rictor shares homology with the previously described pianissimo from D. discoidieum, STE20p from S. pombe, and AVO3p from S. cerevisiae. Interestingly, AVO3p is part of a rapamycin-insensitive TOR complex that does not contain the yeast homolog of raptor and signals to the actin cytoskeleton through PKC1. Consistent with this finding, the rictor-containing mTOR complex contains GbetaL but not raptor and it neither regulates the mTOR effector S6K1 nor is it bound by FKBP12-rapamycin. We find that the rictor-mTOR complex modulates the phosphorylation of Protein Kinase C alpha (PKCalpha) and the actin cytoskeleton, suggesting that this aspect of TOR signaling is conserved between yeast and mammals.
- Yonezawa K, Tokunaga C, Oshiro N, Yoshino K
- Raptor, a binding partner of target of rapamycin.
- Biochem Biophys Res Commun. 2004; 313: 437-41
- Display abstract
The mammalian target of rapamycin (mTOR) controls cell growth in response to amino acids and growth factors, in part by regulating p70 S6 kinase alpha (p70 alpha) and eukaryotic initiation factor 4E binding protein 1 (4EBP1). Raptor (regulatory associated protein of mTOR) is a 150 kDa mTOR binding protein that is essential for TOR signaling in vivo and also binds 4EBP1 and p70alpha through their respective TOS (TOR signaling) motifs, a short conserved segment previously shown to be required for amino acid- and mTOR-dependent regulation of these substrates in vivo. Raptor appears to serve as an mTOR scaffold protein, the binding of which to the TOS motif of mTOR substrates is necessary for effective mTOR-catalyzed phosphorylation. Further understanding of regulation of the mTOR-raptor complex in response to the nutritional environment would require identification of the interplay between the mTOR-raptor complex and its upstream effectors such as the protein products of tumor suppressor gene tuberous sclerosis complexes 1 and 2, and the Ras-related small G protein Rheb.
- Piana S, Sulpizi M, Rothlisberger U
- Structure-based thermodynamic analysis of caspases reveals key residues for dimerization and activity.
- Biochemistry. 2003; 42: 8720-8
- Display abstract
Cysteine-dependent aspartic proteases (caspases) are a family of enzymes which play a crucial role in apoptosis. Caspases accumulate in eukaryotic cells in the form of low-activity proenzyme precursors. Proteolytic cleavage of specific sites triggers conformational changes that lead to full activation and thus to the initiation of the apoptotic cascade. Several experimental observations suggest that dimerization is crucial for activity and regulation, but the underlying molecular mechanisms have not yet been completely resolved. In this work, we have used a structure-based thermodynamic analysis method [Edgcomb, S. P., and Murphy, K. P. (2000) Curr. Opin. Biotechnol. 11, 62-66] to calculate the free energy of association and folding for all the caspases and procaspases whose structures are known at present. In all cases, analysis of the single-residue contributions to the dimerization energy shows that 30-50% of the dimer stability originates from the highly specific interaction of 12-14 residues located at the N- and C-termini of the large and small subunits, respectively. Moreover, our calculations indicate that these residues are also critical for stabilizing the conformation of the active site loops, which in turn is crucial for the binding of substrates and inhibitors. Thus, our results help to rationalize the relation between dimerization and activity in this important class of enzymes and can be used as a starting point for an active manipulation of the monomer-dimer equilibrium for preparatory and regulatory purposes.
- Denault JB, Salvesen GS
- Human caspase-7 activity and regulation by its N-terminal peptide.
- J Biol Chem. 2003; 278: 34042-50
- Display abstract
Central to the execution phase of apoptosis are the two closely related caspase-3 and -7. They share common substrate specificity and structure, but differ completely in the sequence of their respective N-terminal regions including their N-peptides, a 23-28 residue segment that are removed during zymogen activation. We show that the N-peptide of caspase-7 plays no role in the fundamental activation or properties of the active protease in vitro. However, the N-peptide modifies the properties of caspase-7 in vivo. In ectopic expression experiments, caspase-7 constructs with no N-peptide are far more lethal than constructs that have an uncleavable peptide. Moreover, the N-peptide of caspase-7 must be removed before efficient activation of the zymogen can occur in vivo. These disparate requirements for the N-peptide argue that it serves to physically sequester the caspase-7 zymogen in a cytosolic location that prevents access by upstream activators (caspase-8, -9, and -10). The N-peptide must first be removed, probably by caspase-3, before efficient conversion and activation of the zymogen can occur in vivo.
- Kim DH et al.
- GbetaL, a positive regulator of the rapamycin-sensitive pathway required for the nutrient-sensitive interaction between raptor and mTOR.
- Mol Cell. 2003; 11: 895-904
- Display abstract
mTOR and raptor are components of a signaling pathway that regulates mammalian cell growth in response to nutrients and growth factors. Here, we identify a member of this pathway, a protein named GbetaL that binds to the kinase domain of mTOR and stabilizes the interaction of raptor with mTOR. Like mTOR and raptor, GbetaL participates in nutrient- and growth factor-mediated signaling to S6K1, a downstream effector of mTOR, and in the control of cell size. The binding of GbetaL to mTOR strongly stimulates the kinase activity of mTOR toward S6K1 and 4E-BP1, an effect reversed by the stable interaction of raptor with mTOR. Interestingly, nutrients and rapamycin regulate the association between mTOR and raptor only in complexes that also contain GbetaL. Thus, we propose that the opposing effects on mTOR activity of the GbetaL- and raptor-mediated interactions regulate the mTOR pathway.
- Maurer-Stroh S, Eisenhaber B, Eisenhaber F
- N-terminal N-myristoylation of proteins: prediction of substrate proteins from amino acid sequence.
- J Mol Biol. 2002; 317: 541-57
- Display abstract
Myristoylation by the myristoyl-CoA:protein N-myristoyltransferase (NMT) is an important lipid anchor modification of eukaryotic and viral proteins. Automated prediction of N-terminal N-myristoylation from the substrate protein sequence alone is necessary for large-scale sequence annotation projects but it requires a low rate of false positive hits in addition to a sufficient sensitivity. Our previous analysis of substrate protein sequence variability, NMT sequences and 3D structures has revealed motif properties in addition to the known PROSITE motif that are utilized in a new predictor described here. The composite prediction function (with separate ad hoc parameterization (a) for queries from non-fungal eukaryotes and their viruses and (b) for sequences from fungal species) consists of terms evaluating amino acid type preferences at sequences positions close to the N terminus as well as terms penalizing deviations from the physical property pattern of amino acid side-chains encoded in multi-residue correlation within the motif sequence. The algorithm has been validated with a self-consistency and two jack-knife tests for the learning set as well as with kinetic data for model substrates. The sensitivity in recognizing documented NMT substrates is above 95 % for both taxon-specific versions. The corresponding rate of false positive prediction (for sequences with an N-terminal glycine residue) is close to 0.5 %; thus, the technique is applicable for large-scale automated sequence database annotation. The predictor is available as public WWW-server with the URL http://mendel.imp.univie.ac.at/myristate/. Additionally, we propose a version of the predictor that identifies a number of proteolytic protein processing sites at internal glycine residues and that evaluates possible N-terminal myristoylation of the protein fragments.A scan of public protein databases revealed new potential NMT targets for which the myristoyl modification may be of critical importance for biological function. Among others, the list includes kinases, phosphatases, proteasomal regulatory subunit 4, kinase interacting proteins KIP1/KIP2, protozoan flagellar proteins, homologues of mitochondrial translocase TOM40, of the neuronal calcium sensor NCS-1 and of the cytochrome c-type heme lyase CCHL. Analyses of complete eukaryote genomes indicate that about 0.5 % of all encoded proteins are apparent NMT substrates except for a higher fraction in Arabidopsis thaliana ( approximately 0.8 %).
- Ton-That H, Mazmanian SK, Alksne L, Schneewind O
- Anchoring of surface proteins to the cell wall of Staphylococcus aureus. Cysteine 184 and histidine 120 of sortase form a thiolate-imidazolium ion pair for catalysis.
- J Biol Chem. 2002; 277: 7447-52
- Display abstract
Surface proteins of Staphylococcus aureus are anchored to the cell wall peptidoglycan by a mechanism requiring a C-terminal sorting signal with a LPXTG motif. Sortase cleaves polypeptides between the threonine and the glycine of the LPXTG motif. The carboxyl group of threonine is subsequently amide-linked to the amino group of peptidoglycan cross-bridges. The three-dimensional structure of sortase revealed the close proximity of the catalytic site residue cysteine 184 with histidine 120; however, no structural evidence for a thiolate-imidazolium ion pair could be detected. We report that alanine substitution of either cysteine 184 or histidine 120 abolishes in vivo and in vitro sorting reactions. Further, alanine substitution of tryptophan 194, a residue that is in close proximity of histidine 120, reduces the transpeptidase activity of sortase. These results suggest a model whereby sortase forms a thiolate-imidazolium ion pair for the catalysis of its transpeptidation reaction and that the position of tryptophan 194 assists in the formation of this ion pair.
- Huang Y, Park YC, Rich RL, Segal D, Myszka DG, Wu H
- Structural basis of caspase inhibition by XIAP: differential roles of the linker versus the BIR domain.
- Cell. 2001; 104: 781-90
- Display abstract
The inhibitor of apoptosis proteins (IAPs) represent the only endogenous caspase inhibitors and are characterized by the presence of baculoviral IAP repeats (BIRs). Here, we report the crystal structure of the complex between human caspase-7 and XIAP (BIR2 and the proceeding linker). The structure surprisingly reveals that the linker is the only contacting element for the caspase, while the BIR2 domain is invisible in the crystal. The linker interacts with and blocks the substrate groove of the caspase in a backward fashion, distinct from substrate recognition. Structural analyses suggest that the linker is the energetic and specificity determinant of the interaction. Further biochemical characterizations clearly establish that the linker harbors the major energetic determinant, while the BIR2 domain serves as a regulatory element for caspase binding and Smac neutralization.
- Tjalsma H, Stover AG, Driks A, Venema G, Bron S, van Dijl JM
- Conserved serine and histidine residues are critical for activity of the ER-type signal peptidase SipW of Bacillus subtilis.
- J Biol Chem. 2000; 275: 25102-8
- Display abstract
Type I signal peptidases (SPases) are required for the removal of signal peptides from translocated proteins and, subsequently, release of the mature protein from the trans side of the membrane. Interestingly, prokaryotic (P-type) and endoplasmic reticular (ER-type) SPases are functionally equivalent, but structurally quite different, forming two distinct SPase families that share only few conserved residues. P-type SPases were, so far, exclusively identified in eubacteria and organelles, whereas ER-type SPases were found in the three kingdoms of life. Strikingly, the presence of ER-type SPases appears to be limited to sporulating Gram-positive eubacteria. The present studies were aimed at the identification of potential active site residues of the ER-type SPase SipW of Bacillus subtilis, which is required for processing of the spore-associated protein TasA. Conserved serine, histidine, and aspartic acid residues are critical for SipW activity, suggesting that the ER-type SPases employ a Ser-His-Asp catalytic triad or, alternatively, a Ser-His catalytic dyad. In contrast, the P-type SPases employ a Ser-Lys catalytic dyad (Paetzel, M., Dalbey, R. E., and Strynadka, N. C. J. (1998) Nature 396, 186-190). Notably, catalytic activity of SipW was not only essential for pre-TasA processing, but also for the incorporation of mature TasA into spores.
- Li Y, He X, Schembri-King J, Jakes S, Hayashi J
- Cloning and characterization of human Lnk, an adaptor protein with pleckstrin homology and Src homology 2 domains that can inhibit T cell activation.
- J Immunol. 2000; 164: 5199-206
- Display abstract
Lnk was originally cloned from a rat lymph node cDNA library and shown to participate in T cell signaling. Human Lnk (hLnk) was cloned by screening a Jurkat cell cDNA library. hLnk has a calculated molecular mass of 63 kDa, and its deduced amino acid sequence indicates the presence of an N-terminal proline-rich region, a pleckstrin homology domain, and a Src homology 2 domain. When expressed in COS cells, hLnk migrates with an apparent molecular mass of 75 kDa. Confocal fluorescence microscope analysis indicates that in COS cells transfected with an expression vector encoding a chimeric Lnk-green fluorescent protein, hLnk is found at the juxtanuclear compartment and also appears to be localized at the plasma membrane. Lnk is tyrosine-phosphorylated by p56lck. Following phosphorylation, p56lck binds to tyrosine-phosphorylated hLnk through its Src homology 2 domain. In COS cells cotransfected with hLnk, p56lck, and CD8-zeta, hLnk associated with tyrosine-phosphorylated TCR zeta-chain through its Src homology 2 domain. The overexpression of Lnk in Jurkat cells led to an inhibition of anti-CD3 mediated NF-AT-Luc activation. Our study reveals a potentially new mechanism of T cell-negative regulation.
- Johnson AL, Bridgham JT
- Caspase-3 and -6 expression and enzyme activity in hen granulosa cells.
- Biol Reprod. 2000; 62: 589-98
- Display abstract
We have cloned and sequenced cDNAs corresponding to the complete coding regions of the chicken homologues to mammalian caspase-3 and caspase-6. Both caspases are included among members of the cysteine protease (caspase) family that are most closely identified with mediating apoptosis. The deduced amino acid sequences for chicken caspase-3 and -6 show 65% and 68% identity with the respective human sequences, with complete conservation found within the QACRG active peptide region. Both caspase-3 and -6 are widely expressed within various tissues from the hen. Within the ovary, levels of caspase-3 and caspase-6 mRNA and protein do not change significantly in theca tissue during follicle development. On the other hand, procaspase-3 and -6 protein levels are elevated by 2- to 5-fold in preovulatory, compared to prehierarchal (6- to 8-mm diameter), follicle granulosa cells. Nevertheless, the function of this family of cell death-inducing proteins requires activation of the proenzyme caspase, which occurs after cleavage at predictable sites within the N-terminal domain. Accordingly, it was determined that okadaic acid, a pharmacologic inducer of apoptotic cell death in cultured apoptosis-resistant, preovulatory follicle granulosa cells, induced both caspase-3- and caspase-6-like activity within 8-16 h of treatment. By comparison, spontaneous apoptotic cell death that occurs in apoptosis-sensitive, prehierarchal follicle granulosa cells after short-term suspension culture is accompanied by a more rapid increase (within 2 h) in both caspase-3- and -6-like activity. Treatment with 8-bromo-cAMP, which has previously been shown to attenuate, or at least slow, the onset of apoptosis in prehierarchal follicle granulosa cells, mitigates this suspension culture-induced increase in caspase activity. While the present results provide further support for the relationship between caspase activation and apoptotic cell death in hen granulosa cells, the molecular ordering of enzymatic events and the caspase-specific substrates remain to be elucidated.
- Chen JM, Rawlings ND, Stevens RA, Barrett AJ
- Identification of the active site of legumain links it to caspases, clostripain and gingipains in a new clan of cysteine endopeptidases.
- FEBS Lett. 1998; 441: 361-5
- Display abstract
We show by site-directed mutagenesis that the catalytic residues of mammalian legumain, a recently discovered lysosomal asparaginycysteine endopeptidase, form a catalytic dyad in the motif His-Gly-spacer-Ala-Cys. We note that the same motif is present in the caspases, aspartate-specific endopeptidases central to the process of apoptosis in animal cells, and also in the families of clostripain and gingipain which are arginyl/lysyl endopeptidases of pathogenic bacteria. We propose that the four families have similar protein folds, are evolutionarily related in clan CD, and have common characteristics including substrate specificities dominated by the interactions of the S1 subsite.
- Inohara N, Koseki T, Hu Y, Chen S, Nunez G
- CLARP, a death effector domain-containing protein interacts with caspase-8 and regulates apoptosis.
- Proc Natl Acad Sci U S A. 1997; 94: 10717-22
- Display abstract
We have identified and characterized CLARP, a caspase-like apoptosis-regulatory protein. Sequence analysis revealed that human CLARP contains two amino-terminal death effector domains fused to a carboxyl-terminal caspase-like domain. The structure and amino acid sequence of CLARP resemble those of caspase-8, caspase-10, and DCP2, a Drosophila melanogaster protein identified in this study. Unlike caspase-8, caspase-10, and DCP2, however, two important residues predicted to be involved in catalysis were lost in the caspase-like domain of CLARP. Analysis with fluorogenic substrates for caspase activity confirmed that CLARP is catalytically inactive. CLARP was found to interact with caspase-8 but not with FADD/MORT-1, an upstream death effector domain-containing protein of the Fas and tumor necrosis factor receptor 1 signaling pathway. Expression of CLARP induced apoptosis, which was blocked by the viral caspase inhibitor p35, dominant negative mutant caspase-8, and the synthetic caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp-(OMe)-fluoromethylketone (zVAD-fmk). Moreover, CLARP augmented the killing ability of caspase-8 and FADD/MORT-1 in mammalian cells. The human clarp gene maps to 2q33. Thus, CLARP represents a regulator of the upstream caspase-8, which may play a role in apoptosis during tissue development and homeostasis.
- Hammarstrom A, Berndt KD, Sillard R, Adermann K, Otting G
- Solution structure of a naturally-occurring zinc-peptide complex demonstrates that the N-terminal zinc-binding module of the Lasp-1 LIM domain is an independent folding unit.
- Biochemistry. 1996; 35: 12723-32
- Display abstract
The three-dimensional solution structure of the 1:1 complex between the synthetic peptide ZF-1 and zinc was determined by 1H NMR spectroscopy. The peptide, initially isolated from pig intestines, is identical in sequence to the 30 N-terminal amino acid residues of the human protein Lasp-1 belonging to the LIM domain protein family. The final set of 20 energy-refined NMR conformers has an average rmsd relative to the mean structure of 0.55 A for the backbone atoms of residues 3-30. Calculations without zinc atom constraints unambiguously identified Cys 5, Cys 8, His 26, and Cys 29 as the zinc-coordinating residues. LIM domains consist of two sequential zinc-binding modules and the NMR structure of the ZF-1-zinc complex is the first example of a structure of an isolated module. Comparison with the known structures of the N-terminal zinc-binding modules of both the second LIM domain of chicken CRP and rat CRIP with which ZF-1 shares 50% and 43% sequence identity, respectively, supports the notion that the zinc-binding modules of the LIM domain have a conserved structural motif and identifies local regions of structural diversity. The similarities include conserved zinc-coordinating residues, a rubredoxin knuckle involving Cys 5 and Cys 8, and the coordination of the zinc ion by histidine N delta in contrast to the more usual coordination by N epsilon observed for other zinc-finger domains. The present structure determination of the ZF-1-zinc complex establishes the N-terminal half of a LIM domain as an independent folding unit. The structural similarities of N- and C-terminal zinc-binding modules of the LIM domains, despite limited sequence identity, lead to the proposal of a single zinc-binding motif in LIM domains. The coordinates are available from the Brookhaven protein data bank, entry 1ZFO.
- Terasawa H et al.
- Structure of the N-terminal SH3 domain of GRB2 complexed with a peptide from the guanine nucleotide releasing factor Sos.
- Nat Struct Biol. 1994; 1: 891-7
- Display abstract
Src-homology 3 (SH3) domains mediate signal transduction by binding to proline-rich motifs in target proteins. We have determined the high-resolution NMR structure of the complex between the amino-terminal SH3 domain of GRB2 and a ten amino acid peptide derived from the guanine nucleotide releasing factor Sos. The NMR data show that the peptide adopts the conformation of a left-handed polyproline type II helix and interacts with three major sites on the SH3 domain. The orientation of the bound peptide is opposite to that of proline-rich peptides bound to the SH3 domains of Abl, Fyn and p85.