Secondary literature sources for ZnF_UBR1
The following references were automatically generated.
- Yin J, Kwon YT, Varshavsky A, Wang W
- RECQL4, mutated in the Rothmund-Thomson and RAPADILINO syndromes, interacts with ubiquitin ligases UBR1 and UBR2 of the N-end rule pathway.
- Hum Mol Genet. 2004; 13: 2421-30
- Display abstract
The Rothmund-Thomson syndrome (growth retardation, skin and bone defects, predisposition to cancer) and the RAPADILINO syndrome are caused by mutations in the RECQL4 gene. The 133 kDa RECQL4 is a putative DNA helicase, a member of the family that includes the BLM and WRN helicases. The latter are mutated, respectively, in the Bloom and Werner syndromes, whose manifestations include predisposition to cancer. Using antibodies to human RECQL4, we found that the bulk of RECQL4 was present in a cytoplasmic extract of HeLa cells, in contrast to the largely nuclear BLM and WRN helicases. However, in untransformed WI-38 fibroblasts, RECQL4 was found to be largely nuclear, and was present at significantly lower total levels than in transformed HeLa cells. RECQL4 from HeLa cells was isolated as a stable complex with UBR1 and UBR2. These 200 kDa proteins are ubiquitin ligases of the N-end rule pathway, whose substrates include proteins with destabilizing N-terminal residues. The functions of this proteolytic pathway include the regulation of peptide import, chromosome stability, meiosis, apoptosis and cardiovascular development. Although the known role of UBR1 and UBR2 is to mediate polyubiquitylation (and subsequent degradation) of their substrates, the UBR1/2-bound RECQL4 was not ubiquitylated in vivo, and was a long-lived protein in HeLa cells. The isolated RECQL4-UBR1/2 complex had a DNA-stimulated ATPase activity, but was inactive in DNA-based assays for helicases and translocases, the assays in which the BLM helicase was active. We discuss ramifications of these results, possible functions of RECQL4, and the involvement of the N-end rule pathway.
- Fischer T, De Vries L, Meerloo T, Farquhar MG
- Promotion of G alpha i3 subunit down-regulation by GIPN, a putative E3 ubiquitin ligase that interacts with RGS-GAIP.
- Proc Natl Acad Sci U S A. 2003; 100: 8270-5
- Display abstract
We have isolated an RGS-GAIP interacting protein that links RGS proteins to protein degradation. GIPN (GAIP interacting protein N terminus) is a 38-kDa protein with an N-terminal leucine-rich region, a central RING finger-like domain, and a putative C-terminal transmembrane domain. GIPN binds exclusively to RGS proteins of subfamily A, RGS-GAIP, RGSZ1, and RGSZ2. The N-terminal leucine-rich region of GIPN interacts with the cysteine-rich motif of RGS-GAIP. GIPN mRNA is ubiquitously expressed, and GIPN is found on the plasma membrane of transfected HEK293 cells. Endogenous GIPN is concentrated along the basolateral plasma membrane of proximal and distal tubules in rat kidney, where many G protein-coupled receptors and some G proteins are also located. Two immunoreactive species are found in rat kidney, a 38-kDa cytosolic form and an approximately 94-kDa membrane form. GIPN shows Zn2+- and E1/E2-dependent autoubiquitination in vitro, suggesting that it has E3 ubiquitin ligase activity. Overexpression of GIPN stimulates proteasome-dependent reduction of endogenous G alpha i3 in HEK293 cells and reduces the half-life of overexpressed G alpha i3-YFP. Thus, our findings suggest that GIPN is involved in the degradation of G alpha i3 subunits via the proteasome pathway. RGS-GAIP functions as a bifunctional adaptor that binds to G alpha subunits through its RGS domain and to GIPN through its cysteine string motif.
- Kwon YT et al.
- Female lethality and apoptosis of spermatocytes in mice lacking the UBR2 ubiquitin ligase of the N-end rule pathway.
- Mol Cell Biol. 2003; 23: 8255-71
- Display abstract
Substrates of the ubiquitin-dependent N-end rule pathway include proteins with destabilizing N-terminal residues. UBR1(-/-) mice, which lacked the pathway's ubiquitin ligase E3alpha, were viable and retained the N-end rule pathway. The present work describes the identification and analysis of mouse UBR2, a homolog of UBR1. We demonstrate that the substrate-binding properties of UBR2 are highly similar to those of UBR1, identifying UBR2 as the second E3 of the mammalian N-end rule pathway. UBR2(-/-) mouse strains were constructed, and their viability was found to be dependent on both gender and genetic background. In the strain 129 (inbred) background, the UBR2(-/-) genotype was lethal to most embryos of either gender. In the 129/B6 (mixed) background, most UBR2(-/-) females died as embryos, whereas UBR2(-/-) males were viable but infertile, owing to the postnatal degeneration of the testes. The gross architecture of UBR2(-/-) testes was normal and spermatogonia were intact as well, but UBR2(-/-) spermatocytes were arrested between leptotene/zygotene and pachytene and died through apoptosis. A conspicuous defect of UBR2(-/-) spermatocytes was the absence of intact synaptonemal complexes. We conclude that the UBR2 ubiquitin ligase and, hence, the N-end rule pathway are required for male meiosis and spermatogenesis and for an essential aspect of female embryonic development.
- Nakashima M et al.
- A novel gene, GliH1, with homology to the Gli zinc finger domain not required for mouse development.
- Mech Dev. 2002; 119: 21-34
- Display abstract
The Sonic hedgehog (Shh)-Gli signaling pathway regulates development of many organs, including teeth. We cloned a novel gene encoding a transcription factor that contains a zinc finger domain with highest homology to the Gli family of proteins (61-64% amino acid sequence identity) from incisor pulp. Consistent with this sequence conservation, gel mobility shift assays demonstrated that this new Gli homologous protein, GliH1, could bind previously characterized Gli DNA binding sites. Furthermore, transfection assays in dental pulp cells showed that whereas Gli1 induces a nearly 50-fold increase in activity of a luciferase reporter containing Gli DNA binding sites, coexpression of Gli1 with Gli3 and/or GliH1 results in inhibition of the Gli1-stimulated luciferase activity. In situ hybridization analysis of mouse embryos demonstrated that GliH1 expression is initiated later than the three Gli genes and has a more restricted expression pattern. GliH1 is first detected diffusely in the limb buds at 10.0 days post coitus and later is expressed in the branchial arches, craniofacial interface, ventral part of the tail, whisker follicles and hair, intervertebral discs, teeth, eyes and kidney. LacZ was inserted into the GliH1 allele in embryonic stem cells to produce mice lacking GliH1 function. While this produced indicator mice for GliH1-expression, analysis of mutant mice revealed no discernible phenotype or required function for GliH1. A search of the Celera Genomics and associated databases identified possible gene sequences encoding a zinc finger domain with approximately 90% homology to that of GliH1, indicating there is a family of GliH genes and raising the possibility of overlapping functions during development.
- Du F, Navarro-Garcia F, Xia Z, Tasaki T, Varshavsky A
- Pairs of dipeptides synergistically activate the binding of substrate by ubiquitin ligase through dissociation of its autoinhibitory domain.
- Proc Natl Acad Sci U S A. 2002; 99: 14110-5
- Display abstract
Protein degradation by the ubiquitin (Ub) system controls the concentrations of many regulatory proteins. The degradation signals (degrons) of these proteins are recognized by the system's Ub ligases (complexes of E2 and E3 enzymes). Two substrate-binding sites of UBR1, the E3 of the N-end rule pathway in the yeast Saccharomyces cerevisiae, recognize basic (type 1) and bulky hydrophobic (type 2) N-terminal residues of proteins or short peptides. A third substrate-binding site of UBR1 targets CUP9, a transcriptional repressor of the peptide transporter PTR2, through an internal (non-N-terminal) degron of CUP9. Previous work demonstrated that dipeptides with destabilizing N-terminal residues allosterically activate UBR1, leading to accelerated in vivo degradation of CUP9 and the induction of PTR2 expression. Through this positive feedback, S. cerevisiae can sense the presence of extracellular peptides and react by accelerating their uptake. Here, we show that dipeptides with destabilizing N-terminal residues cause dissociation of the C-terminal autoinhibitory domain of UBR1 from its N-terminal region that contains all three substrate-binding sites. This dissociation, which allows the interaction between UBR1 and CUP9, is strongly increased only if both type 1- and type 2-binding sites of UBR1 are occupied by dipeptides. An aspect of autoinhibition characteristic of yeast UBR1 also was observed with mammalian (mouse) UBR1. The discovery of autoinhibition in Ub ligases of the UBR family indicates that this regulatory mechanism may also control the activity of other Ub ligases.
- Kwon YT, Xia Z, Davydov IV, Lecker SH, Varshavsky A
- Construction and analysis of mouse strains lacking the ubiquitin ligase UBR1 (E3alpha) of the N-end rule pathway.
- Mol Cell Biol. 2001; 21: 8007-21
- Display abstract
The N-end rule relates the in vivo half-life of a protein to the identity of its N-terminal residue. In the yeast Saccharomyces cerevisiae, the UBR1-encoded ubiquitin ligase (E3) of the N-end rule pathway mediates the targeting of substrate proteins in part through binding to their destabilizing N-terminal residues. The functions of the yeast N-end rule pathway include fidelity of chromosome segregation and the regulation of peptide import. Our previous work described the cloning of cDNA and a gene encoding the 200-kDa mouse UBR1 (E3alpha). Here we show that mouse UBR1, in the presence of a cognate mouse ubiquitin-conjugating (E2) enzyme, can rescue the N-end rule pathway in ubr1Delta S. cerevisiae. We also constructed UBR1(-/-) mouse strains that lacked the UBR1 protein. UBR1(-/-) mice were viable and fertile but weighed significantly less than congenic +/+ mice. The decreased mass of UBR1(-/-) mice stemmed at least in part from smaller amounts of the skeletal muscle and adipose tissues. The skeletal muscle of UBR1(-/-) mice apparently lacked the N-end rule pathway and exhibited abnormal regulation of fatty acid synthase upon starvation. By contrast, and despite the absence of the UBR1 protein, UBR1(-/-) fibroblasts contained the N-end rule pathway. Thus, UBR1(-/-) mice are mosaics in regard to the activity of this pathway, owing to differential expression of proteins that can substitute for the ubiquitin ligase UBR1 (E3alpha). We consider these UBR1-like proteins and discuss the functions of the mammalian N-end rule pathway.
- Hatakeyama S, Yada M, Matsumoto M, Ishida N, Nakayama KI
- U box proteins as a new family of ubiquitin-protein ligases.
- J Biol Chem. 2001; 276: 33111-20
- Display abstract
The U box is a domain of approximately 70 amino acids that is present in proteins from yeast to humans. The prototype U box protein, yeast Ufd2, was identified as a ubiquitin chain assembly factor that cooperates with a ubiquitin-activating enzyme (E1), a ubiquitin-conjugating enzyme (E2), and a ubiquitin-protein ligase (E3) to catalyze ubiquitin chain formation on artificial substrates. E3 enzymes are thought to determine the substrate specificity of ubiquitination and have been classified into two families, the HECT and RING finger families. Six mammalian U box proteins have now been shown to mediate polyubiquitination in the presence of E1 and E2 and in the absence of E3. These U box proteins exhibited different specificities for E2 enzymes in this reaction. Deletion of the U box or mutation of conserved amino acids within it abolished ubiquitination activity. Some U box proteins catalyzed polyubiquitination by targeting lysine residues of ubiquitin other than lysine 48, which is utilized by HECT and RING finger E3 enzymes for polyubiquitination that serves as a signal for proteolysis by the 26 S proteasome. These data suggest that U box proteins constitute a third family of E3 enzymes and that E4 activity may reflect a specialized type of E3 activity.
- Baboshina OV, Crinelli R, Siepmann TJ, Haas AL
- N-end rule specificity within the ubiquitin/proteasome pathway is not an affinity effect.
- J Biol Chem. 2001; 276: 39428-37
- Display abstract
The N-end rule relates the amino terminus to the rate of degradation through the ubiquitin/26 S proteasome pathway. Proteins bearing basic (type 1) or large hydrophobic (type 2) amino termini are assumed to be targeted through this pathway by their higher affinity for binding to the responsible E3 ligase compared with proteins bearing other residues (type 3). Paradoxically, a significant fraction of eukaryotic protein degradation occurs through the N-end rule pathway, although the majority of cellular proteins are type 3 substrates. We have exploited specific interactions between ubiquitin carrier proteins (E2/Ubc) and their cognate E3 ligases to purify for the first time the mammalian N-end rule ligase E3alpha/Ubr1 to near homogeneity. In vitro studies show that E3alpha forms lysine 48-linked polyubiquitin degradation signals on type 1-3 substrates and is absolutely dependent on Ubc2/Rad6 orthologs. Biochemically defined kinetic studies show that the basis of N-end rule specificity is a k(cat) rather than the K(m) effect originally proposed, since all three substrate classes show similar binding affinities (K(m) approximately 5 microm) but V(max) values that are 100- and 50-fold greater for type 1 and 2 versus type 3 model substrates, respectively. In addition, the N-end rule dipeptides lysylalanine and phenylalanylalanine are general noncompetitive inhibitors for E3alpha-catalyzed ubiquitination of type 1-3 substrates rather than type-specific competitive inhibitors as predicted. These observations are consistent with a model in which the N-end rule effect reflects substrate binding-induced transitions in E3alpha to a catalytically competent conformer, the equilibrium for which depends on the identity of the amino terminus or the presence of basic or hydrophobic surface features. The model reconciles conflicts between specific predictions and empirical observations relating N-end rule targeting in addition to explicating the efficacy of selected dipeptides as potent in vivo inhibitors of this pathway.
- Turner GC, Du F, Varshavsky A
- Peptides accelerate their uptake by activating a ubiquitin-dependent proteolytic pathway.
- Nature. 2000; 405: 579-83
- Display abstract
Protein degradation by the ubiquitin system controls the intracellular concentrations of many regulatory proteins. A protein substrate of the ubiquitin system is conjugated to ubiquitin through the action of three enzymes, E1, E2 and E3, with the degradation signal (degron) of the substrate recognized by E3 (refs 1-3). The resulting multi-ubiquitylated substrate is degraded by the 26S proteasome. Here we describe the physiological regulation of a ubiquitin-dependent pathway through allosteric modulation of its E3 activity by small compounds. Ubr1, the E3 enzyme of the N-end rule pathway (a ubiquitin-dependent proteolytic system) in Saccharomyces cerevisiae mediates the degradation of Cup9, a transcriptional repressor of the peptide transporter Ptr2 (ref. 5). Ubr1 also targets proteins that have destabilizing amino-terminal residues. We show that the degradation of Cup9 is allosterically activated by dipeptides with destabilizing N-terminal residues. In the resulting positive feedback circuit, imported dipeptides bind to Ubr1 and accelerate the Ubr1-dependent degradation of Cup9, thereby de-repressing the expression of Ptr2 and increasing the cell's capacity to import peptides. These findings identify the physiological rationale for the targeting of Cup9 by Ubr1, and indicate that small compounds may regulate other ubiquitin-dependent pathways.
- Huang K et al.
- A HECT domain ubiquitin ligase closely related to the mammalian protein WWP1 is essential for Caenorhabditis elegans embryogenesis.
- Gene. 2000; 252: 137-45
- Display abstract
The highly conserved ubiquitin/proteasome pathway controls the degradation of many critical regulatory proteins. Proteins are posttranslationally conjugated to ubiquitin through a concerted set of reactions involving activating (E1), conjugating (E2), and ligase (E3) enzymes. Ubiquitination targets proteins for proteolysis via the proteasome and may regulate protein function independent of proteolysis. We describe the cloning and functional analysis of new members of the HECT domain family of E3 ubiquitin ligases. Murine Wwp1 encoded a broadly expressed protein containing a C2 domain, four WW domains, and a catalytic HECT domain. A Caenorhabditis elegans gene was cloned encoding a HECT domain protein (CeWWP1), which was highly homologous to murine and human WWP1. Disruption of CeWwp1 via RNA interference yielded an embryonic lethal phenotype, despite the presence of at least six additional C. elegans genes encoding HECT domain proteins. The embryonic lethality was characterized by grossly abnormal morphogenesis during late embryogenesis, despite normal proliferation early in embryogenesis. CeWWP1 must therefore have unique and nonredundant functions critical for embryogenesis.
- Suzuki T, Varshavsky A
- Degradation signals in the lysine-asparagine sequence space.
- EMBO J. 1999; 18: 6017-26
- Display abstract
The N-degrons, a set of degradation signals recognized by the N-end rule pathway, comprise a protein's destabilizing N-terminal residue and an internal lysine residue. We show that the strength of an N-degron can be markedly increased, without loss of specificity, through the addition of lysine residues. A nearly exhaustive screen was carried out for N-degrons in the lysine (K)-asparagine (N) sequence space of the 14-residue peptides containing either K or N (16 384 different sequences). Of these sequences, 68 were found to function as N-degrons, and three of them were at least as active and specific as any of the previously known N-degrons. All 68 K/N-based N-degrons lacked the lysine at position 2, and all three of the strongest N-degrons contained lysines at positions 3 and 15. The results support a model of the targeting mechanism in which the binding of the E3-E2 complex to the substrate's destabilizing N-terminal residue is followed by a stochastic search for a sterically suitable lysine residue. Our strategy of screening a small library that encompasses the entire sequence space of two amino acids should be of use in many settings, including studies of protein targeting and folding.
- Xie Y, Varshavsky A
- The N-end rule pathway is required for import of histidine in yeast lacking the kinesin-like protein Cin8p.
- Curr Genet. 1999; 36: 113-23
- Display abstract
The N-end rule pathway is a ubiquitin-dependent proteolytic system whose targets include proteins bearing destabilizing N-terminal residues. We carried out a synthetic lethal screen for Saccharomyces cerevisiae mutants that require the N-end rule pathway for cell viability. A mutant thus identified, termed sln2, could not grow in the absence of Ubr1p, the recognition component of the N-end rule pathway, which was not essential for viability of the parental strain under the same conditions. Further analysis showed that inviability of sln2ubr1Delta cells could be rescued either by the HIS3 gene (which was absent from the parental strain) or by a high concentration of histidine in the medium. This defect in histidine uptake, exhibited by the sln2 mutant in the absence but not in the presence of Ubr1p, was traced to the gene HIP1, which encodes the histidine transporter. HIP1 was underexpressed in sln2 ubr1Delta cells, in comparison to either sln2 UBR1 or SLN2 ubr1Delta cells. Yet another property of the sln2 mutant was its inviability at 37 degrees C, which could not be rescued by either UBR1 or HIS3. This feature of sln2 allowed the cloning of SLN2, which was found to be a gene called CIN8, encoding a kinesin-like protein. Thus, either the N-end rule pathway or Cin8p must be present for the viability-sustaining rate of histidine import in S. cerevisiae auxotrophic for histidine. We consider possible mechanisms of this previously unsuspected link between kinesins, ubiquitin-dependent proteolysis, and the import of histidine.
- Xie Y, Varshavsky A
- The E2-E3 interaction in the N-end rule pathway: the RING-H2 finger of E3 is required for the synthesis of multiubiquitin chain.
- EMBO J. 1999; 18: 6832-44
- Display abstract
We dissected physical and functional interactions between the ubiquitin-conjugating (E2) enzyme Ubc2p and Ubr1p, the E3 component of the N-end rule pathway in Saccharomyces cerevisiae. The binding of the 20 kDa Ubc2p by the 225 kDa Ubr1p is shown to be mediated largely by the basic residue-rich (BRR) region of Ubr1p. However, mutations of the BRR domain that strongly decrease the interaction between Ubr1p and Ubc2p do not prevent the degradation of N-end rule substrates. In contrast, this degradation is completely dependent on the RING-H2 finger of Ubr1p adjacent to the BRR domain. Specifically, the first cysteine of RING-H2 is required for the ubiquitylation activity of the Ubr1p-Ubc2p complex, although this cysteine plays no detectable role in either the binding of N-end rule substrates by Ubr1p or the physical affinity between Ubr1p and Ubc2p. These results defined the topography of the Ubc2p-Ubr1p interaction and revealed the essential function of the RING-H2 finger, a domain that is present in many otherwise dissimilar E3 proteins of the ubiquitin system.
- Bailly V, Prakash S, Prakash L
- Domains required for dimerization of yeast Rad6 ubiquitin-conjugating enzyme and Rad18 DNA binding protein.
- Mol Cell Biol. 1997; 17: 4536-43
- Display abstract
The RAD6 gene of Saccharomyces cerevisiae encodes a ubiquitin-conjugating enzyme required for postreplicational repair of UV-damaged DNA and for damage-induced mutagenesis. In addition, Rad6 functions in the N end rule pathway of protein degradation. Rad6 mediates its DNA repair role via its association with Rad18, whose DNA binding activity may target the Rad6-Rad18 complex to damaged sites in DNA. In its role in N end-dependent protein degradation, Rad6 interacts with the UBR1-encoded ubiquitin protein ligase (E3) enzyme. Previous studies have indicated the involvement of N-terminal and C-terminal regions of Rad6 in interactions with Ubr1. Here, we identify the regions of Rad6 and Rad18 that are involved in the dimerization of these two proteins. We show that a region of 40 amino acids towards the C terminus of Rad18 (residues 371 to 410) is sufficient for interaction with Rad6. This region of Rad18 contains a number of nonpolar residues that have been conserved in helix-loop-helix motifs of other proteins. Our studies indicate the requirement for residues 141 to 149 at the C terminus, and suggest the involvement of residues 10 to 22 at the N terminus of Rad6, in the interaction with Rad18. Each of these regions of Rad6 is indicated to form an amphipathic helix.
- Varshavsky A
- The N-end rule pathway of protein degradation.
- Genes Cells. 1997; 2: 13-28
- Display abstract
The N-end rule relates the in vivo half-life of a protein to the identity of its N-terminal residue. Similar but distinct versions of the N-end rule operate in all organisms examined, from mammals to fungi and bacteria. In eukaryotes, the N-end rule pathway is a part of the ubiquitin system. Ubiquitin is a 76-residue protein whose covalent conjugation to other proteins plays a role in many biological processes, including cell growth and differentiation. I discuss the current understanding of the N-end rule pathway.
- Madura K, Dohmen RJ, Varshavsky A
- N-recognin/Ubc2 interactions in the N-end rule pathway.
- J Biol Chem. 1993; 268: 12046-54
- Display abstract
The N-end rule relates the in vivo half-life of a protein to the identity of its N-terminal residue. In the yeast Saccharomyces cerevisiae, substrates of the N-end rule pathway are targeted for degradation by a complex that includes the 225-kDa N-recognin, encoded by UBR1, and the 20-kDa ubiquitin-conjugating enzyme encoded by UBC2. We report that both physical stability and functional activity of the N-recognin.Ubc2 complex require the presence of a highly acidic 23-residue region at the C terminus of Ubc2. Ubc2-C88A, an inactive variant of Ubc2 in which the active-site Cys-88 has been replaced by Ala, is shown to retain the affinity for N-recognin. Expression of Ubc2-C88A inhibits the N-end rule pathway, apparently as a result of competition between Ubc2 and Ubc2-C88A for binding to N-recognin. The two-hybrid (interaction cloning) technique was used to identify a approximately 170-residue C-terminal fragment of the 1,950-residue N-recognin as a Ubc2-interacting domain. We also show that the level of UBR1 mRNA decreases upon overexpression of UBC2. This effect of UBC2 is observed with cells whose UBR1 is expressed from an unrelated promoter but is not observed if UBR1 contains a frameshift mutation, or if the Ubc2 protein lacks its C-terminal acidic region. The N-recognin.Ubc2 complex appears to regulate the expression of N-recognin through changes in the metabolic stability of its mRNA.
- Watkins JF, Sung P, Prakash S, Prakash L
- The extremely conserved amino terminus of RAD6 ubiquitin-conjugating enzyme is essential for amino-end rule-dependent protein degradation.
- Genes Dev. 1993; 7: 250-61
- Display abstract
The RAD6 gene of Saccharomyces cerevisiae encodes a ubiquitin-conjugating enzyme that is required for DNA repair, damage-induced mutagenesis, and sporulation. In addition, RAD6 mediates the multiubiquitination and degradation of amino-end rule protein substrates. The structure and function of RAD6 have been remarkably conserved during eukaryotic evolution. Here, we examine the role of the extremely conserved amino terminus, which has remained almost invariant among RAD6 homologs from yeast to human. We show that RAD6 is concentrated in the nucleus and that the amino-terminal deletion mutation, rad6 delta 1-9, does not alter the location of the protein. The amino-terminal domain, however, is essential for the multiubiquitination and degradation of amino-end rule substrates. In the rad6 delta 1-9 mutant, beta-galactosidase proteins bearing destabilizing amino-terminal residues become long lived, and purified rad6 delta 1-9 protein is ineffective in ubiquitin-protein ligase (E3)-dependent protein degradation in the proteolytic system derived from rabbit reticulocytes. The amino terminus is required for physical interaction of RAD6 with the yeast UBR1-encoded E3 enzyme, as the rad6 delta 1-9 protein is defective in this respect. The rad6 delta 1-9 mutant is defective in sporulation, shows reduced efficiency of DNA repair, but is proficient in UV mutagenesis. E3-dependent protein degradation by RAD6 could be essential for sporulation and could affect the efficiency of DNA repair.
- Bartel B, Wunning I, Varshavsky A
- The recognition component of the N-end rule pathway.
- EMBO J. 1990; 9: 3179-89
- Display abstract
The N-end rule-based degradation signal, which targets a protein for ubiquitin-dependent proteolysis, comprises a destabilizing amino-terminal residue and a specific internal lysine residue. We report the isolation and functional analysis of a gene (UBR1) for the N-end recognizing protein of the yeast Saccharomyces cerevisiae. UBR1 encodes a approximately 225 kd protein with no significant sequence similarities to other known proteins. Null ubr1 mutants are viable but are unable to degrade the substrates of the N-end rule pathway. These mutants are partially defective in sporulation and grow slightly more slowly than their wild-type counterparts. The UBR1 protein specifically binds in vitro to proteins bearing amino-terminal residues that are destabilizing according to the N-end rule, but does not bind to otherwise identical proteins bearing stabilizing amino-terminal residues.