Secondary literature sources for TFIIE
The following references were automatically generated.
- Watanabe T, Hayashi K, Tanaka A, Furumoto T, Hanaoka F, Ohkuma Y
- The carboxy terminus of the small subunit of TFIIE regulates the transition from transcription initiation to elongation by RNA polymerase II.
- Mol Cell Biol. 2003; 23: 2914-26
- Display abstract
The general transcription factor TFIIE plays essential roles in both transcription initiation and the transition from initiation to elongation. Previously, we systematically deleted the structural motifs and characteristic sequences of the small subunit of human TFIIE (hTFIIE beta) to map its functional regions. Here we introduced point mutations into two regions located near the carboxy terminus of hTFIIE beta and identified the functionally essential amino acid residues that bind to RNA polymerase II (Pol II), the general transcription factors, and single-stranded DNA. Although most residues identified were essential for transcription initiation, use of an in vitro transcription assay with a linearized template revealed that several residues in the carboxy-terminal helix-loop region are crucially involved in the transition stage. Mutations in these residues also affected the ability of hTFIIE beta to stimulate TFIIH-mediated phosphorylation of the carboxy-terminal heptapeptide repeats of the largest subunit of Pol II. Furthermore, these mutations conspicuously augmented the binding of hTFIIE beta to the p44 subunit of TFIIH. The antibody study indicated that they thus altered the conformation of one side of TFIIH, consisting of p44, XPD, and Cdk-activating kinase subunits, that is essential for the transition stage. This is an important clue for elucidating the molecular mechanisms involved in the transition stage.
- Hanzelka BL, Darcy TJ, Reeve JN
- TFE, an archaeal transcription factor in Methanobacterium thermoautotrophicum related to eucaryal transcription factor TFIIEalpha.
- J Bacteriol. 2001; 183: 1813-8
- Display abstract
In the archaeon Methanobacterium thermoautotrophicum, MTH1669 encodes a protein with a sequence related to the N-terminal sequences of the alpha-subunits of eucaryal general transcription factor TFIIE. The recombinant MTH1669 gene product has been purified and shown to stimulate transcription in vitro from M. thermoautotrophicum promoters that were almost inactive or much less active in reaction mixtures that contained only M. thermoautotrophicum RNA polymerase, TATA-binding protein and transcription factor B. As all complete archaeal genome sequences contain an MTH1669 homolog, the protein encoded by this gene is apparently the first characterized example of a transcription activator, here designated TFE, that may be universally present in the Archaea.
- Yamamoto S et al.
- Studies of nematode TFIIE function reveal a link between Ser-5 phosphorylation of RNA polymerase II and the transition from transcription initiation to elongation.
- Mol Cell Biol. 2001; 21: 1-15
- Display abstract
The general transcription factor TFIIE plays important roles in transcription initiation and in the transition to elongation. However, little is known about its function during these steps. Here we demonstrate for the first time that TFIIH-mediated phosphorylation of RNA polymerase II (Pol II) is essential for the transition to elongation. This phosphorylation occurs at serine position 5 (Ser-5) of the carboxy-terminal domain (CTD) heptapeptide sequence of the largest subunit of Pol II. In a human in vitro transcription system with a supercoiled template, this process was studied using a human TFIIE (hTFIIE) homolog from Caenorhabditis elegans (ceTFIIEalpha and ceTFIIEbeta). ceTFIIEbeta could partially replace hTFIIEbeta, whereas ceTFIIEalpha could not replace hTFIIEalpha. We present the studies of TFIIE binding to general transcription factors and the effects of subunit substitution on CTD phosphorylation. As a result, ceTFIIEalpha did not bind tightly to hTFIIEbeta, and ceTFIIEbeta showed a similar profile for binding to its human counterpart and supported an intermediate level of CTD phosphorylation. Using antibodies against phosphorylated serine at either Ser-2 or Ser-5 of the CTD, we found that ceTFIIEbeta induced Ser-5 phosphorylation very little but induced Ser-2 phosphorylation normally, in contrast to wild-type hTFIIE, which induced phosphorylation at both Ser-2 and Ser-5. In transcription transition assays using a linear template, ceTFIIEbeta was markedly defective in its ability to support the transition to elongation. These observations provide evidence of TFIIE involvement in the transition and suggest that Ser-5 phosphorylation is essential for Pol II to be in the processive elongation form.
- Kamada K, De Angelis J, Roeder RG, Burley SK
- Crystal structure of the C-terminal domain of the RAP74 subunit of human transcription factor IIF.
- Proc Natl Acad Sci U S A. 2001; 98: 3115-20
- Display abstract
The x-ray structure of a C-terminal fragment of the RAP74 subunit of human transcription factor (TF) IIF has been determined at 1.02-A resolution. The alpha/beta structure is strikingly similar to the globular domain of linker histone H5 and the DNA-binding domain of hepatocyte nuclear factor 3gamma (HNF-3gamma), making it a winged-helix protein. The surface electrostatic properties of this compact domain differ significantly from those of bona fide winged-helix transcription factors (HNF-3gamma and RFX1) and from the winged-helix domains found within the RAP30 subunit of TFIIF and the beta subunit of TFIIE. RAP74 has been shown to interact with the TFIIF-associated C-terminal domain phosphatase FCP1, and a putative phosphatase binding site has been identified within the RAP74 winged-helix domain.
- Solow S, Salunek M, Ryan R, Lieberman PM
- Taf(II) 250 phosphorylates human transcription factor IIA on serine residues important for TBP binding and transcription activity.
- J Biol Chem. 2001; 276: 15886-92
- Display abstract
Transcription factor IIA (TFIIA) is a positive acting general factor that contacts the TATA-binding protein (TBP) and mediates an activator-induced conformational change in the transcription factor IID (TFIID) complex. Previously, we have found that phosphorylation of yeast TFIIA stimulates TFIIA.TBP.TATA complex formation and transcription activation in vivo. We now show that human TFIIA is phosphorylated in vivo on serine residues that are partially conserved between yeast and human TFIIA large subunits. Alanine substitution mutation of serine residues 316 and 321 in TFIIA alphabeta reduced TFIIA phosphorylation significantly in vivo. Additional alanine substitutions at serines 280 and 281 reduced phosphorylation to undetectable levels. Mutation of all four serine residues reduced the ability of TFIIA to stimulate transcription in transient transfection assays with various activators and promoters, indicating that TFIIA phosphorylation is required globally for optimal function. In vitro, holo-TFIID and TBP-associated factor 250 (TAF(II)250) phosphorylated TFIIA on the beta subunit. Mutation of the four serines required for in vivo phosphorylation eliminated TFIID and TAF(II)250 phosphorylation in vitro. The NH(2)-terminal kinase domain of TAF(II)250 was sufficient for TFIIA phosphorylation, and this activity was inhibited by full-length retinoblastoma protein but not by a retinoblastoma protein mutant defective for TAF(II)250 interaction or tumor suppressor activity. TFIIA phosphorylation had little effect on the TFIIA.TBP.TATA complex in electrophoretic mobility shift assay. However, phosphorylation of TFIIA containing a gamma subunit Y65A mutation strongly stimulated TFIIA.TBP.TATA complex formation. TFIIA-gammaY65A is defective for binding to the beta-sheet domain of TBP identified in the crystal structure. These results suggest that TFIIA phosphorylation is important for strengthening the TFIIA.TBP contact or creating a second contact between TFIIA and TBP that was not visible in the crystal structure.
- Kang SW, Kuzuhara T, Horikoshi M
- Functional interaction of general transcription initiation factor TFIIE with general chromatin factor SPT16/CDC68.
- Genes Cells. 2000; 5: 251-63
- Display abstract
BACKGROUND: Transcriptional initiation of class II genes is one of the major targets for the regulation of gene expression and is carried out by RNA polymerase II and many auxiliary factors, which include general transcription initiation factors (GTFs). TFIIE, one of the GTFs, functions at the later stage of transcription initiation. As recent studies indicated the possibility that TFIIE may have a role in chromatin transcriptional regulation, we isolated TFIIE-interacting factors which have chromatin-related functions. RESULTS: Using the yeast two-hybrid screening system, we isolated the C-terminal part of the human homologue of Saccharomyces cerevisiae (y) Spt16p/Cdc68p, a general chromatin factor. The C-terminal part of human SPT16/CDC68 directly interacts with TFIIE, and ySpt16p/Cdc68p also interacts with yTFIIE (Tfa1p/Tfa2p), thus indicating the existence of an evolutionarily conserved interaction between TFIIE and SPT16/CDC68. Functional interaction of yTFIIE and ySpt16p/Cdc68p was examined using a conditional yTFIIE-alpha mutant strain. Over-expression of ySpt16p/Cdc68p suppressed the phenotype of cold sensitivity of the yTFIIE-alpha-cs mutant strain, and in vitro binding assays revealed that yTFIIE-alpha-cs mutant protein showed diminished binding affinity to ySpt16p/Cdc68p. CONCLUSIONS: These observations indicate that general transcription initiation factor TFIIE functionally interacts with general chromatin factor SPT16/CDC68, a finding which provides new insight into the involvement of TFIIE in chromatin transcription. This may well lead to a breakthrough in relationships between the transcription initiation process and structural changes in chromatin.
- Okamoto T et al.
- Analysis of the role of TFIIE in transcriptional regulation through structure-function studies of the TFIIEbeta subunit.
- J Biol Chem. 1998; 273: 19866-76
- Display abstract
The general transcription factor TFIIE plays important roles at two distinct but sequential steps in transcription as follows: preinitiation complex formation and activation (open complex formation), and the transition from initiation to elongation. The large subunit of human TFIIE (TFIIEalpha) binds to and facilitates the enzymatic functions of TFIIH, but TFIIE also functions independently from TFIIH. To determine functional roles of the small subunit of human TFIIE (TFIIEbeta), deletion mutations were systematically introduced into putative structural motifs and characteristic sequences. Here we show that all of these structures that lie within the central 227-amino acid region of TFIIEbeta are necessary and sufficient for both basal and activated transcription. We further demonstrate that two C-terminal basic regions are essential for physical interaction with both TFIIEalpha and single-stranded DNA, as well as with other transcription factors including the Drosophila transcriptional regulator Kruppel. In addition, we analyzed the effects of the TFIIEbeta deletion mutations on TFIIH-dependent phosphorylation of the C-terminal domain of RNA polymerase II and on wild type TFIIEbeta-driven basal transcription. Both responsible regions also mapped within the essential 227-amino acid region. Our results suggest that TFIIE engages in communication with both transcription factors and promoter DNA via the TFIIEbeta subunit.
- Kuldell NH, Buratowski S
- Genetic analysis of the large subunit of yeast transcription factor IIE reveals two regions with distinct functions.
- Mol Cell Biol. 1997; 17: 5288-98
- Display abstract
Biochemical analysis of proteins necessary for transcription initiation by eukaryotic RNA polymerase II (pol II) has identified transcription factor IIE (TFIIE) as an essential component of the reaction. To better understand the role of TFIIE in transcription, we isolated conditional alleles of TFA1, the gene encoding the large subunit of TFIIE in the yeast Saccharomyces cerevisiae. The mutant Tfa1 proteins fall into two classes. The first class causes thermosensitive growth due to single amino acid substitutions of the cysteines comprising the Zn-binding motif. The second mutant class is made up of proteins that are C-terminally truncated and that cause a cold-sensitive growth phenotype. The behavior of these mutants suggests that Tfa1p possesses at least two domains with genetically distinct functions. The mutations in the Zn-binding motif do not affect the mutant protein's stability at the nonpermissive temperature or its ability to associate with the small subunit of TFIIE. Our studies further determined that wild-type TFIIE can bind to single-stranded DNA in vitro. However, this property is unaffected in the mutant TFIIE complexes. Finally, we have demonstrated the biological importance of TFIIE in pol II-mediated transcription by depleting the Tfa1 protein from the cells and observing a concomitant decrease in total poly(A)+ mRNA.
- Wang X, Hansen SK, Ratts R, Zhou S, Snook AJ, Zehring W
- Drosophila TFIIE: purification, cloning, and functional reconstitution.
- Proc Natl Acad Sci U S A. 1997; 94: 433-8
- Display abstract
We present a physical and molecular genetic characterization of Drosophila melanogaster TFIIE (dTFIIE), a component of the basal RNA polymerase II transcription apparatus. We have purified dTFIIE to near homogeneity from nuclear extracts of Drosophila embryos and found that it is composed of two subunits with apparent molecular weights of 55 and 38 kDa. Peptide sequence information derived from the two subunits was used to isolate the corresponding cDNA clones, revealing that dTFIIE and human TFIIE share extensive amino acid similarity. Functional conservation was demonstrated by the ability of bacterially expressed dTFIIE to substitute for human TFIIE in an in vitro transcription assay reconstituted from purified components. Cytological mapping analysis shows that both subunits are encoded by single copy genes located on chromosome III.
- Gong DW, Mortin MA, Horikoshi M, Nakatani Y
- Molecular cloning of cDNA encoding the small subunit of Drosophila transcription initiation factor TFIIF.
- Nucleic Acids Res. 1995; 23: 1882-6
- Display abstract
Transcription initiation factor TFIIF is a tetramer consisting of two large subunits (TFIIF alpha or RAP74) and two small subunits (TFIIF beta or RAP30). We report here the molecular cloning of a Drosophila cDNA encoding TFIIF beta. The cDNA clone contains an open-reading frame encoding a 277 amino acid polypeptide having a calculated molecular mass of 32,107 Da. Comparison of the deduced amino acid sequence with the corresponding sequences from vertebrates showed only 50% identity, with four insertion/deletion points. For transcription activity in a TFIIF-depleted Drosophila nuclear extract, both TFIIF alpha and TFIIF beta are essential. Moreover, Drosophila TFIIF beta interacts with both Drosophila and human TFIIF alpha in vitro. Thus we conclude that isolated cDNA encodes bona fide TFIIF beta. The structural domains of TFIIF beta and its sequence similarity to bacterial delta factors are discussed.
- Hisatake K et al.
- Evolutionary conservation of human TATA-binding-polypeptide-associated factors TAFII31 and TAFII80 and interactions of TAFII80 with other TAFs and with general transcription factors.
- Proc Natl Acad Sci U S A. 1995; 92: 8195-9
- Display abstract
Human transcription initiation factor TFIID is composed of the TATA-binding polypeptide (TBP) and at least 13 TBP-associated factors (TAFs) that collectively or individually are involved in activator-dependent transcription. To investigate protein-protein interactions involved in TFIID assembly and in TAF-mediated activator functions, we have cloned and expressed cDNAs encoding human TAFII80 and TAFII31. Coimmunoprecipitation assays showed that TAFII80 interacted with TAFII250, TAFII31, TAFII20, and TBP, but not with TAFII55. Similar assays showed that TAFII80 interacted with TFIIE alpha and with TFIIF alpha (RAP74) but not with TFIIB, TFIIE beta, or TFIIF beta (RAP30). Further studies with TAFII80 mutations revealed three distinct interaction domains which fall within regions conserved in human TAFII80, Drosophila TAFII60, and yeast TAFII60. The N terminus of TAFII80 (residues 1-100) interacts with both TAFII31 and TAFII20, while two C-terminal regions are involved, respectively, in interactions with TAFII250 and TFIIF alpha (RAP74) (residues 203-276) and with TBP and TFIIE alpha (residues 377-505). The interactions between TAFII80 and general factors TFIIE alpha and TFIIF alpha (RAP74) could be important for recruitment of GTFs during activator-dependent transcription. Because TAFs 80, 31, and 20 show sequence similarities to histones H4, H3, and H2B, as well as some parallel interactions, this subset of TAFs may form a related core structure within TFIID.
- Frank DJ, Tyree CM, George CP, Kadonaga JT
- Structure and function of the small subunit of TFIIF (RAP30) from Drosophila melanogaster.
- J Biol Chem. 1995; 270: 6292-7
- Display abstract
To study the mechanism of basal transcription by RNA polymerase II, a cDNA encoding the Drosophila homologue of the small subunit of TFIIF (also referred to as TFIIF30, RAP30, factor 5b, and gamma) was isolated. The Drosophila TFIIF30 gene is located at region 86C on the right arm of the third chromosome. The protein encoded by the cDNA, termed dTFIIF30, was synthesized in Escherichia coli and purified to greater than 95% homogeneity. In reconstituted transcription reactions with purified basal factors, the specific activity of dTFIIF30 was identical to that of its human homologue. Moreover, a carboxyl-terminal fragment, designated dF30(119-276), which contains the carboxyl-terminal 158 amino acid residues of dTFIIF30, was found to possess approximately 50% of the transcriptional activity as full-length dTFIIF30. The interaction of dTFIIF30 with the large subunit of TFIIF (also referred to as TFIIF74, RAP74, factor 5a, and beta) was investigated by glycerol gradient sedimentation analyses. In these experiments, dTFIIF30, but not dF30(119-276), assembled into a stable heteromeric complex with TFIIF74. These results, combined with those of previous work on TFIIF, support a model for TFIIF30 function in which the carboxylterminal region constitutes a functional domain that can interact with RNA polymerase II to mediate basal transcription, whereas the amino terminus comprises a domain that interacts with TFIIF74.
- Tong X, Drapkin R, Yalamanchili R, Mosialos G, Kieff E
- The Epstein-Barr virus nuclear protein 2 acidic domain forms a complex with a novel cellular coactivator that can interact with TFIIE.
- Mol Cell Biol. 1995; 15: 4735-44
- Display abstract
Epstein-Barr virus nuclear antigen 2 (EBNA 2) activates transcription of specific genes and is essential for B-lymphocyte transformation. EBNA 2 has an acidic activation domain which interacts with general transcription factors TFIIB, TFIIH, and TAF40. We now show that EBNA 2 is specifically bound to a novel nuclear protein, p100, and that p100 can coactivate gene expression mediated by the EBNA 2 acidic domain. The EBNA 2 acidic domain was used to affinity purify p100. cDNA clones encoding the p100 open reading frame were identified on the basis of peptide sequences of the purified protein. Antibody against p100 coimmunoprecipitated p100 and EBNA 2 from Epstein-Barr virus-transformed lymphocyte extracts, indicating that EBNA 2 and p100 are complexed in vivo. p100 overexpression in cells specifically augmented EBNA 2 acidic domain-mediated activation. The coactivating effect is probably mediated by p100 interaction with TFIIE. Bacterially expressed p100 specifically adsorbs TFIIE from nuclear extracts, and in vitro-translated p56 or p34 TFIIE subunit can independently bind to p100. p100 also appears to be essential for normal cell growth, since cell viability was reduced by antisense p100 RNA and restored by sense p100 RNA expression.
- Tan S, Conaway RC, Conaway JW
- Dissection of transcription factor TFIIF functional domains required for initiation and elongation.
- Proc Natl Acad Sci U S A. 1995; 92: 6042-6
- Display abstract
TFIIF is unique among the general transcription factors because of its ability to control the activity of RNA polymerase II at both the initiation and elongation stages of transcription. Mammalian TFIIF, a heterodimer of approximately 30-kDa (RAP30) and approximately 70-kDa (RAP74) subunits, assists TFIIB in recruiting RNA polymerase II into the preinitiation complex and activates the overall rate of RNA chain elongation by suppressing transient pausing by polymerase at many sites on DNA templates. A major objective of efforts to understand how TFIIF regulates transcription has been to establish the relationship between its initiation and elongation activities. Here we establish this relationship by demonstrating that TFIIF transcriptional activities are mediated by separable functional domains. To accomplish this, we sought and identified distinct classes of RAP30 mutations that selectively block TFIIF activity in transcription initiation and elongation. We propose that (i) TFIIF initiation activity is mediated at least in part by RAP30 C-terminal sequences that include a cryptic DNA-binding domain similar to conserved region 4 of bacterial sigma factors and (ii) TFIIF elongation activity is mediated in part by RAP30 sequences located immediately upstream of the C terminus in a region proposed to bind RNA polymerase II and by additional sequences located in the RAP30 N terminus.
- Park CH, Mu D, Reardon JT, Sancar A
- The general transcription-repair factor TFIIH is recruited to the excision repair complex by the XPA protein independent of the TFIIE transcription factor.
- J Biol Chem. 1995; 270: 4896-902
- Display abstract
Recent studies have revealed that the general transcription factor TFIIH is also a general excision repair factor which, along with several other proteins, is required for transcription-independent excision reaction. As a general transcription factor, TFIIH is recruited to RNA polymerase II-promoter complex by another general transcription factor called TFIIE. We were interested in knowing whether TFIIE is also involved in recruiting TFIIH to the excision repair complex. We found that cell-free extract depleted of TFIIE carried out excision repair at a normal rate, leading us to conclude that TFIIE is not involved in recruiting TFIIH to the damage site and has no role in general excision repair. In contrast, the human damage recognition protein XPA specifically binds to TFIIH and apparently recruits it to the damage site. The carboxyl-terminal half of XPA is responsible for specific interaction with TFIIH. The C261S/C264S mutant of XPA bound the ERCC1-XPF complex normally, but failed to bind TFIIH and failed to complement an XP-A mutant cell-free extract indicating that the XPA-TFIIH interaction is essential to effecting the excision reaction. Interestingly, XPA also binds to the p34 subunit of TFIIE specifically and in competition with the p56 subunit of TFIIE. This latter interaction has no apparent role in general excision repair but may be relevant in the transcription-coupled repair reaction.
- Henry NL, Campbell AM, Feaver WJ, Poon D, Weil PA, Kornberg RD
- TFIIF-TAF-RNA polymerase II connection.
- Genes Dev. 1994; 8: 2868-78
- Display abstract
RNA polymerase transcription factor IIF (TFIIF) is required for initiation at most, if not all, polymerase II promoters. We report here the cloning and sequencing of genes for a yeast protein that is the homolog of mammalian TFIIF. This yeast protein, previously designated factor g, contains two subunits, Tfg1 and Tfg2, both of which are required for transcription, essential for yeast cell viability, and whose sequences exhibit significant similarity to those of the mammalian factor. The yeast protein also contains a third subunit, Tfg3, which is less tightly associated and at most stimulatory to transcription, dispensable for cell viability, and has no known counterpart in mammalian TFIIF. Remarkably, the TFG3 gene encodes yeast TAF30, and furthermore, is identical to ANC1, a gene implicated in actin cytoskeletal function in vivo (Welch and Drubin 1994). Tfg3 is also a component of the recently described mediator complex (Kim et al. 1994), whose interaction with the carboxy-terminal repeat domain of RNA polymerase II enables transcriptional activation. Deletion of TFG3 results in diminished transcription in vivo.
- Feaver WJ et al.
- Yeast TFIIE. Cloning, expression, and homology to vertebrate proteins.
- J Biol Chem. 1994; 269: 27549-53
- Display abstract
Genes encoding both the 66- and the 43-kDa subunits of yeast RNA polymerase II initiation factor a, designated TFA1 and TFA2, have been isolated. Both genes are essential for cell viability. The bacterially expressed gene products could replace factor a in transcription in vitro, and both recombinant subunits were required for activity. The deduced amino acid sequences of the TFA1 and TFA2 gene products were homologous to those of the large and small subunits of human TFIIE, respectively, identifying factor a as the yeast homolog of TFIIE.
- Ohkuma Y, Roeder RG
- Regulation of TFIIH ATPase and kinase activities by TFIIE during active initiation complex formation.
- Nature. 1994; 368: 160-3
- Display abstract
The general transcription factor TFIIE, together with other general transcription factors, is essential for transcription initiation by RNA polymerase II. TFIIE stimulates the TFIIH-dependent kinase activity that phosphorylates the carboxy-terminal domain of the largest subunit of RNA polymerase II, and possesses a helicase activity. Here we show that human TFIIH has DNA-dependent ATPase activity and we characterize the stimulatory effect of TFIIE on both the ATPase and kinase activities. We demonstrate that extensive phosphorylation of RNA polymerase II occurs in a TFIIE-dependent manner in both the absence and presence of DNA but, in the latter case, only at a late stage of preinitiation complex assembly. We also show that TFIIH specifically phosphorylates three general transcription factors, human TFIID tau (TBP), TFIIE-alpha and TFIIF-alpha (RAP74).
- Maxon ME, Tjian R
- Transcriptional activity of transcription factor IIE is dependent on zinc binding.
- Proc Natl Acad Sci U S A. 1994; 91: 9529-33
- Display abstract
The functions of individual basal transcription factors during the formation of an initiation complex by RNA polymerase II remain largely unknown. Transcription factor IIE (TFIIE) has recently been shown to bind to multiple targets in the initiation complex. To assess the role of zinc binding in basal transcription, we have mutated the predicted zinc-finger domain of human TFIIE. Atomic absorption spectroscopy using purified recombinant proteins revealed that the large subunit, TFIIE-56, is indeed a zinc-binding protein. Mutation of a cysteine residue in the putative zinc-finger domain abolished zinc binding. Moreover, mutant TFIIE-56 failed to support reconstituted basal transcription in vitro, suggesting that zinc binding is required for TFIIE function. However, gel-filtration experiments and protein affinity experiments suggest that mutant TFIIE-56 forms a stable heterotetramer with the small subunit, TFIIE-34, that is similar to wild type. Interestingly, gel mobility shift experiments reveal that loss of transcriptional activity by mutant TFIIE is correlated with its inability to stably assemble into the transcription complex. These findings establish that zinc binding by TFIIE may help form a specific structure that is required for stable entry into the transcription complex.
- Yonaha M et al.
- Domain structure of a human general transcription initiation factor, TFIIF.
- Nucleic Acids Res. 1993; 21: 273-9
- Display abstract
The structural and functional domains of a general transcription initiation factor, TFIIF (RAP30/74, FC), have been investigated using various deletion mutants of each subunit, both in vivo and in vitro. An in vivo assay showed that the N-terminal sequence containing residues of 1-110 of RAP30 that is located close to a sigma homology region interacts with a minimum sequence of residues 62-171 of RAP74 to form a heteromeric interaction. Reconstitution of in vitro transcription activity by deletion mutants of RAP74 clearly indicated that both N-terminal residues 73-205 and C-terminal residues 356-517 are essential for full activity, the former interacting with RAP30, thus complexing with RNA polymerase II. From these data, the functional significance of domain structure of TFIIF is discussed in terms of its sigma homology sequences and complex formation with RNA polymerase II in the initiation and elongation of transcription.
- Karlin S
- Unusual charge configurations in transcription factors of the basic RNA polymerase II initiation complex.
- Proc Natl Acad Sci U S A. 1993; 90: 5593-7
- Display abstract
A systematic analysis of the primary sequences of the polymerase II initiation complex has revealed unusual charge features in the TFII family proteins. In particular, the proteins TFIIA alpha, TFIIE alpha, and TFIIF carry multiple charge clusters and hyper charge runs, sequence features occurring in < 4% of all (available) eukaryotic proteins. Possible implications for these charge structures are discussed in relation to the assembly and function of the polymerase II transcriptional complex.
- Fischer L et al.
- Cloning of the 62-kilodalton component of basic transcription factor BTF2.
- Science. 1992; 257: 1392-5
- Display abstract
Cloning of the mammalian basic transcription factors serves as a major step in understanding the mechanism of transcription initiation. The 62-kilodalton component (p62) of one of these transcription factors, BTF2 was cloned and overexpressed. A monoclonal antibody to this polypeptide inhibited transcription in vitro. Immunoaffinity experiments demonstrated that the 62-kilodalton component is closely associated with the other polypeptides present in the BTF2 factor. Sequence similarity suggests that BTF2 may be the human counterpart of RNA polymerase II initiation factor b from yeast.
- Sumimoto H et al.
- Conserved sequence motifs in the small subunit of human general transcription factor TFIIE.
- Nature. 1991; 354: 401-4
- Display abstract
A general initiation factor, TFIIE, is essential for transcription initiation by RNA polymerase II in conjunction with other general factors. TFIIE is a heterotetramer containing two subunits of relative molecular mass 57,000 (TFIIE-alpha) and two of 34,000 (TFIIE-beta). TFIIE-beta is required in conjunction with TFIIE-alpha for transcription initiation. Here we report the cloning and expression of a complementary DNA encoding a functional human TFIIE-beta. Recombinant TFIIE-beta could replace the natural TFIIE-beta for transcription in conjunction with TFIIE-alpha. Amino-acid sequence comparisons reveal regions with sequence similarities to: subregion 3 of bacterial sigma factors; a region of RAP30 (the small subunit of TFIIF) with sequence similarity to a sigma-factor subregion implicated in binding to RNA polymerase; and a portion of the basic region-helix-loop-helix motif found in several enhancer-binding proteins. These potential homologies have implications for the role of TFIIE in preinitiation complex assembly and function.
- Inostroza J, Flores O, Reinberg D
- Factors involved in specific transcription by mammalian RNA polymerase II. Purification and functional analysis of general transcription factor IIE.
- J Biol Chem. 1991; 266: 9304-8
- Display abstract
Mammalian RNA polymerase II transcription factor IIE (TFIIE) was purified to apparent homogeneity. The activity copurified with polypeptides of 34 and 56 kDa. The 56-kDa subunit was sufficient for low levels of transcription activity in a transcription system reconstituted in vitro with highly purified general transcription factors and RNA polymerase II. The 34-kDa polypeptide was found to be stimulatory. The native molecular mass of TFIIE, as determined by gel filtration was estimated to be approximately 200 kDa, suggesting that TFIIE exists in solution as a tetramer composed of two 56-kDa and two 34-kDa polypeptides. Consistent with previous studies demonstrating an interaction of TFIIE with RNA polymerase II, we found that the entry of TFIIE into the transcription cycle was subsequent to the entry of RNA polymerase II.
- Ohkuma Y, Sumimoto H, Horikoshi M, Roeder RG
- Factors involved in specific transcription by mammalian RNA polymerase II: purification and characterization of general transcription factor TFIIE.
- Proc Natl Acad Sci U S A. 1990; 87: 9163-7
- Display abstract
Human transcription factor TFIIE, a ubiquitous factor required for transcription initiation by RNA polymerase II, was purified to homogeneity by a combination of conventional and HPLC steps. The purified TFIIE contained equimolar amounts of 57-kDa (TFIIE-alpha) and 34-kDa (TFIIE-beta) polypeptides that were judged to be functional subunits on the basis of their copurification with transcriptional activity and the recovery of activity following renaturation of polypeptides separated by reverse-phase HPLC. TFIIE-alpha had an independent TFIIE activity whereas TFIIE-beta had no activity alone but enhanced the activity of TFIIE-alpha. In conjunction with gel filtration studies, which indicated a molecular mass of approximately 180 kDa for the native protein, these results suggested that TFIIE is a heterotetramer containing two alpha and two beta polypeptides. Functional studies with the purified TFIIE demonstrated that it is a general initiation factor, required for all of the genes tested, but it failed to show any DNA-dependent ATPase activity.