Secondary literature sources for Zpr1
The following references were automatically generated.
- Libri D, Graziani N, Saguez C, Boulay J
- Multiple roles for the yeast SUB2/yUAP56 gene in splicing.
- Genes Dev. 2001; 15: 36-41
- Display abstract
The UAP56 gene has been shown to be required for prespliceosome assembly in mammals. We report here the isolation of the Schizosaccharomyces pombe ortholog of this gene by heterologous complementation of a combined PRP40HA(3)/nam8Delta defect in budding yeast. The Saccharomyces cerevisiae ortholog, YDL084w/SUB2, is also able to suppress this defect. We show that SUB2 is involved in splicing in vivo as well as in vitro. Sub2 defective extracts form a stalled intermediate that contains U2snRNP and can be chased into functional spliceosomes. Our experiments also suggest a role for this protein in events that precede prespliceosome formation. Data reported here as well as in the accompanying papers strongly implicate Sub2p in multiple steps of the spliceosome assembly process.
- Matera AG, Hebert MD
- The survival motor neurons protein uses its ZPR for nuclear localization.
- Nat Cell Biol. 2001; 3: 935-935
- Inoue K, Mizuno T, Wada K, Hagiwara M
- Novel RING finger proteins, Air1p and Air2p, interact with Hmt1p and inhibit the arginine methylation of Npl3p.
- J Biol Chem. 2000; 275: 32793-9
- Display abstract
Heterogeneous nuclear ribonucleoproteins (hnRNPs) are involved in the mRNA processing and export and are post-translationally modified by methylation at arginine residues in their arginine-glycine-rich (RGG) domains. We screened the factors that can interact with the RGG domain of Npl3p only in the presence of Hmt1p with the two-hybrid system in Saccharomyces cerevisiae. An isolated clone, YIL079, encodes a novel RING finger protein that was not directly bound to Npl3p but associated with the N terminus of Hmt1p. Thus, we designated the gene product Air1p (arginine methyltransferase-interacting RING finger protein). Air1p inhibited the Hmt1p-mediated methylation of Npl3p in vitro. Overexpression of Air1p repressed the Hmt1p-dependent growth of cells. Since homology searches indicate that the YDL175 gene product has significant identity (45%) with Air1p, we designated the gene AIR2. Air2p also has a RING finger domain and was bound to Hmt1p. Although single disruption of either gene gave no effect on the cell growth, cells lacking Air1p and Air2p grew at an extremely slow rate with accumulated poly(A)(+) RNA in the nucleus. Thus, Air1p and Air2p may affect mRNA transport by regulating the arginine methylation state of heterogeneous nuclear ribonucleoproteins.
- Toya M, Iino Y, Yamamoto M
- Fission yeast Pob1p, which is homologous to budding yeast Boi proteins and exhibits subcellular localization close to actin patches, is essential for cell elongation and separation.
- Mol Biol Cell. 1999; 10: 2745-57
- Display abstract
The fission yeast pob1 gene encodes a protein of 871 amino acids carrying an SH3 domain, a SAM domain, and a PH domain. Gene disruption and construction of a temperature-sensitive pob1 mutant indicated that pob1 is essential for cell growth. Loss of its function leads to quick cessation of cellular elongation. Pob1p is homologous to two functionally redundant Saccharomyces cerevisiae proteins, Boi1p and Boi2p, which are necessary for cell growth and relevant to bud formation. Overexpression of pob1 inhibits cell growth, causing the host cells to become round and swollen. In growing cells, Pob1p locates at cell tips during interphase and translocates near the division plane at cytokinesis. Thus, this protein exhibits intracellular dynamics similar to F-actin patches. However, Pob1p constitutes a layer, rather than patches, at growing cell tips. It generates two split discs flanking the septum at cytokinesis. The pob1-defective cells no longer elongate but swell gradually at the middle, eventually assuming a lemon-like morphology. Analysis using the pob1-ts allele revealed that Pob1p is also essential for cell separation. We speculate that Pob1p is located on growing plasma membrane, possibly through the function of actin patches, and may recruit proteins required for the synthesis of cell wall.
- Gangwani L, Mikrut M, Galcheva-Gargova Z, Davis RJ
- Interaction of ZPR1 with translation elongation factor-1alpha in proliferating cells.
- J Cell Biol. 1998; 143: 1471-84
- Display abstract
The zinc finger protein ZPR1 is present in the cytoplasm of quiescent mammalian cells and translocates to the nucleus upon treatment with mitogens, including epidermal growth factor (EGF). Homologues of ZPR1 were identified in yeast and mammals. These ZPR1 proteins bind to eukaryotic translation elongation factor-1alpha (eEF-1alpha). Studies of mammalian cells demonstrated that EGF treatment induces the interaction of ZPR1 with eEF-1alpha and the redistribution of both proteins to the nucleus. In the yeast Saccharomyces cerevisiae, genetic analysis demonstrated that ZPR1 is an essential gene. Deletion analysis demonstrated that the NH2-terminal region of ZPR1 is required for normal growth and that the COOH-terminal region was essential for viability in S. cerevisiae. The yeast ZPR1 protein redistributes from the cytoplasm to the nucleus in response to nutrient stimulation. Disruption of the binding of ZPR1 to eEF-1alpha by mutational analysis resulted in an accumulation of cells in the G2/M phase of cell cycle and defective growth. Reconstitution of the ZPR1 interaction with eEF-1alpha restored normal growth. We conclude that ZPR1 is essential for cell viability and that its interaction with eEF-1alpha contributes to normal cellular proliferation.
- Galcheva-Gargova Z et al.
- The cytoplasmic zinc finger protein ZPR1 accumulates in the nucleolus of proliferating cells.
- Mol Biol Cell. 1998; 9: 2963-71
- Display abstract
The zinc finger protein ZPR1 translocates from the cytoplasm to the nucleus after treatment of cells with mitogens. The function of nuclear ZPR1 has not been defined. Here we demonstrate that ZPR1 accumulates in the nucleolus of proliferating cells. The role of ZPR1 was examined using a gene disruption strategy. Cells lacking ZPR1 are not viable. Biochemical analysis demonstrated that the loss of ZPR1 caused disruption of nucleolar function, including preribosomal RNA expression. These data establish ZPR1 as an essential protein that is required for normal nucleolar function in proliferating cells.
- Townsley FM, Ruderman JV
- Functional analysis of the Saccharomyces cerevisiae UBC11 gene.
- Yeast. 1998; 14: 747-57
- Display abstract
UBC11 is the Saccharomyces cerevisiae gene that is most similar in sequence to E2-C, a ubiquitin carrier protein required for the destruction of mitotic cyclins and proteins that maintain sister chromatid cohesion in animal cells and in Schizosaccharomyces pombe. We have disrupted the UBC11 gene and found it is not essential for yeast cell viability even when combined with deletion of UBC4, a gene that has also been implicated in mitotic cyclin destruction. Ubc11p does not ubiquitinate cyclin B in clam cell-free extracts in vitro and the destruction of Clb2p is not impaired in extracts prepared from delta ubc11 or delta ubc4 delta ubc11 cells. These results suggest Ubc4p and Ubc11p together are not essential for mitotic cyclin destruction in S. cerevisiae and we can find no evidence to suggest that Ubc11p is the true functional homologue of E2-C.