Secondary literature sources for Rho_N
The following references were automatically generated.
- Canals A, Uson I, Coll M
- The structure of RNA-free Rho termination factor indicates a dynamic mechanism of transcript capture.
- J Mol Biol. 2010; 400: 16-23
- Display abstract
The Rho factor is a ring-shaped ATP-dependent helicase that mediates transcription termination in most prokaryotic cells by disengaging the transcription elongation complex formed by the RNA polymerase, DNA, and the nascent RNA transcript. The crystal structures of key intermediates along the kinetic pathway of RNA binding to Rho unveiled an unprecedented mode of helicase loading and provided a model for the ATP turnover coupled to coordinated strand movement. Here we report the structure of the early RNA-free state of Rho, which had eluded crystallization for many years but now completes the series. The structure allows the characterization of the apo-form Rho from Thermotoga maritima to 2.3 A resolution, reveals an RNA-recruiting site that becomes hidden after occupancy of the adjacent specific primary RNA-binding site, and suggests an enriched model for mRNA capture that is consistent with previous data.
- Canals A, Coll M
- Cloning, expression, purification and crystallization of the Rho transcription termination factor from Thermotoga maritima.
- Protein Expr Purif. 2009; 65: 174-8
- Display abstract
Rho is an essential ATP-dependent homohexameric helicase that is found in the vast majority of bacterial species. It is responsible for transcription termination at factor-dependent terminators. Rho binds to a specific region of the newly-synthesised mRNA and translocates along the chain until it reaches and disassembles the transcription complex. Basically, two crystallographic structures of Rho hexamer from Escherichia coli have been reported: an open ring with RNA (or ssDNA) bound to the RNA-binding domain, and a closed ring with the RNA bound to both the RNA-binding domain and the ATP-ase domain. The structure of the protein free from RNA is still unknown, but thermophilic bacteria enable an alternative approach to its characterization as their proteins often crystallize more easily than those of their mesophilic homologs. We report here the heterologous expression in E. coli of full-length Rho from the thermophile Thermotoga maritima, a simple protocol for the purification of its hexameric nucleic acid-free form, and the obtainment of 2.4 A-diffracting crystals.
- Das D et al.
- Crystal structure of a novel Sm-like protein of putative cyanophage origin at 2.60 A resolution.
- Proteins. 2009; 75: 296-307
- Display abstract
ECX21941 represents a very large family (over 600 members) of novel, ocean metagenome-specific proteins identified by clustering of the dataset from the Global Ocean Sampling expedition. The crystal structure of ECX21941 reveals unexpected similarity to Sm/LSm proteins, which are important RNA-binding proteins, despite no detectable sequence similarity. The ECX21941 protein assembles as a homopentamer in solution and in the crystal structure when expressed in Escherichia coli and represents the first pentameric structure for this Sm/LSm family of proteins, although the actual oligomeric form in vivo is currently not known. The genomic neighborhood analysis of ECX21941 and its homologs combined with sequence similarity searches suggest a cyanophage origin for this protein. The specific functions of members of this family are unknown, but our structure analysis of ECX21941 indicates nucleic acid-binding capabilities and suggests a role in RNA and/or DNA processing.
- Lu G, Dolgner SJ, Hall TM
- Understanding and engineering RNA sequence specificity of PUF proteins.
- Curr Opin Struct Biol. 2009; 19: 110-5
- Display abstract
PUF proteins are RNA-binding proteins named for founding members PUMILIO and fem-3 binding factor (FBF). Together these proteins represent the range of known RNA recognition properties. PUMILIO is a prototypical PUF protein whose RNA sequence specificity is simple, elegant, and predictable. FBF displays differences in RNA recognition that represent divergence from the prototype. Here we review recent studies that examine the engineering of sequence specificity of PUF proteins and its applications as well as studies that increase our understanding of the natural diversity of RNA recognition by this family of proteins.
- Warren EM, Huang H, Fanning E, Chazin WJ, Eichman BF
- Physical interactions between Mcm10, DNA, and DNA polymerase alpha.
- J Biol Chem. 2009; 284: 24662-72
- Display abstract
Mcm10 is an essential eukaryotic protein required for the initiation and elongation phases of chromosomal replication. Specifically, Mcm10 is required for the association of several replication proteins, including DNA polymerase alpha (pol alpha), with chromatin. We showed previously that the internal (ID) and C-terminal (CTD) domains of Mcm10 physically interact with both single-stranded (ss) DNA and the catalytic p180 subunit of pol alpha. However, the mechanism by which Mcm10 interacts with pol alpha on and off DNA is unclear. As a first step toward understanding the structural details for these critical intermolecular interactions, x-ray crystallography and NMR spectroscopy were used to map the binary interfaces between Mcm10-ID, ssDNA, and p180. The crystal structure of an Mcm10-ID*ssDNA complex confirmed and extended our previous evidence that ssDNA binds within the oligonucleotide/oligosaccharide binding-fold cleft of Mcm10-ID. We show using NMR chemical shift perturbation and fluorescence spectroscopy that p180 also binds to the OB-fold and that ssDNA and p180 compete for binding to this motif. In addition, we map a minimal Mcm10 binding site on p180 to a small region within the p180 N-terminal domain (residues 286-310). These findings, together with data for DNA and p180 binding to an Mcm10 construct that contains both the ID and CTD, provide the first mechanistic insight into how Mcm10 might use a handoff mechanism to load and stabilize pol alpha within the replication fork.
- Keel AY, Rambo RP, Batey RT, Kieft JS
- A general strategy to solve the phase problem in RNA crystallography.
- Structure. 2007; 15: 761-72
- Display abstract
X-ray crystallography of biologically important RNA molecules has been hampered by technical challenges, including finding heavy-atom derivatives to obtain high-quality experimental phase information. Existing techniques have drawbacks, limiting the rate at which important new structures are solved. To address this, we have developed a reliable means to localize heavy atoms specifically to virtually any RNA. By solving the crystal structures of thirteen variants of the G*U wobble pair cation binding motif, we have identified a version that when inserted into an RNA helix introduces a high-occupancy cation binding site suitable for phasing. This "directed soaking" strategy can be integrated fully into existing RNA crystallography methods, potentially increasing the rate at which important structures are solved and facilitating routine solving of structures using Cu-Kalpha radiation. This method already has been used to solve several crystal structures.
- Chalissery J, Banerjee S, Bandey I, Sen R
- Transcription termination defective mutants of Rho: role of different functions of Rho in releasing RNA from the elongation complex.
- J Mol Biol. 2007; 371: 855-72
- Display abstract
The transcription termination factor Rho of Escherichia coli is a RNA binding protein which can translocate along the RNA and unwind the RNA:DNA hybrid using the RNA-dependent ATPase activity. In order to investigate the involvement of each of these functions in releasing RNA from the elongation complex, we have isolated different termination defective mutants of Rho by random mutagenesis, characterized them for their different functions and established the structure-function correlations from the available structural data of Rho. These mutations are located within the two domains; the N-terminal RNA binding domain (G51V, G53V, and Y80C) and in the C-terminal ATP binding domain (Y274D, P279S, P279L, G324D, N340S, I382N) including the two important structural elements, the Q-loop (P279S, P279L) and R-loop (G324D). Termination defects of the mutants in primary RNA binding domain and Q-loop could not be restored under any conditions that we tested and these were also defective for most of the other functions of Rho. The termination defects of the mutants (Y274D, G324D and N340S), which were mainly defective for secondary RNA binding and likely defective for translocase activity, could be restored under relaxed in vitro conditions. We also show that a mutation in a primary RNA binding domain (Y80C) can cause a defect in ATP binding and induce distinct conformational changes in the distal C-terminal domain, and these allosteric effects are not predictable from the crystal structure. We conclude that the interactions in the primary RNA binding domain and in the Q-loop are mandatory for RNA release to occur and propose that the interactions in the primary RNA binding modulate most of the other functions of Rho allosterically. The rate of ATP hydrolysis regulates the processivity of translocation along the RNA and is directly correlated with the efficiency of RNA release. NusG improves the speed of RNA release and is not involved in any other step.
- Edwards TA et al.
- Solution structure of the Vts1 SAM domain in the presence of RNA.
- J Mol Biol. 2006; 356: 1065-72
- Display abstract
The yeast Vts1 SAM (sterile alpha motif) domain is a member of a new class of SAM domains that specifically bind RNA. To elucidate the structural basis for RNA binding, the solution structure of the Vts1 SAM domain, in the presence of a specific target RNA, has been solved by multidimensional heteronuclear NMR spectroscopy. The Vts1 SAM domain retains the "core" five-helix-bundle architecture of traditional SAM domains, but has additional short helices at N and C termini, comprising a small substructure that caps the core helices. The RNA-binding surface of Vts1, determined by chemical shift perturbation, maps near the ends of three of the core helices, in agreement with mutational data and the electrostatic properties of the molecule. These results provide a structural basis for the versatility of the SAM domain in protein and RNA-recognition.
- Skordalakes E, Brogan AP, Park BS, Kohn H, Berger JM
- Structural mechanism of inhibition of the Rho transcription termination factor by the antibiotic bicyclomycin.
- Structure. 2005; 13: 99-109
- Display abstract
Rho is a hexameric RNA/DNA helicase/translocase that terminates transcription of select genes in bacteria. The naturally occurring antibiotic, bicyclomycin (BCM), acts as a noncompetitive inhibitor of ATP turnover to disrupt this process. We have determined three independent X-ray crystal structures of Rho complexed with BCM and two semisynthetic derivatives, 5a-(3-formylphenylsulfanyl)-dihydrobicyclomycin (FPDB) and 5a-formylbicyclomycin (FB) to 3.15, 3.05, and 3.15 A resolution, respectively. The structures show that BCM and its derivatives are nonnucleotide inhibitors that interact with Rho at a pocket adjacent to the ATP and RNA binding sites in the C-terminal half of the protein. BCM association prevents ATP turnover by an unexpected mechanism, occluding the binding of the nucleophilic water molecule required for ATP hydrolysis. Our data explain why only certain elements of BCM have been amenable to modification and serve as a template for the design of new inhibitors.
- Shioi S et al.
- Crystal structure of a biologically functional form of PriB from Escherichia coli reveals a potential single-stranded DNA-binding site.
- Biochem Biophys Res Commun. 2005; 326: 766-76
- Display abstract
PriB is not only an essential protein necessary for the replication restart on the collapsed and disintegrated replication fork, but also an important protein for assembling of primosome onto PhiX174 genomic DNA during replication initiation. Here we report a 2.0-A-resolution X-ray structure of a biologically functional form of PriB from Escherichia coli. The crystal structure revealed that despite a low level of primary sequence identity, the PriB monomer, as well as the dimeric form, are structurally identical to the N-terminal DNA-binding domain of the single-stranded DNA-binding protein (SSB) from Escherichia coli, which possesses an oligonucleotides-binding-fold. The oligonucleotide-PriB complex model based on the oligonucleotides-SSB complex structure suggested that PriB had a DNA-binding pocket conserved in SSB from Escherichia coli and might bind to single-stranded DNA in the manner of SSB. Furthermore, surface plasmon resonance analysis and fluorescence measurements demonstrated that PriB binds single-stranded DNA with high affinity, by involving tryptophan residue. The significance of these results with respect to the functional role of PriB in the assembly of primosome is discussed.
- Chen X, Stitt BL
- The binding of C10 oligomers to Escherichia coli transcription termination factor Rho.
- J Biol Chem. 2004; 279: 16301-10
- Display abstract
The binding of C10 RNA oligomers to wild type and mutant Escherichia coli transcription termination factor Rho provides a model for the enzyme-RNA interactions that lead to transcription termination. One surprising finding is that wild type Rho binds between five and six C10 oligomers per hexamer with KD = 0.3 microm, and five to six additional C10 molecules with KD = 7 microm. Previously, approximately half this number of oligomer-binding sites was reported (Wang, Y., and von Hippel, P. H. (1993) J. Biol. Chem. 268, 13947-13955); however, the E155K mutant form of Rho, thought at the time to be wild type, was used in that work. The present results with E155K Rho agree with the earlier work. C10 binding with mutant forms of Rho that are altered in RNA interactions, bearing amino acid changes F62S, G99V, F232C, T286A, or K352E, indicate that the higher affinity binding sites constitute what has been termed the primary RNA site, and the lower affinity sites constitute the secondary sites. The binding data together with the crystal structures for wild type Rho (Skordalakes, E., and Berger, J. M. (2003) Cell 114, 135-146) support structurally distinct locations on Rho for the two classes of C10-binding sites. The results are consistent with participation of residues 33 A apart in secondary site RNA interactions. The data further indicate that not all RNA sites on Rho must be filled for full ATPase and transcription termination activity, and suggest a model in which RNA binding to the higher affinity sites leads to a protein conformation change that exposes the previously hidden lower affinity sites.
- Maurus R et al.
- Insights into the evolution of allosteric properties. The NADH binding site of hexameric type II citrate synthases.
- Biochemistry. 2003; 42: 5555-65
- Display abstract
Study of the hexameric and allosterically regulated citrate synthases (type II CS) provides a rare opportunity to gain not only an understanding of a novel allosteric mechanism but also insight into how such properties can evolve from an unregulated structural platform (the dimeric type I CS). To address both of these issues, we have determined the structure of the complex of NADH (a negative allosteric effector) with the F383A variant of type II Escherichia coli CS. This variant was chosen because its kinetics indicate it is primarily in the T or inactive allosteric conformation, the state that strongly binds to NADH. Our structural analyses show that the six NADH binding sites in the hexameric CS complex are located at the interfaces between dimer units such that most of each site is formed by one subunit, but a number of key residues are drawn from the adjacent dimer. This arrangement of interactions serves to explain why NADH allosteric regulation is a feature only of hexameric type II CS. Surprisingly, in both the wild-type enzyme and the NADH complex, the two subunits of each dimer within the hexameric conformation are similar but not identical in structure, and therefore, while the general characteristics of NADH binding interactions are similar in each subunit, the details of these are somewhat different between subunits. Detailed examination of the observed NADH binding sites indicates that both direct charged interactions and the overall cationic nature of the sites are likely responsible for the ability of these sites to discriminate between NADH and NAD(+). A particularly novel characteristic of the complex is the horseshoe conformation assumed by NADH, which is strikingly different from the extended conformation found in its complexes with most proteins. Sequence homology studies suggest that this approach to binding NADH may arise out of the evolutionary need to add an allosteric regulatory function to the base CS structure. Comparisons of the amino acid sequences of known type II CS enzymes, from different Gram-negative bacteria taxonomic groups, show that the NADH-binding residues identified in our structure are strongly conserved, while hexameric CS molecules that are insensitive to NADH have undergone key changes in the sequence of this part of the protein.
- Gong F, Yanofsky C
- Analysis of tryptophanase operon expression in vitro: accumulation of TnaC-peptidyl-tRNA in a release factor 2-depleted S-30 extract prevents Rho factor action, simulating induction.
- J Biol Chem. 2002; 277: 17095-100
- Display abstract
Expression of the tryptophanase (tna) operon in Escherichia coli is regulated by catabolite repression and tryptophan-induced transcription antitermination. The key feature of this antitermination mechanism has been shown to be the retention of uncleaved TnaC-peptidyl-tRNA in the translating ribosome. This ribosome remains stalled at the tna stop codon and blocks the access of Rho factor to the tna transcript, thereby preventing transcription termination. In normal S-30 preparations, synthesis of a TnaC peptide containing arginine instead of tryptophan at position 12 (Arg(12)-TnaC) was shown to be insensitive to added tryptophan, i.e. Arg(12)-TnaC-peptidyl-tRNA was cleaved, and there was normal Rho-dependent transcription termination. When the S-30 extract used was depleted of release factor 2, Arg(12)-TnaC-tRNA(Pro) was accumulated in the absence or presence of added tryptophan. Under these conditions the accumulation of Arg(12)-TnaC-tRNA(Pro) prevented Rho-dependent transcription termination, mimicking normal induction. Using a minimal in vitro transcription system consisting of a tna template, RNA polymerase, and Rho, it was shown that RNA sequences immediately adjacent to the tnaC stop codon, the presumed boxA and rut sites, contributed most significantly to Rho-dependent termination. The tna boxA-like sequence appeared to serve as a segment of the Rho "entry" site, despite its likeness to the boxA element.
- Declerck N, Minh NL, Yang Y, Bloch V, Kochoyan M, Aymerich S
- RNA recognition by transcriptional antiterminators of the BglG/SacY family: mapping of SacY RNA binding site.
- J Mol Biol. 2002; 319: 1035-48
- Display abstract
Transcriptional antiterminators of the BglG/SacY family are bacterial regulatory proteins able to prevent the premature arrest of transcription through specific binding to a ribonucleic antiterminator (RAT) sequence. The RNA recognition module of these regulators is made of the 55-amino acid long N-terminal domain which can by itself promote efficient antitermination activity in vivo and RNA binding in vitro. The structure of this domain, which was called CAT for co-antiterminator, has first been determined for SacY from Bacillus subtilis and the putative surface contacting RNA has been defined by NMR footprinting. Here we have performed a genetic mapping of the SacY-CAT RNA binding site by substituting 24 amino acid residues including those previously identified by NMR, the highly conserved residues in the 55 homologous antiterminators recognised in the databases and all the positively charged residues. A total of 57 SacY-CAT variants have been constructed and tested in vivo for their antitermination efficiency. A few of these variants were then purified in order to analyse their RNA binding properties by surface plasmon resonance and to check their structural integrity by NMR. The present study validates and clarifies the RNA interacting surface previously mapped by NMR. The residues that are the most intolerant to substitutions, Asn8, His9, Asn10, Gly25, Gly27, and Phe30, are aligned across the CAT dimer interface and form the core of the RNA binding site. Three highly conserved residues stand outside the interaction surface but are essential for maintaining the CAT dimeric structure (Phe47) or may play an important functional role in the full length protein (Glu20 and Lys32). Interestingly, none of the twelve positively charged residues of SacY-CAT are crucial for the antitermination activity. By replacing three Lys residues and combining the Ala26-->Arg mutation that significantly enhanced the affinity for RNA, we engineered a SacY-CAT variant that should be suitable for NMR study of the complex.
- Shiels JC, Tuite JB, Nolan SJ, Baranger AM
- Investigation of a conserved stacking interaction in target site recognition by the U1A protein.
- Nucleic Acids Res. 2002; 30: 550-8
- Display abstract
Three highly conserved aromatic residues in RNA recognition motifs (RRM) participate in stacking interactions with RNA bases upon binding RNA. We have investigated the contribution of one of these aromatic residues, Phe56, to the complex formed between the N-terminal RRM of the spliceosomal protein U1A and stem-loop 2 of U1 snRNA. Previous work showed that the aromatic group is important for high affinity binding. Here we probe how mutation of Phe56 affects the kinetics of complex dissociation, the strength of the hydrogen bonds formed between U1A and the base that stacks with Phe56 (A6) and specific target site recognition. Substitution of Phe56 with Trp or Tyr increased the rate of dissociation of the complex, consistent with previously reported results. However, substitution of Phe56 with His decreased the rate of complex association, implying a change in the initial formation of the complex. Simultaneous modification of residue 56 and A6 revealed energetic coupling between the aromatic group and the functional groups of A6 that hydrogen bond to U1A. Finally, mutation of Phe56 to Leu reduced the ability of U1A to recognize stem-loop 2 correctly. Taken together, these experiments suggest that Phe56 contributes to binding affinity by stacking with A6 and participating in networks of energetically coupled interactions that enable this conserved aromatic amino acid to play a complex role in target site recognition.
- Allers J, Shamoo Y
- Structure-based analysis of protein-RNA interactions using the program ENTANGLE.
- J Mol Biol. 2001; 311: 75-86
- Display abstract
Until recently, drawing general conclusions about RNA recognition by proteins has been hindered by the paucity of high-resolution structures. We have analyzed 45 PDB entries of protein-RNA complexes to explore the underlying chemical principles governing both specific and non-sequence specific binding. To facilitate the analysis, we have constructed a database of interactions using ENTANGLE, a JAVA-based program that uses available structural models in their PDB format and searches for appropriate hydrogen bonding, stacking, electrostatic, hydrophobic and van der Waals interactions. The resulting database of interactions reveals correlations that suggest the basis for the discrimination of RNA from DNA and for base-specific recognition. The data illustrate both major and minor interaction strategies employed by families of proteins such as tRNA synthetases, ribosomal proteins, or RNA recognition motifs with their RNA targets. Perhaps most surprisingly, specific RNA recognition appears to be mediated largely by interactions of amide and carbonyl groups in the protein backbone with the edge of the RNA base. In cases where a base accepts a proton, the dominant amino acid donor is arginine, whereas in cases where the base donates a proton, the predominant acceptor is the backbone carbonyl group, not a side-chain group. This is in marked contrast to DNA-protein interactions, which are governed predominantly by amino acid side-chain interactions with functional groups that are presented in the accessible major groove. RNA recognition often proceeds through loops, bulges, kinks and other irregular structures that permit use of all the RNA functional groups and this is seen throughout the protein-RNA interaction database.
- Han S, Arvai AS, Clancy SB, Tainer JA
- Crystal structure and novel recognition motif of rho ADP-ribosylating C3 exoenzyme from Clostridium botulinum: structural insights for recognition specificity and catalysis.
- J Mol Biol. 2001; 305: 95-107
- Display abstract
Clostridium botulinum C3 exoenzyme inactivates the small GTP-binding protein family Rho by ADP-ribosylating asparagine 41, which depolymerizes the actin cytoskeleton. C3 thus represents a major family of the bacterial toxins that transfer the ADP-ribose moiety of NAD to specific amino acids in acceptor proteins to modify key biological activities in eukaryotic cells, including protein synthesis, differentiation, transformation, and intracellular signaling. The 1.7 A resolution C3 exoenzyme structure establishes the conserved features of the core NAD-binding beta-sandwich fold with other ADP-ribosylating toxins despite little sequence conservation. Importantly, the central core of the C3 exoenzyme structure is distinguished by the absence of an active site loop observed in many other ADP-ribosylating toxins. Unlike the ADP-ribosylating toxins that possess the active site loop near the central core, the C3 exoenzyme replaces the active site loop with an alpha-helix, alpha3. Moreover, structural and sequence similarities with the catalytic domain of vegetative insecticidal protein 2 (VIP2), an actin ADP-ribosyltransferase, unexpectedly implicates two adjacent, protruding turns, which join beta5 and beta6 of the toxin core fold, as a novel recognition specificity motif for this newly defined toxin family. Turn 1 evidently positions the solvent-exposed, aromatic side-chain of Phe209 to interact with the hydrophobic region of Rho adjacent to its GTP-binding site. Turn 2 evidently both places the Gln212 side-chain for hydrogen bonding to recognize Rho Asn41 for nucleophilic attack on the anomeric carbon of NAD ribose and holds the key Glu214 catalytic side-chain in the adjacent catalytic pocket. This proposed bipartite ADP-ribosylating toxin turn-turn (ARTT) motif places the VIP2 and C3 toxin classes into a single ARTT family characterized by analogous target protein recognition via turn 1 aromatic and turn 2 hydrogen-bonding side-chain moieties. Turn 2 centrally anchors the catalytic Glu214 within the ARTT motif, and furthermore distinguishes the C3 toxin class by a conserved turn 2 Gln and the VIP2 binary toxin class by a conserved turn 2 Glu for appropriate target side-chain hydrogen-bonding recognition. Taken together, these structural results provide a molecular basis for understanding the coupled activity and recognition specificity for C3 and for the newly defined ARTT toxin family, which acts in the depolymerization of the actin cytoskeleton. This beta5 to beta6 region of the toxin fold represents an experimentally testable and potentially general recognition motif region for other ADP-ribosylating toxins that have a similar beta-structure framework.
- Aravind L, Koonin EV
- Prokaryotic homologs of the eukaryotic DNA-end-binding protein Ku, novel domains in the Ku protein and prediction of a prokaryotic double-strand break repair system.
- Genome Res. 2001; 11: 1365-74
- Display abstract
Homologs of the eukaryotic DNA-end-binding protein Ku were identified in several bacterial and one archeal genome using iterative database searches with sequence profiles. Identification of prokaryotic Ku homologs allowed the dissection of the Ku protein sequences into three distinct domains, the Ku core that is conserved in eukaryotes and prokaryotes, a derived von Willebrand A domain that is fused to the amino terminus of the core in eukaryotic Ku proteins, and the newly recognized helix-extension-helix (HEH) domain that is fused to the carboxyl terminus of the core in eukaryotes and in one of the Ku homologs from the Actinomycete Streptomyces coelicolor. The version of the HEH domain present in eukaryotic Ku proteins represents the previously described DNA-binding domain called SAP. The Ku homolog from S. coelicolor contains a distinct version of the HEH domain that belongs to a previously unnoticed family of nucleic-acid-binding domains, which also includes HEH domains from the bacterial transcription termination factor Rho, bacterial and eukaryotic lysyl-tRNA synthetases, bacteriophage T4 endonuclease VII, and several uncharacterized proteins. The distribution of the Ku homologs in bacteria coincides with that of the archeal-eukaryotic-type DNA primase and genes for prokaryotic Ku homologs form predicted operons with genes coding for an ATP-dependent DNA ligase and/or archeal-eukaryotic-type DNA primase. Some of these operons additionally encode an uncharacterized protein that may function as nuclease or an Slx1p-like predicted nuclease containing a URI domain. A hypothesis is proposed that the Ku homolog, together with the associated gene products, comprise a previously unrecognized prokaryotic system for repair of double-strand breaks in DNA.
- Kim DE, Patel SS
- The kinetic pathway of RNA binding to the Escherichia coli transcription termination factor Rho.
- J Biol Chem. 2001; 276: 13902-10
- Display abstract
The Escherichia coli transcription termination factor Rho is structurally and functionally homologous to hexameric helicases that assemble into ring structures. Using stopped-flow fluorescence and presteady-state ATPase kinetics, we have determined the kinetic pathway of poly(C) RNA binding to Rho hexamer, both in the presence and in absence of ATP. These studies indicate a four-step sequential mechanism of RNA binding and reveal the respective roles of the primary and secondary RNA binding sites in initiation and ATPase activation of Rho. The primary RNA binding sites of Rho hexamer interact with poly(C) RNA at a diffusion-limited rate constant close to 8 x 10(8) m(-1) s(-1), resulting in the Rho-RNA species PR1, which subsequently isomerizes to PR2 with a rate constant 21 s(-1). The PR2 isomerizes to PR3 with a rate constant of 32 s(-1) in the presence of ATP, and the formation of PR4 from PR3 results in a species that is fully competent in hydrolyzing ATP at the RNA-stimulated rate. The PR3 to PR4 isomerization occurs at a relatively slow rate of 4.1 s(-1); thus, the presteady-state ATPase kinetics show a distinct lag due to the slow initiation step. The interactions of the RNA with the primary sites trigger ring opening, and we propose that during the last two steps, the RNA migrates into the central channel and interacts with the secondary sites, resulting in the activation of the ATPase activity. The primary RNA binding sites, in addition to promoting sequence specific initiation, kinetically facilitate loading of the RNA into the secondary sites, which are relatively inaccessible, since they are present in the central channel. These studies reveal common features used by hexameric helicases to bind nucleic acids in an efficient and specific manner.
- Kurimoto K, Fukai S, Nureki O, Muto Y, Yokoyama S
- Crystal structure of human AUH protein, a single-stranded RNA binding homolog of enoyl-CoA hydratase.
- Structure. 2001; 9: 1253-63
- Display abstract
BACKGROUND: The AU binding homolog of enoyl-CoA hydratase (AUH) is a bifunctional protein that has two distinct activities: AUH binds to RNA and weakly catalyzes the hydration of 2-trans-enoyl-coenzyme A (enoyl-CoA). AUH has no sequence similarity with other known RNA binding proteins, but it has considerable sequence similarity with enoyl-CoA hydratase. A segment of AUH, named the R peptide, binds to RNA. However, the mechanism of the RNA binding activity of AUH remains to be elucidated. RESULTS: We determined the crystal structure of human AUH at 2.2 A resolution. AUH adopts the typical fold of the enoyl-CoA hydratase/isomerase superfamily and forms a hexamer as a dimer of trimers. Interestingly, the surface of the AUH hexamer is positively charged, in striking contrast to the negatively charged surfaces of the other members of the superfamily. Furthermore, wide clefts are uniquely formed between the two trimers of AUH and are highly positively charged with the Lys residues in alpha helix H1, which is located on the edge of the cleft and contains the majority of the R peptide. A mutational analysis showed that the lysine residues in alpha helix H1 are essential to the RNA binding activity of AUH. CONCLUSIONS: Alpha helix H1 exposes a row of Lys residues on the solvent-accessible surface. These characteristic Lys residues are named the "lysine comb." The distances between these Lys residues are similar to those between the RNA phosphate groups, suggesting that the lysine comb may continuously bind to a single-stranded RNA. The clefts between the trimers may provide spaces sufficient to accommodate the RNA bases.
- Wei RR, Richardson JP
- Mutational changes of conserved residues in the Q-loop region of transcription factor Rho greatly reduce secondary site RNA-binding.
- J Mol Biol. 2001; 314: 1007-15
- Display abstract
Transcription factor Rho of Eschericia coli is a ring-shaped homohexameric protein that terminates transcripts by its action on nascent RNAs. To test the functional importance of the phylogenetically highly conserved residues of the Q-loop region, four mutant Rho proteins, S281A, K283A, T286A and D290A, were isolated and analyzed for their biochemical properties. All four proteins were very defective in terminating transcripts in vitro at the bacteriophage lambda tR1 terminator and had corresponding defects in ATP hydrolysis activated by lambda cro RNA. Although the four proteins were normal or near normal in their sensitivity to cleavage with H(2)O(2) in the presence of Fe-EDTA and in their ability to bind to lambda cro RNA and ATP, they were defective in RNA-specific, secondary site interactions. This was indicated by the lack of protection from cleavage at their Q-loops by oligo(C) in the presence of poly(dC), and their defects in ATP hydrolysis activated by oligo(C) in the presence of poly(dC). This evidence, together with the observations that cleavage of the Q-loop residues is protected specifically by RNA, suggests that the Q-loop makes interactions with RNA that are essential for activation of ATP hydrolysis and the termination of transcription.
- Toulokhonov I, Artsimovitch I, Landick R
- Allosteric control of RNA polymerase by a site that contacts nascent RNA hairpins.
- Science. 2001; 292: 730-3
- Display abstract
DNA, RNA, and regulatory molecules control gene expression through interactions with RNA polymerase (RNAP). We show that a short alpha helix at the tip of the flaplike domain that covers the RNA exit channel of RNAP contacts a nascent RNA stem-loop structure (hairpin) that inhibits transcription, and that this flap-tip helix is required for activity of the regulatory protein NusA. Protein-RNA cross-linking, molecular modeling, and effects of alterations in RNAP and RNA all suggest that a tripartite interaction of RNAP, NusA, and the hairpin inhibits nucleotide addition in the active site, which is located 65 angstroms away. These findings favor an allosteric model for regulation of transcript elongation.
- Liu R, Blackwell TW, States DJ
- Conformational model for binding site recognition by the E.coli MetJ transcription factor.
- Bioinformatics. 2001; 17: 622-33
- Display abstract
MOTIVATION: Current methods for identifying sequence specific binding sites in DNA sequence using position specific weight matrices are limited in both sensitivity and specificity. Double strand DNA helix exhibits sequence dependent variations in conformation. Interactions between macromolecules result from complementarity of the two tertiary structures. We hypothesize that this conformational variation plays a role in transcription factor binding site recognition, and that the use of this structure information will improve the predictive power of transcription factor binding site models. RESULTS: Conformation models for the sequence dependence of DNA helix distortion have been developed. Using our conformational models, we defined a tertiary structure template for the met operon repressor MetJ binding site. Both naturally occurring sites and precursor binding sites identified through in vitro selection were used as the basis for template definition. The conformational model appears to recognize features of protein binding sites that are distinct from the features recognized by primary sequence based profiles. Combining the conformational model and primary sequence profile yields a hybrid model with improved discriminatory power compared with either the conformational model or sequence profile alone. Using our hybrid model, we searched the E.coli genome. We are able to identify the documented MetJ sites in the promoter regions of metA, metB, metC, metR and metF. In addition, we find several novel loci with characteristics suggesting that they are functional MetJ repressor binding sites. Novel MetJ binding sites are found upstream of the metK gene, as well as upstream of a gene, abc, a gene that encodes for a component of a multifunction transporter which may transport amino acids across the membrane. The false positive rate is significantly lower than the sequence profile method. AVAILABILITY: The programs of implementation of this algorithm are available upon request. The list of crystal structures used for compiling the mean base step parameters of DNA is available by anonymous ftp at http://stateslab.wustl.edu/pub/helix/StructureList.
- Antson AA
- Single-stranded-RNA binding proteins.
- Curr Opin Struct Biol. 2000; 10: 87-94
- Display abstract
Our knowledge of protein interactions with RNA molecules has been, so far, largely restricted to cases in which the RNA itself is folded into a secondary and/or tertiary structure stabilised by intramolecular base pairing and stacking. Until recently, only limited structural information has been available about protein interactions with single-stranded RNA. A breakthrough in our understanding of these interactions came in 1999, with the determination of four crystal structures of protein complexes with extended single-stranded RNA molecules. These structures revealed wonderfully satisfying patterns of the ability of proteins to accommodate RNA bases, with the sugar-phosphate backbone often adopting conformations that are different from the classical double helix.
- Briani F, Ghisotti D, Deho G
- Antisense RNA-dependent transcription termination sites that modulate lysogenic development of satellite phage P4.
- Mol Microbiol. 2000; 36: 1124-34
- Display abstract
In the lysogenic state, bacteriophage P4 prevents the expression of its own replication genes, which are encoded in the left operon, through premature transcription termination. The phage factor responsible for efficient termination is a small, untranslated RNA (CI RNA), which acts as an antisense RNA and controls transcription termination by pairing with two complementary sequences (seqA and seqC) located within the leader region of the left operon. A Rho-dependent termination site, timm, was previously shown to be involved in the control of P4 replication gene expression. In the present study, by making use of phage PhiR73 as a cloning vector and of suppressor tRNAGly as a reporter gene, we characterized two additional terminators, t1 and t4. Although transcription termination at neither site requires the Rho factor, only t1 has the typical structure of a Rho-independent terminator. t1 is located between the PLE promoter and the cI gene, whereas t4 is located between cI and timm. Efficient termination at t1 requires the CI RNA and the seqA target sequence; in vitro, the CI RNA enhanced termination at t1 in the absence of any bacterial factor. A P4 mutant, in which the t1 terminator has been deleted, can still lysogenize both Rho+ and Rho- strains and exhibits increased expression of CI RNA. These data indicate that t1 and the Rho-dependent timm terminators are not essential for lysogeny. t1 is involved in CI RNA autoregulation, whereas t4 appears to be the main terminator necessary to prevent expression of the lytic genes in the lysogenic state.
- Bell CE, Lewis M
- A closer view of the conformation of the Lac repressor bound to operator.
- Nat Struct Biol. 2000; 7: 209-14
- Display abstract
Crystal structures of the Lac repressor, with and without isopropyithiogalactoside (IPTG), and the repressor bound to operator have provided a model for how the binding of the inducer reduces the affinity of the repressor for the operator. However, because of the low resolution of the operator-bound structure (4.8 A), the model for the allosteric transition was presented in terms of structural elements rather than in terms of side chain interactions. Here we have constructed a dimeric Lac repressor and determined its structure at 2.6 A resolution in complex with a symmetric operator and the anti-inducer orthonitrophenylfucoside (ONPF). The structure enables the induced (IPTG-bound) and repressed (operator-bound) conformations of the repressor to be compared in atomic detail. An extensive network of interactions between the DNA-binding and core domains of the repressor suggests a possible mechanism for the allosteric transition.
- Foster PG, Huang L, Santi DV, Stroud RM
- The structural basis for tRNA recognition and pseudouridine formation by pseudouridine synthase I.
- Nat Struct Biol. 2000; 7: 23-7
- Display abstract
Pseudouridine synthases catalyze the isomerization of specific uridines to pseudouridine in a variety of RNAs, yet the basis for recognition of the RNA sites or how they catalyze this reaction is unknown. The crystal structure of pseudouridine synthase I from Escherichia coli, which, for example, modifies positions 38, 39 and/or 40 in tRNA, reveals a dimeric protein that contains two positively charged, RNA-binding clefts along the surface of the protein. Each cleft contains a highly conserved aspartic acid located at its center. The structural domains have a topological similarity to those of other RNA-binding proteins, though the mode of interaction with tRNA appears to be unique. The structure suggests that a dimeric enzyme is required for binding transfer RNA and subsequent pseudouridine formation.
- Moyse KA, Knight JS, Richardson JP
- The bicyclomycin sensitivities of 38 bicyclomycin-resistant mutants of transcription termination protein rho and the location of their mutations support a structural model of rho based on the F(1) ATPase.
- J Mol Biol. 2000; 302: 565-79
- Display abstract
A total of 38 bicyclomycin-resistant mutants of Escherichia coli transcription termination protein Rho have been isolated. The locations of their mutations identify the ATP-binding region as the functional domain inhibited by bicyclomycin. Strains containing the S266C, S266A and L208R Rho mutations are very resistant to bicyclomycin in vivo. In a similar way, the mutant Rho proteins containing these mutations are very resistant to bicyclomycin in vitro. These data suggest that Ser266 and Leu208 might make direct contact with the antibiotic. These two residues are close to each other in the tertiary structure of a model of Rho based on the alpha and beta subunits of the F(1) ATPase, supporting the validity of the model. The strain containing the G337S Rho mutation also has high bicyclomycin resistance, and the proximity of L208, S266 and G337 in the quaternary structure of the Rho model has enabled a candidate bicyclomycin-binding pocket to be delineated. As a whole, the bicyclomycin sensitivities of the mutants are consistent with the locations of their respective mutations in the model of Rho based on the F(1) ATPase, therefore supporting the emerging consensus model of Rho structure.
- Antson AA, Dodson EJ, Dodson G, Greaves RB, Chen X, Gollnick P
- Structure of the trp RNA-binding attenuation protein, TRAP, bound to RNA.
- Nature. 1999; 401: 235-42
- Display abstract
The trp RNA-binding attenuation protein (TRAP) regulates expression of the tryptophan biosynthetic genes of several bacilli by binding single-stranded RNA. The binding sequence is composed of eleven triplet repeats, predominantly GAG, separated by two or three non-conserved nucleotides. Here we present the crystal structure of a complex of TRAP and a 53-base single-stranded RNA containing eleven GAG triplets, revealing that each triplet is accommodated in a binding pocket formed by beta-strands. In the complex, the RNA has an extended structure without any base-pairing and binds to the protein mostly by specific protein-base interactions. Eleven binding pockets on the circular TRAP 11-mer form a belt with a diameter of about 80 A. This simple but elegant mechanism of arresting the RNA segment by encircling it around a protein disk is applicable to both transcription, when TRAP binds the nascent RNA, and to translation, when TRAP binds the same sequence within a non-coding leader region of the messenger RNA.
- Briercheck DM, Wood TC, Allison TJ, Richardson JP, Rule GS
- The NMR structure of the RNA binding domain of E. coli rho factor suggests possible RNA-protein interactions.
- Nat Struct Biol. 1998; 5: 393-9
- Display abstract
Rho protein is an essential hexameric RNA-DNA helicase that binds nascent mRNA transcripts and terminates transcription in a wide variety of eubacterial species. The NMR solution structure of the RNA binding domain of rho, rho130, is presented. This structure consists of two sub-domains, an N-terminal three-helix bundle and a C-terminal beta-barrel that is structurally similar to the oligosaccharide/oligonucleotide binding (OB) fold. Chemical shift changes of rho130 upon RNA binding and previous mutagenetic analyses of intact rho suggest that residues Asp 60, Phe 62, Phe 64, and Arg 66 are critical for binding and support the hypothesis that ssRNA/ssDNA binding is localized in the beta-barrel sub-domain. On the basis of these studies and the tertiary structure of rho130, we propose that residues Asp 60, Phe 62, Phe 64, Arg 66, Tyr 80, Lys 105, and Arg 109 participate in RNA-protein interactions.
- Briercheck DM, Allison TJ, Richardson JP, Ellena JF, Wood TC, Rule GS
- 1H, 15N and 13C resonance assignments and secondary structure determination of the RNA-binding domain of E.coli rho protein.
- J Biomol NMR. 1996; 8: 429-44
- Display abstract
Protein fragments containing the RNA-binding domain of Escherichia coli rho protein have been over-expressed in E. coli. NMR spectra of the fragment containing residues 1-116 of rho protein (Rho116) show that a region of this protein is unfolded in solution. Addition of (dC)10 to this fragment stabilizes the folded form of the protein. The fragment comprising residues 1-130 of rho protein (Rho130) is found to be stably folded, both in absence and presence of nucleic acid. NMR studies of the complex of Rho130 with RNA and DNA oligonucleotides indicate that the binding-site size, affinity, and specificity of Rho130 are similar to those of intact rho protein; therefore, Rho130 is a suitable model of the RNA-binding domain of Rho protein. NMR line widths as well as titration experiments of Rho130 complexed with oligonucleotides of various lengths suggests that Rho130 forms oligomers in the presence of longer oligonucleotides. 1H, 15N and 13C resonance assignments were facilitated by the utilization of two pulse sequences, CN-NOESY and CCH-TOCSY. The secondary structure of unliganded Rho130 has been determined by NMR techniques, and it is clear that the RNA-binding domain of rho is more structurally similar to the cold shock domain than to the RNA recognition motif.
- Herschlag D
- RNA chaperones and the RNA folding problem.
- J Biol Chem. 1995; 270: 20871-4
- Pereira S, Platt T
- Analysis of E. coli rho factor: mutations affecting secondary-site interactions.
- J Mol Biol. 1995; 251: 30-40
- Display abstract
To define and differentiate primary and secondary RNA binding sites within the linear sequence of the rho protein, we investigated two mutant alleles, rho-115 and rhosuA1. They were first identified as defective in transcription termination in vivo, and later demonstrated to be defective in their interactions with RNA at the primary and secondary sites, respectively. Sequencing of rhosuA1 revealed a single lysine to glutamic acid residue change at position 352 (KE352), while rho-115 carries two mutations, glycine99 to valine (GV99) and a proline235 to histidine (PH235). Proteins carrying single mutations at each of these three positions were purified and their characteristics compared to the wild-type protein. We found both KE352 and GV99 to be defective in secondary-site RNA activation, with Km values for r(C)10 of 100 microM and approximately 650 microM, respectively, compared to the wild-type value of 4 microM. These observed secondary-site defects correlated with decreased helicase and ATPase activities, as well as a loss of transcription termination activity in vitro. By contrast, PH235 was very efficient at interacting with r(C)10 at the secondary site, with a measured Km of 0.5 microM, and displayed the characteristics of a hyperactive rho, as judged by its ATPase, helicase and termination capabilities. Our results show that mutations at three very different locations in the polypeptide can affect secondary-site activation by RNA, and that these interactions play a pivotal role in ATP hydrolysis, helicase activity and transcription termination.
- Carone CD, Golden M
- Detecting the techni- rho in technicolor models with scalars.
- Phys Rev D Part Fields. 1994; 49: 6211-6219
- Geiselmann J, Seifried SE, Yager TD, Liang C, von Hippel PH
- Physical properties of the Escherichia coli transcription termination factor rho. 2. Quaternary structure of the rho hexamer.
- Biochemistry. 1992; 31: 121-32
- Display abstract
Under approximately physiological conditions, the transcription termination factor rho from Escherichia coli is a hexamer of planar hexagonal geometry [Geiselmann, J., Yager, T. D., Gill, S. C., Calmettes, P., & von Hippel, P. H. (1992) Biochemistry (preceding paper in this issue)]. Here we describe studies that further define the quaternary structure of this hexamer. We use a combination of chemical cross-linking and treatment with mild denaturants to show that the fundamental unit within the rho hexamer is a dimer stabilized by an isologous (or pseudoisologous) bonding interface. Three identical dimers of rho interact via a second type of isologous bonding interface to yield a hexamer with C3 or D3 symmetry. Cross-linking and denaturation experiments definitely rule out C6 and C2 symmetry for the rho hexamer. Data from fluorescence quenching, lifetime, and energy transfer experiments also argue against C2 symmetry. The simplest symmetry assignment that is not contradicted by any experimental data is D3; thus we conclude that the rho hexamer has D3 symmetry. We also consider the positioning of the binding sites for RNA and ATP relative to the coordinate reference frame of the D3 hexamer. Fluorescence energy transfer data are presented and integrated with data from the literature to arrive at a self-consistent model for the quaternary structure of the rho hexamer.
- Geiselmann J, Yager TD, von Hippel PH
- Functional interactions of ligand cofactors with Escherichia coli transcription termination factor rho. II. Binding of RNA.
- Protein Sci. 1992; 1: 861-73
- Display abstract
The rho protein of Escherichia coli interacts with the nascent RNA transcript while RNA polymerase is paused at specific rho-dependent termination sites on the DNA template, and (in a series of steps that are still largely undefined) brings about transcript termination at these sites. In this paper we characterize the interactions of rho with RNA and relate these interactions to the quaternary structure of the functional form of rho. We use CD spectroscopy and analytical ultracentrifugation to determine the binding interactions of rho with RNA ligands of defined length ([rC]n where n > or = 6). Rho binds to long RNA chains as a hexamer characterized by D3 symmetry. Each hexamer binds approximately 70 residues of RNA. We show by ultracentrifugation and dynamic laser light scattering that, in the presence of RNA ligands less than 22 nucleotide residues in length, rho changes its quaternary structure and becomes a homogeneous dodecamer. The dodecamer contains six strong binding sites for short RNA ligands: i.e., one site for every two rho protomers. The measured association constant of these short RNAs to rho increases with increasing (rC)n length, up to n = 9, suggesting that the binding site of each rho protomer interacts with 9 RNA nucleotide residues. Oligo (rC) ligands bound to the strong RNA binding sites on the rho dodecamer do not significantly stimulate the RNA-dependent ATPase activity of rho. Based on these features of the rho-RNA interaction and other experimental data we propose a molecular model of the interaction of rho with its cofactors.
- Gogol EP, Seifried SE, von Hippel PH
- Structure and assembly of the Escherichia coli transcription termination factor rho and its interaction with RNA. I. Cryoelectron microscopic studies.
- J Mol Biol. 1991; 221: 1127-38
- Display abstract
Cryoelectron microscopy has been used to visualize the Escherichia coli transcription termination protein rho in a vitreously frozen state, without the use of strains, fixatives or other chemical perturbants. In the absence of RNA cofactor, a variety of structures are observed, reflecting the heterogeneity of complexes formed by rho at protein concentrations near the physiological range (3 to 10 microM). One of the most common structural motifs we see is a six-membered ring of rho subunits (present as either a closed or "notched" circle), which corresponds to the predominant hexameric association state of the protein. Also visible are smaller oligomeric structures, present as curved lines of rho subunits, which probably represent the lower association states of the protein that coexist with the hexamer at these protein concentrations. Addition of oligomers of ribocytosine (rC) of defined lengths (23-mers and 100-mers) results in the generation of more homogeneous populations of rho oligomers. In the presence of (rC)23, all identifiable particles appear either as closed or as notched hexameric circles. A small fraction of these particles are of visibly higher density, and are identified with the dodecamers expected as a subpopulation of rho under these conditions. Binding of (rC)100, an oligomer of length greater than that needed to span the entire hexamer binding site, results in a uniform population of closed circular hexamers. In some images additional features are visible at either the centers or the peripheries of the particles. These features may correspond to the excess length of the rC strands bound to the hexamers. The distributions of particles observed under the various experimental conditions used correlate well to those deduced from physical biochemical studies Seifried et al., accompanying paper).
- Farnham PJ, Platt T
- A model for transcription termination suggested by studies on the trp attenuator in vitro using base analogs.
- Cell. 1980; 20: 739-48