Secondary literature sources for DBB
The following references were automatically generated.
- Mukherjee T, Choi I, Banerjee U
- Genetic analysis of fibroblast growth factor signaling in the Drosophila eye.
- G3 (Bethesda). 2012; 2: 23-8
- Display abstract
The development of eyes in Drosophila involves intricate epithelial reorganization events for accurate positioning of cells and proper formation and organization of ommatidial clusters. We demonstrate that Branchless (Bnl), the fibroblast growth factor ligand, regulates restructuring events in the eye disc primordium from as early as the emergence of clusters from a morphogenetic front to the cellular movements during pupal eye development. Breathless (Btl) functions as the fibroblast growth factor receptor to mediate Bnl signal, and together they regulate expression of DE-cadherin, Crumbs, and Actin. In addition, in the eye Bnl regulates the temporal onset and extent of retinal basal glial cell migration by activating Btl in the glia. We hypothesized that the Bnl functions in the eye are Hedgehog dependent and represent novel aspects of Bnl signaling not explored previously.
- Meyer C, Kohn M
- A molecular tete-a-tete arranged by a designed adaptor protein.
- Angew Chem Int Ed Engl. 2012; 51: 8160-2
- Troutman TD et al.
- Role for B-cell adapter for PI3K (BCAP) as a signaling adapter linking Toll-like receptors (TLRs) to serine/threonine kinases PI3K/Akt.
- Proc Natl Acad Sci U S A. 2012; 109: 273-8
- Display abstract
Toll like receptors (TLRs) use Toll-IL-1 receptor (TIR) domain-containing adapters, such as myeloid differentiation primary response gene 88 (MyD88) and TIR domain-containing adapter inducing IFN-beta (TRIF), to induce activation of transcription factors, including NF-kappaB, MAP kinases, and IFN regulatory factors. TLR signaling also leads to activation of PI3K, but the molecular mechanism is not understood. Here we have discovered a unique role for B-cell adapter for PI3K (BCAP) in the TLR-signaling pathway. We find that BCAP has a functional N-terminal TIR homology domain and links TLR signaling to activation of PI3K. In addition, BCAP negatively regulates proinflammatory cytokine secretion upon TLR stimulation. In vivo, the absence of BCAP leads to exaggerated recruitment of inflammatory myeloid cells following infections and enhanced susceptibility to dextran sulfate sodium-induced colitis. Our results demonstrate that BCAP is a unique TIR domain-containing TLR signaling adapter crucial for linking TLRs to PI3K activation and regulating the inflammatory response.
- Berntsson RP, Smits SH, Schmitt L, Slotboom DJ, Poolman B
- A structural classification of substrate-binding proteins.
- FEBS Lett. 2010; 584: 2606-17
- Display abstract
Substrate-binding proteins (SBP) are associated with a wide variety of protein complexes. The proteins are part of ATP-binding cassette transporters for substrate uptake, ion gradient driven transporters, DNA-binding proteins, as well as channels and receptors from both pro- and eukaryotes. A wealth of structural and functional data is available on SBPs, with over 120 unique entries in the Protein Data Bank (PDB). Over a decade ago these proteins were divided into three structural classes, but based on the currently available wealth of structural data, we propose a new classification into six clusters, based on features of their three-dimensional structure.
- Csiszar A, Vogelsang E, Beug H, Leptin M
- A novel conserved phosphotyrosine motif in the Drosophila fibroblast growth factor signaling adaptor Dof with a redundant role in signal transmission.
- Mol Cell Biol. 2010; 30: 2017-27
- Display abstract
The fibroblast growth factor receptor (FGFR) signals through adaptors constitutively associated with the receptor. In Drosophila melanogaster, the FGFR-specific adaptor protein Downstream-of-FGFR (Dof) becomes phosphorylated upon receptor activation at several tyrosine residues, one of which recruits Corkscrew (Csw), the Drosophila homolog of SHP2, which provides a molecular link to mitogen-activated protein kinase (MAPK) activation. However, the Csw pathway is not the only link from Dof to MAPK. In this study, we identify a novel phosphotyrosine motif present in four copies in Dof and also found in other insect and vertebrate signaling molecules. We show that these motifs are phosphorylated and contribute to FGF signal transduction. They constitute one of three sets of phosphotyrosines that act redundantly in signal transmission: (i) a Csw binding site, (ii) four consensus Grb2 recognition sites, and (iii) four novel tyrosine motifs. We show that Src64B binds to Dof and that Src kinases contribute to FGFR-dependent MAPK activation. Phosphorylation of the novel tyrosine motifs is required for the interaction of Dof with Src64B. Thus, Src64B recruitment to Dof through the novel phosphosites can provide a new link to MAPK activation and other cellular responses. This may give a molecular explanation for the involvement of Src kinases in FGF-dependent developmental events.
- Zielke N, Querings S, Grosskortenhaus R, Reis T, Sprenger F
- Molecular dissection of the APC/C inhibitor Rca1 shows a novel F-box-dependent function.
- EMBO Rep. 2006; 7: 1266-72
- Display abstract
Rca1 (regulator of Cyclin A)/Emi (early mitotic inhibitor) proteins are essential inhibitors of the anaphase-promoting complex/cyclosome (APC/C). In Drosophila, Rca1 is required during G2 to prevent premature cyclin degradation by the Fizzy-related (Fzr)-dependent APC/C activity. Here, we present a structure and function analysis of Rca1 showing that a carboxy-terminal fragment is sufficient for APC/C inhibition. Rca1/Emi proteins contain a conserved F-box and interact with components of the Skp-Cullin-F-box (SCF) complex. So far, no function has been ascribed to this domain. We find that the F-box of Rca1 is dispensable for APC/C-Fzr inhibition during G2. Nevertheless, we show that Rca1 has an additional function at the G1-S transition, which requires the F-box. Overexpression of Rca1 accelerates the G1-S transition in an F-box-dependent manner. Conversely, S-phase entry is delayed in cells in which endogenous Rca1 is replaced by a transgene lacking the F-box. We propose that Rca1 acts as an F-box protein in an as yet uncharacterized SCF complex, which promotes S-phase entry.
- Assmann EM, Alborghetti MR, Camargo ME, Kobarg J
- FEZ1 dimerization and interaction with transcription regulatory proteins involves its coiled-coil region.
- J Biol Chem. 2006; 281: 9869-81
- Display abstract
The fasciculation and elongation protein zeta1 (FEZ1) is a mammalian orthologue of the Caenorhabditis elegans protein UNC-76, which is necessary for axon growth in that nematode. In previous studies FEZ1 has been found to interact with protein kinase Czeta, DISC1, the agnoprotein of the human polyomavirus JC virus, and E4B, a U-box-type ubiquitin-protein isopeptide ligase. We reported previously that FEZ1 and its paralogue FEZ2 are proteins that interact with NEK1, a protein kinase involved in polycystic kidney disease and DNA repair mechanisms at the G(2)/M phase of the cell cycle. Here we report the identification of 16 proteins that interact with human FEZ1-(221-396) in a yeast two-hybrid assay of a human fetal brain cDNA library. The 13 interacting proteins of known functions take part either in transcription regulation and chromatin remodeling (6 proteins), the regulation of neuronal cell development (2 proteins) and cellular transport mechanisms (3 proteins) or participate in apoptosis (2 proteins). We were able to confirm eight of the observed interactions by in vitro pull-down assays with recombinant fusion proteins. The confirmed interacting proteins include FEZ1 itself and three transcription controlling proteins (SAP30L, DRAP1, and BAF60a). In mapping studies we found that the C-terminal regions of FEZ1, and especially its coiled-coil region, are involved in its dimerization, its heterodimerization with FEZ2, and in the interaction with 10 of the identified interacting proteins. Our results give further support to the previous speculation of the functional involvement of FEZ1 in neuronal development but suggest further that FEZ1 may also be involved in transcriptional control.
- Sorensen V, Wiedlocha A, Haugsten EM, Khnykin D, Wesche J, Olsnes S
- Different abilities of the four FGFRs to mediate FGF-1 translocation are linked to differences in the receptor C-terminal tail.
- J Cell Sci. 2006; 119: 4332-41
- Display abstract
Members of the fibroblast growth factor family bind to one or more of the four closely related membrane-spanning FGF receptors. In addition to signaling through the receptors, exogenous FGF-1 and FGF-2 are endocytosed and translocated to the cytosol and nucleus where they stimulate RNA and DNA synthesis. Here we have studied the ability of the four FGF receptors to facilitate translocation of exogenous FGF-1 to the cytosol and nucleus. FGFR1 and FGFR4 were able to mediate translocation, whereas FGFR2 and FGFR3 completely lacked this ability. By analyzing mutant FGFRs we found that the tyrosine kinase domain could be deleted from FGFR1 without abolishing translocation, whereas the C-terminal tail of the FGFRs, constituted by approximately 50 amino acids downstream of the kinase domain, plays a crucial role in FGF-1 translocation. Three amino acids residues within the C-terminal tail were found to be of particular importance for translocation. For FGFR2, the two amino acid substitutions Q774M and P800H were sufficient to enable the receptor to support FGF-1 translocation. The results demonstrate a striking diversity in function of the four FGFRs determined by their C-terminal domain.
- Xie B et al.
- Identification of the fibroblast growth factor (FGF)-interacting domain in a secreted FGF-binding protein by phage display.
- J Biol Chem. 2006; 281: 1137-44
- Display abstract
Fibroblast growth factor-binding proteins (FGF-BP) are secreted carrier proteins that release fibroblast growth factors (FGFs) from the extracellular matrix storage and thus enhance FGF activity. Here we have mapped the interaction domain between human FGF-BP1 and FGF-2. For this, we generated T7 phage display libraries of N-terminally and C-terminally truncated FGF-BP1 fragments that were then panned against immobilized FGF-2. From this panning, a C-terminal fragment of FGF-BP1 (amino acids 193-234) was identified as the minimum binding domain for FGF. As a recombinant protein, this C-terminal fragment binds to FGF-2 and enhances FGF-2-induced signaling in NIH-3T3 fibroblasts and GM7373 endothelial cells, as well as mitogenesis and chemotaxis of NIH-3T3 cells. The FGF interaction domain in FGF-BP1 is distinct from the heparin-binding domain (amino acids 110-143), and homology modeling supports the notion of a distinct domain in the C terminus that is conserved across different species. This domain also contains conserved positioning of cysteine residues with the Cys-214/Cys-222 positions in the human protein predicted to participate in disulfide bridge formation. Phage display of a C214A mutation of FGF-BP1 reduced binding to FGF-2, indicating the functional significance of this disulfide bond. We concluded that the FGF interaction domain is contained in the C terminus of FGF-BP1.
- Jin M, Goldenring JR
- The Rab11-FIP1/RCP gene codes for multiple protein transcripts related to the plasma membrane recycling system.
- Biochim Biophys Acta. 2006; 1759: 281-95
- Display abstract
Rab11a is a member of the Rab11 small GTPase family, and plays an important role in plasma membrane recycling. Rab11-Family Interacting Protein 1 (Rab11-FIP1) binds to Rab11 through a carboxyl-terminal amphipathic alpha helix. We have identified eight alternatively spliced Rab11-FIP1 gene transcripts from human chromosome 8. Among them, Rab11-FIP1A-D have carboxyl terminal Rab11 binding domains, while Rab11-FIP1E-H do not contain the Rab11 binding domain. While Rab11-FIP1B and F gene transcripts are ubiquitous, other Rab11-FIP1 transcripts demonstrate more limited patterns of expression in human tissue cDNAs. EGFP-Rab11-FIP1A-D proteins over-expressed in HeLa cells targeted to Rab11a-containing membranes, while EGFP-Rab11-FIP1E/F and H proteins did not localize with recycling system membranes. However, transferrin trafficking was not significantly altered in HeLa cells over-expressing expressing any of the EGFP-Rab11-FIP1 proteins. Rabbit polyclonal antibodies specific for Rab11-FIP1B and Rab11-FIP1C/RCP demonstrated that Rab11-FIP1B and Rab11-FIP1C/RCP are expressed endogenously. Strikingly, endogenous staining for Rab11-FIP1C/RCP only partially co-localized with EGFP-Rab11-FIP1A, EGFP-Rab11-FIP1B, and EGFP-Rab11a in the perinuclear region, indicating that Rab11-FIP1C/RCP resides in a differentiable subcellular compartment within the plasma membrane recycling system compared with Rab11-FIP1A and Rab11-FIP1B. These data suggest that Rab11-FIP1 proteins may play coordinated roles in regulating plasma membrane recycling with regional specificity within the Rab11a-containing recycling system.
- Handel K, Basal A, Fan X, Roth S
- Tribolium castaneum twist: gastrulation and mesoderm formation in a short-germ beetle.
- Dev Genes Evol. 2005; 215: 13-31
- Display abstract
Mesoderm formation has been extensively analyzed in the long-germ insect Drosophila melanogaster. In Drosophila, both the invagination and specification of the mesoderm is controlled by twist. Here we present a detailed description of mesoderm formation and twist regulation for the short-germ beetle Tribolium castaneum. In contrast to Drosophila, (1) the presumptive mesodermal cells of Tribolium are part of a mitotic domain and divide prior to ventral furrow formation, (2) ventral furrow formation progresses from posterior to anterior, (3) the number of cell layers within the furrow changes from multilayered in caudal to single layered in cephalic regions, and (4) there is a continuous production of mesodermal cells after gastrulation as new segments arise from the posterior growth zone. Tribolium twist (Tc-twist) is initially expressed in all presumptive mesodermal cells; however, after invagination, expression is maintained only in particular locations, which include the anterior compartments of the cephalic segments and a patch of cells at the posterior rim of the growth zone. The growth zone is multilayered with its inner cell layer being continuous with the mesoderm of the newly forming segments where twist expression is re-initiated anterior to the emerging engrailed stripes. A genomic region of Tc-twist was identified which drives ventral expression of a reporter construct in Drosophila. The expression of this Tc-twist construct in the background of Drosophila maternal mutations suggests that the dorsoventral system regulates Tc-twist, but that differences exist in regulation of the Dm-twist and Tc-twist genes by the terminal system.
- Maruoka M et al.
- Identification of B cell adaptor for PI3-kinase (BCAP) as an Abl interactor 1-regulated substrate of Abl kinases.
- FEBS Lett. 2005; 579: 2986-90
- Display abstract
In previous work we showed that Abl interactor 1 (Abi-1), by linking enzyme and substrate, promotes the phosphorylation of Mammalian Enabled (Mena) by c-Abl. To determine whether this mechanism extends to other c-Abl substrates, we used the yeast two-hybrid system to search for proteins that interact with Abi-1. By screening a human leukocyte cDNA library, we identified BCAP (B-cell adaptor for phosphoinositide 3-kinase) as another Abi-1-interacting protein. Binding experiments revealed that the SH3 domain of Abi-1 and the C-terminal polyproline structure of BCAP are involved in interactions between the two. In cultured cells, Abi-1 promoted phosphorylation of BCAP not only by c-Abl but also by v-Abl. The phosphorylation sites of BCAP by c-Abl were mapped to five tyrosine residues in the C-terminal region that are well conserved in mammals. These results show that Abi-1 promotes Abl-mediated BCAP phosphorylation and suggest that Abi-1 in general coordinates kinase-substrate interactions.
- Wang SZ, Roberts RM
- The evolution of the Sin1 gene product, a little known protein implicated in stress responses and type I interferon signaling in vertebrates.
- BMC Evol Biol. 2005; 5: 13-13
- Display abstract
BACKGROUND: In yeast, birds and mammals, the SAPK-interacting protein 1 (Sin1) gene product has been implicated as a component of the stress-activated protein kinase (SAPK) signal transduction pathway. Recently, Sin1 has also been shown to interact with the carboxyl terminal end of the cytoplasmic domain of the ovine type I interferon receptor subunit 2 (IFNAR2). However, the function of Sin1 remains unknown. Since SAPK pathways are ancient and the IFN system is confined to vertebrates, the organization of the Sin1 gene and the sequences of the Sin1 protein have been compared across a wide taxonomic range of species. RESULTS: Sin1 is represented, apparently as a single gene, in all metazoan species and fungi but is not detectable in protozoa, prokaryotes, or plants. Sin1 is highly conserved in vertebrates (79-99% identity at amino acid level), which possess an interferon system, suggesting that it has been subjected to powerful evolutionary constraint that has limited its diversification.Sin1 possesses at least two unique sequences in its IFNAR2-interacting region that are not represented in insects and other invertebrates. Sequence alignment between vertebrates and insects revealed five Sin1 strongly conserved domains (SCDs I-V), but an analysis of any of these domains failed to identify known functional protein motifs. SCD III, which is approximately 129 amino acids in length, is particularly highly conserved and is present in all the species examined, suggesting a conserved function from fungi to mammals. The coding region of the vertebrate Sin1 gene encompasses 11 exon and 10 introns, while in C. elegans the gene consists of 10 exons and 9 introns organized distinctly from those of vertebrates. In yeast and insects, Sin1 is intronless. CONCLUSIONS: The study reveals the phylogeny of a little studied gene which has recently been implicated in two important signal transduction pathways, one ancient (stress response), one relatively new (interferon signaling).
- Peschard P, Ishiyama N, Lin T, Lipkowitz S, Park M
- A conserved DpYR motif in the juxtamembrane domain of the Met receptor family forms an atypical c-Cbl/Cbl-b tyrosine kinase binding domain binding site required for suppression of oncogenic activation.
- J Biol Chem. 2004; 279: 29565-71
- Display abstract
The activation and phosphorylation of Met, the receptor tyrosine kinase (RTK) for hepatocyte growth factor, initiates the recruitment of multiple signaling proteins, one of which is c-Cbl, a ubiquitin-protein ligase. c-Cbl promotes ubiquitination and enhances the down-modulation of the Met receptor and other RTKs, targeting them for lysosomal sorting and subsequent degradation. The ubiquitination of Met by c-Cbl requires the direct interaction of the c-Cbl tyrosine kinase binding (TKB) domain with tyrosine 1003 in the Met juxtamembrane domain. Although a consensus for c-Cbl TKB domain binding has been established ((D/N)XpYXX(D/E0phi), this motif is not present in Met, suggesting that other c-Cbl TKB domain binding motifs may exist. By alanine-scanning mutagenesis, we have identified a DpYR motif including Tyr(1003) as being important for the direct recruitment of the c-Cbl TKB domain and for ubiquitination of the Met receptor. The substitution of Tyr(1003) with phenylalanine or substitution of either aspartate or arginine residues with alanine impairs c-Cbl-recruitment and ubiquitination of Met and results in the oncogenic activation of the Met receptor. We demonstrate that the TKB domain of Cbl-b, but not Cbl-3, binds to the Met receptor and requires an intact DpYR motif. Modeling studies suggest the presence of a salt bridge between the aspartate and arginine residues that would position pTyr(1003) for binding to the c-Cbl TKB domain. The DpYR motif is conserved in other members of the Met RTK family but is not present in previously identified c-Cbl-binding proteins, identifying DpYR as a new binding motif for c-Cbl and Cbl-b.
- Hill JM et al.
- Identification of an expanded binding surface on the FADD death domain responsible for interaction with CD95/Fas.
- J Biol Chem. 2004; 279: 1474-81
- Display abstract
The initiation of programmed cell death at CD95 (Fas, Apo-1) is achieved by forming a death-inducing signaling complex (DISC) at the cytoplasmic membrane surface. Assembly of the DISC has been proposed to occur via homotypic interactions between the death domain (DD) of FADD and the cytoplasmic domain of CD95. Previous analysis of the FADD/CD95 interaction led to the identification of a putative CD95 binding surface within FADD DD formed by alpha helices 2 and 3. More detailed analysis of the CD95/FADD DD interaction now demonstrates that a bimodal surface exists in the FADD DD for interaction with CD95. An expansive surface on one side of the domain is composed of elements in alpha helices 1, 2, 3, 5, and 6. This major surface is common to many proteins harboring this motif, whether or not they are associated with programmed cell death. A secondary surface resides on the opposite face of the domain and involves residues in helices 3 and 4. The major surface is topologically similar to the protein interaction surface identified in Drosophila Tube DD and the death effector domain of hamster PEA-15, two physiologically unrelated proteins which interact with structurally unrelated binding partners. These results demonstrate the presence of a structurally conserved surface within the DD which can mediate protein recognition with homo- and heterotypic binding partners, whereas a second surface may be responsible for stabilizing the higher order complex in the DISC.
- Wilson R, Battersby A, Csiszar A, Vogelsang E, Leptin M
- A functional domain of Dof that is required for fibroblast growth factor signaling.
- Mol Cell Biol. 2004; 24: 2263-76
- Display abstract
Signal transduction by fibroblast growth factor (FGF) receptors in Drosophila depends upon the intracellular protein Dof, which has been proposed to act downstream of the receptors and upstream of Ras. Dof is the product of a fast-evolving gene whose vertebrate homologs, BCAP and BANK, are involved in signaling downstream of the B-cell receptor. Mapping functional domains within Dof revealed that neither of its potential interaction motifs, the ankyrin repeats and the coiled coil, is essential for the function of Dof. However, we have identified a region within the N terminus of the protein with similarity to BCAP and BANK, which we refer to as the Dof, BCAP, and BANK (DBB) motif, that it is required for FGF-dependent signal transduction and is necessary for efficient interaction of Dof with the FGF receptor Heartless. In addition, we demonstrate that Dof is phosphorylated in the presence of an activated FGF receptor and that tyrosine residues could contribute to the function of the molecule.
- Wang P, Li G, Granados RR
- Identification of two new peritrophic membrane proteins from larval Trichoplusia ni: structural characteristics and their functions in the protease rich insect gut.
- Insect Biochem Mol Biol. 2004; 34: 215-27
- Display abstract
Peritrophic membrane (PM) proteins are important determinants for the structural formation and function of the PM. We identified two new chitin binding proteins, named CBP1 and CBP2, from the PM of Trichoplusia ni larvae by cDNA cloning. The proteins contain 12 and 10 tandem chitin binding domains in CBP1 and CBP2, respectively. Chitin binding studies demonstrated the chitin binding activity of CBP1 and CBP2, and confirmed the chitin binding domain sequence predicted by sequence analysis. Both CBP1 and CBP2 were not mucin-like glycoproteins, however, they were highly resistant to proteolytic degradation by trypsin. We found that in CBP1 and CBP2, potential trypsin and chymotrypsin cleavage sites reside primarily within the chitin binding domain sequences, limiting exposure of the potential cleavage sites to the digestive proteinases. This finding suggests a proteinase-resistance mechanism for non-mucin PM proteins to function in the proteinase rich gut environment. Immunohistochemical analysis showed that CBP1 and CBP2 are specifically localized in the PM. However, intact CBP1 and CBP2 proteins were not present in the PM, indicating that their partially degraded fragments were assembled into the PM. This observation suggests that the presence of a large number of chitin binding domains in PM proteins allows the proteins to tolerate limited proteolytic degradation in the midgut without loss of their chitin binding activity with multiple chitin binding domains. Alignment of the chitin binding sequences suggested that CBP1 and CBP2 evolved by gene duplication and the tandem chitin binding domains in the proteins arose from domain duplications.
- Hidaka S, Konecke V, Osten L, Witzgall R
- PIGEA-14, a novel coiled-coil protein affecting the intracellular distribution of polycystin-2.
- J Biol Chem. 2004; 279: 35009-16
- Display abstract
Employing a yeast two-hybrid screen with the COOH terminus of polycystin-2, one of the proteins mutated in patients with polycystic kidney disease, we were able to isolate a novel protein that we call PIGEA-14 (polycystin-2 interactor, Golgi- and endoplasmic reticulum-associated protein with a molecular mass of 14 kDa). Molecular modeling only predicts a coiled-coil motif, but no other functional domains, in PIGEA-14. In a subsequent two-hybrid screen using PIGEA-14 as a bait, we found GM130, a component of the cis-compartment of the Golgi apparatus. Co-expression of the PIGEA-14 and PKD2 cDNAs in LLC-PK(1) and HeLa cells resulted in a redistribution of PIGEA-14 and polycystin-2 to the trans-Golgi network, which suggests that PIGEA-14 plays an important role in regulating the intracellular location of polycystin-2 and possibly other intracellular proteins. Our results also indicate that the intracellular trafficking of polycystin-2 is regulated both at the level of the endo-plasmic reticulum and that of the trans-Golgi network.
- Li B, Zhuang L, Trueb B
- Zyxin interacts with the SH3 domains of the cytoskeletal proteins LIM-nebulette and Lasp-1.
- J Biol Chem. 2004; 279: 20401-10
- Display abstract
Zyxin is a versatile component of focal adhesions in eukaryotic cells. Here we describe a novel binding partner of zyxin, which we have named LIM-nebulette. LIM-nebulette is an alternative splice variant of the sarcomeric protein nebulette, which, in contrast to nebulette, is expressed in non-muscle cells. It displays a modular structure with an N-terminal LIM domain, three nebulin-like repeats, and a C-terminal SH3 domain and shows high similarity to another cytoskeletal protein, Lasp-1 (LIM and SH3 protein-1). Co-precipitation studies and results obtained with the two-hybrid system demonstrate that LIM-nebulette and Lasp-1 interact specifically with zyxin. Moreover, the SH3 domain from LIM-nebulette is both necessary and sufficient for zyxin binding. The SH3 domains from Lasp-1 and nebulin can also interact with zyxin, but the SH3 domains from more distantly related proteins such as vinexin and sorting nexin 9 do not. On the other hand, the binding site in zyxin is situated at the extreme N terminus as shown by site-directed mutagenesis. LIM-nebulette and Lasp-1 use the same linear binding motif. This motif shows some similarity to a class II binding site but does not contain the classical PXXP sequence. LIM-nebulette reveals a subcellular distribution at focal adhesions similar to Lasp-1. Thus, LIM-nebulette, Lasp-1, and zyxin may play an important role in the organization of focal adhesions.
- Petit V, Nussbaumer U, Dossenbach C, Affolter M
- Downstream-of-FGFR is a fibroblast growth factor-specific scaffolding protein and recruits Corkscrew upon receptor activation.
- Mol Cell Biol. 2004; 24: 3769-81
- Display abstract
Fibroblast growth factor (FGF) receptor (FGFR) signaling controls the migration of glial, mesodermal, and tracheal cells in Drosophila melanogaster. Little is known about the molecular events linking receptor activation to cytoskeletal rearrangements during cell migration. We have performed a functional characterization of Downstream-of-FGFR (Dof), a putative adapter protein that acts specifically in FGFR signal transduction in Drosophila. By combining reverse genetic, cell culture, and biochemical approaches, we demonstrate that Dof is a specific substrate for the two Drosophila FGFRs. After defining a minimal Dof rescue protein, we identify two regions important for Dof function in mesodermal and tracheal cell migration. The N-terminal 484 amino acids are strictly required for the interaction of Dof with the FGFRs. Upon receptor activation, tyrosine residue 515 becomes phosphorylated and recruits the phosphatase Corkscrew (Csw). Csw recruitment represents an essential step in FGF-induced cell migration and in the activation of the Ras/MAPK pathway. However, our results also indicate that the activation of Ras is not sufficient to activate the migration machinery in tracheal and mesodermal cells. Additional proteins binding either to the FGFRs, to Dof, or to Csw appear to be crucial for a chemotactic response.
- Yang RB, Ng CK, Wasserman SM, Komuves LG, Gerritsen ME, Topper JN
- A novel interleukin-17 receptor-like protein identified in human umbilical vein endothelial cells antagonizes basic fibroblast growth factor-induced signaling.
- J Biol Chem. 2003; 278: 33232-8
- Display abstract
We have previously utilized a combination of high throughput sequencing and genome-wide microarray profiling analyses to identify novel cell-surface proteins expressed in human umbilical vein endothelial cells. One gene identified by this approach encodes a type I transmembrane receptor that shares sequence homology with the intracellular domain of members of the interleukin-17 (IL-17) receptor family. Real-time quantitative PCR and Northern analyses revealed that this gene is highly expressed in human umbilical vein endothelial cells and in several highly vascularized tissues such as kidney, colon, skeletal muscle, heart, and small intestine. In addition, we also found that it is also highly expressed in the ductal epithelial cells of human salivary glands, seminal vesicles, and the collecting tubules of the kidney by in situ hybridization. This putative receptor, which we have termed human SEF (hSEF), is also expressed in a variety of breast cancer tissues. In co-immunoprecipitation assays, this receptor is capable of forming homomeric complexes and can interact with fibroblast growth factor (FGF) receptor 1. Overexpression of this receptor inhibits FGF induction of an FGF-responsive reporter gene in human 293T cells. This appears to occur as a result of specific inhibition of p42/p44 ERK in the absence of upstream MEK inhibition. This inhibitory effect is dependent upon a functional intracellular domain since deletion mutants missing the IL-17 receptor-like domain lack this inhibitory effect. These findings are consistent with the recent discovery of the zebrafish homologue, Sef (similar expression to fgf genes), which specifically antagonizes FGF signaling when ectopically expressed in zebrafish or Xenopus laevis embryos. Based on sequence and functional similarities, this novel IL-17 receptor homologue represents a potential human SEF and is likely to play critical roles in endothelial or epithelial functions such as proliferation, migration, and angiogenesis.
- Fong CW, Leong HF, Wong ES, Lim J, Yusoff P, Guy GR
- Tyrosine phosphorylation of Sprouty2 enhances its interaction with c-Cbl and is crucial for its function.
- J Biol Chem. 2003; 278: 33456-64
- Display abstract
Mammalian Sprouty (Spry) proteins are now established as receptor tyrosine kinase-induced modulators of the Ras/mitogen-activated protein kinase pathway. Specifically, hSpry2 inhibits the fibroblast growth factor receptor (FGFR)-induced mitogen-activated protein kinase pathway but conversely prolongs activity of the same pathway following epidermal growth factor (EGF) stimulation, where activated EGF receptors are retained on the cell surface. In this study it is demonstrated that hSpry2 is tyrosine-phosphorylated upon stimulation by either FGFR or EGF and subsequently binds endogenous c-Cbl with high affinity. A conserved motif on hSpry2, together with phosphorylation on tyrosine 55, is required for its enhanced interaction with the SH2-like domain of c-Cbl. A hSpry2 mutant (Y55F) that did not exhibit an enhanced binding with c-Cbl failed to retain EGF receptors on the cell surface. Furthermore, individually mutating hSpry2 residues 52-59 to alanine indicated a tight correlation between their affinity for c-Cbl binding and their inhibition of ERK2 activity in the FGFR pathway. We postulate that tyrosine phosphorylation "activates" hSpry2 by enhancing its interaction with c-Cbl and that this interaction is critical for its physiological function in a signal-specific context.
- Feller SM, Wecklein H, Lewitzky M, Kibler E, Raabe T
- SH3 domain-mediated binding of the Drk protein to Dos is an important step in signaling of Drosophila receptor tyrosine kinases.
- Mech Dev. 2002; 116: 129-39
- Display abstract
Activation of the Sevenless (Sev) receptor tyrosine kinase (RTK) in the developing Drosophila eye is required for the specification of the R7 photoreceptor cell fate. Daughter of Sevenless (Dos), a putative multi-site adaptor protein, is a substrate of the Sev kinase and is known to associate with the tyrosine phosphatase Corkscrew (Csw). Binding of Csw to Dos depends on the Csw Src homology 2 (SH2) domains and is an essential step for signaling by the Sev RTK. Dos, however, lacks a recognizable phosphotyrosine interaction domain and it was previously unclear how it is recruited to the Sev receptor. Here it is shown that the SH2/SH3 domain adaptor protein Drk can provide this link. Drk binds with its SH2 domain to the autophosphorylated Sev receptor while the C-terminal SH3 domain is able to associate with Dos. The Drk SH3 domain binding motifs on Dos were mapped to two sites which do not conform the known Drk SH3 domain binding motif (PxxPxR) but instead have the consensus PxxxRxxKP. Mutational analysis in vitro and in vivo provided evidence that both Drk binding sites fulfil an important function in the context of Sev and Drosophila epidermal growth factor receptor mediated signaling processes.
- Ohshiro T, Emori Y, Saigo K
- Ligand-dependent activation of breathless FGF receptor gene in Drosophila developing trachea.
- Mech Dev. 2002; 114: 3-11
- Display abstract
Spatially and temporally regulated activity of Branchless/Breathless signaling is essential for trachea development in Drosophila. Early ubiquitous breathless (btl) expression is controlled by binding of Trachealess/Tango heterodimers to the btl minimum enhancer. Branchless/Breathless signaling includes a Sprouty-dependent negative feedback loop. We show that late btl expression is a target of Branchless/Breathless signaling and hence, Branchless/Breathless signaling contains a positive feedback loop, which may guarantee a continuous supply of fresh receptors to membranes of growing tracheal branch cells. Branchless/Breathless signaling activates MAP-kinase, which in turn, activates late btl expression and destabilizes Anterior-open, a repressor for late btl expression. Biochemical and genetic analysis indicated that the minimum btl enhancer includes binding sites of Anterior-open.
- Park EK, Warner N, Mood K, Pawson T, Daar IO
- Low-molecular-weight protein tyrosine phosphatase is a positive component of the fibroblast growth factor receptor signaling pathway.
- Mol Cell Biol. 2002; 22: 3404-14
- Display abstract
Low-molecular-weight protein tyrosine phosphatase (LMW-PTP) has been implicated in the regulation of cell growth and actin rearrangement mediated by several receptor tyrosine kinases, including platelet-derived growth factor and epidermal growth factor. Here we identify the Xenopus laevis homolog of LMW-PTP1 (XLPTP1) as an additional positive regulator in the fibroblast growth factor (FGF) signaling pathway during Xenopus development. XLPTP1 has an expression pattern that displays substantial overlap with FGF receptor 1 (FGFR1) during Xenopus development. Using morpholino antisense technology, we show that inhibition of endogenous XLPTP1 expression dramatically restricts anterior and posterior structure development and inhibits mesoderm formation. In ectodermal explants, loss of XLPTP1 expression dramatically blocks the induction of the early mesoderm gene, Xbrachyury (Xbra), by FGF and partially blocks Xbra induction by Activin. Moreover, FGF-induced activation of mitogen-activated protein (MAP) kinase is also inhibited by XLPTP1 morpholino antisense oligonucleotides; however, introduction of RNA encoding XLPTP1 is able to rescue morphological and biochemical effects of antisense inhibition. Inhibition of FGF-induced MAP kinase activity due to loss of XLPTP1 is also rescued by an active Ras, implying that XLPTP1 may act upstream of or parallel to Ras. Finally, XLPTP1 physically associates only with an activated FGFR1, and this interaction requires the presence of SNT1/FRS-2 (FGFR substrate 2). Although LMW-PTP1 has been shown to participate in other receptor systems, the data presented here also reveal XLPTP1 as a new and important component of the FGF signaling pathway.
- Zdobnov EM et al.
- Comparative genome and proteome analysis of Anopheles gambiae and Drosophila melanogaster.
- Science. 2002; 298: 149-59
- Display abstract
Comparison of the genomes and proteomes of the two diptera Anopheles gambiae and Drosophila melanogaster, which diverged about 250 million years ago, reveals considerable similarities. However, numerous differences are also observed; some of these must reflect the selection and subsequent adaptation associated with different ecologies and life strategies. Almost half of the genes in both genomes are interpreted as orthologs and show an average sequence identity of about 56%, which is slightly lower than that observed between the orthologs of the pufferfish and human (diverged about 450 million years ago). This indicates that these two insects diverged considerably faster than vertebrates. Aligned sequences reveal that orthologous genes have retained only half of their intron/exon structure, indicating that intron gains or losses have occurred at a rate of about one per gene per 125 million years. Chromosomal arms exhibit significant remnants of homology between the two species, although only 34% of the genes colocalize in small "microsyntenic" clusters, and major interarm transfers as well as intra-arm shuffling of gene order are detected.
- Penton A, Wodarz A, Nusse R
- A mutational analysis of dishevelled in Drosophila defines novel domains in the dishevelled protein as well as novel suppressing alleles of axin.
- Genetics. 2002; 161: 747-62
- Display abstract
Drosophila dishevelled (dsh) functions in two pathways: it is necessary to transduce Wingless (Wg) signaling and it is required in planar cell polarity. To learn more about how Dsh can discriminate between these functions, we performed genetic screens to isolate additional dsh alleles and we examined the potential role of protein phosphorylation by site-directed mutagenesis. We identified two alleles with point mutations in the Dsh DEP domain that specifically disrupt planar polarity signaling. When positioned in the structure of the DEP domain, these mutations are located close to each other and to a previously identified planar polarity mutation. In addition to the requirement for the DEP domain, we found that a cluster of potential phosphorylation sites in a binding domain for the protein kinase PAR-1 is also essential for planar polarity signaling. To identify regions of dsh that are necessary for Wg signaling, we screened for mutations that modified a GMR-GAL4;UAS-dsh overexpression phenotype in the eye. We recovered many alleles of the transgene containing missense mutations, including mutations in the DIX domain and in the DEP domain, the latter group mapping separately from the planar polarity mutations. In addition, several transgenes had mutations within a domain containing a consensus sequence for an SH3-binding protein. We also recovered second-site-suppressing mutations in axin, mapping at a region that may specifically interact with overexpressed Dsh.
- Yokoyama K et al.
- BANK regulates BCR-induced calcium mobilization by promoting tyrosine phosphorylation of IP(3) receptor.
- EMBO J. 2002; 21: 83-92
- Display abstract
B-cell activation mediated through the antigen receptor is dependent on activation of protein tyrosine kinases (PTKs) such as Lyn and Syk and subsequent phosphorylation of various signaling proteins. Here we report on the identification and characterization of the B-cell scaffold protein with ankyrin repeats (BANK), a novel substrate of tyrosine kinases. BANK is expressed in B cells and is tyrosine phosphorylated upon B-cell antigen receptor (BCR) stimulation, which is mediated predominantly by Syk. Overexpres sion of BANK in B cells leads to enhancement of BCR-induced calcium mobilization. We found that both Lyn and inositol 1,4,5-trisphosphate receptor (IP(3)R) associate with the distinct regions of BANK and that BANK promotes Lyn-mediated tyrosine phosphorylation of IP(3)R. Given that IP(3)R channel activity is up-regulated by its tyrosine phosphorylation, BANK appears to be a novel scaffold protein regulating BCR-induced calcium mobilization by connecting PTKs to IP(3)R. Because BANK expression is confined to functional BCR-expressing B cells, BANK-mediated calcium mobilization may be specific to foreign antigen-induced immune responses rather than to signaling required for B-cell development.
- Akagi K, Kyun Park E, Mood K, Daar IO
- Docking protein SNT1 is a critical mediator of fibroblast growth factor signaling during Xenopus embryonic development.
- Dev Dyn. 2002; 223: 216-28
- Display abstract
The docking protein SNT1/FRS2 (fibroblast growth factor receptor substrate 2) is implicated in the transmission of extracellular signals from several growth factor receptors to the mitogen-activated protein (MAP) kinase signaling cascade, but its biological function during development is not well characterized. Here, we show that the Xenopus homolog of mammalian SNT1/FRS-2 (XSNT1) plays a critical role in the appropriate formation of mesoderm-derived tissue during embryogenesis. XSNT1 has an expression pattern that is quite similar to the fibroblast growth factor receptor-1 (FGFR1) during Xenopus development. Ectopic expression of XSNT1 markedly enhanced the embryonic defects induced by an activated FGF receptor, and increased the MAP kinase activity as well as the expression of a mesodermal marker in response to FGF receptor signaling. A loss-of-function study using antisense XSNT1 morpholino oligonucleotides (XSNT-AS) shows severe malformation of trunk and posterior structures. Moreover, XSNT-AS disrupts muscle and notochord formation, and inhibits FGFR-induced MAP kinase activation. In ectodermal explants, XSNT-AS blocks FGFR-mediated induction of mesoderm and the accompanying elongation movements. Our results indicate that XSNT1 is a critical mediator of FGF signaling and is required for early Xenopus development.
- Innamorati G, Whang MI, Molteni R, Le Gouill C, Birnbaumer M
- GIP, a G-protein-coupled receptor interacting protein.
- Regul Pept. 2002; 109: 173-9
- Display abstract
A novel protein was cloned while screening for partners interacting with the second intracellular loop of the V2 vasopressin receptor (V2R). The protein was named GIP as in G-protein-coupled receptor Interacting Protein; the corresponding gene was located on the 17th chromosome where three exons encode for a 379-amino-acid protein.GIP subcellular localization was studied by immunocytochemistry and also using a biotinylating agent. The protein was found to be localized, at least in part, on the plasma membrane, probably in the form of a trimer. The results indicated that GIP is a transmembrane protein and the most part of the molecule is intracellular. Sequence homology inferred that GIP cytosolic domain is folded as a collagen-like helix followed by a globular domain. The interaction of the globular domain with the V2R was confirmed by pull-down experiments indicating that this structural motif can also interact with cytosolic proteins.
- Yamazaki T, Takeda K, Gotoh K, Takeshima H, Akira S, Kurosaki T
- Essential immunoregulatory role for BCAP in B cell development and function.
- J Exp Med. 2002; 195: 535-45
- Display abstract
BCAP was recently cloned as a binding molecule to phosphoinositide 3-kinase (PI3K). To investigate the role of BCAP, mutant mice deficient in BCAP were generated. While BCAP-deficient mice are viable, they have decreased numbers of mature B cells and B1 B cell deficiency. The mice produce lower titers of serum immunoglobulin (Ig)M and IgG3, and mount attenuated responses to T cell--independent type II antigen. Upon B cell receptor cross-linking, BCAP-deficient B cells exhibit reduced Ca(2+) mobilization and poor proliferative responses. These findings demonstrate that BCAP plays a pivotal immunoregulatory role in B cell development and humoral immune responses.
- Sonoda J, Wharton RP
- Drosophila Brain Tumor is a translational repressor.
- Genes Dev. 2001; 15: 762-73
- Display abstract
The Drosophila brain tumor (brat) gene encodes a member of the conserved NHL family of proteins, which appear to regulate differentiation and growth in a variety of organisms. One of the founding family members, Caenorhabditis elegans LIN-41, is thought to control posttranscriptional gene expression. However, the mechanism by which LIN-41, or any other NHL protein, acts has not been clear. Using a yeast "four-hybrid" interaction assay, we show that Brain Tumor is recruited to hunchback (hb) mRNA through interactions with Nanos and Pumilio, which bind to the RNA to repress its translation. Interaction with the Nanos/Pumilio/RNA complex is mediated by the Brat NHL domain; single amino acid substitutions in this domain compromise quaternary complex assembly in vitro and hb regulation in vivo. Thus, recruitment of Brat is necessary for translational repression and the normal development of posterior embryonic pattern. In addition to regulating abdominal segmentation, previous genetic analysis has shown that Brat, Nanos, and Pumilio govern a variety of developmental processes. We examined the role of Brat in two of these processes-regulation of maternal Cyclin B mRNA in the embryo and regulation of imaginal disc development. The results of these experiments suggest that NHL domain proteins are recruited to various mRNAs by combinatorial protein-protein interactions.
- Brown S, Hu N, Hombria JC
- Identification of the first invertebrate interleukin JAK/STAT receptor, the Drosophila gene domeless.
- Curr Biol. 2001; 11: 1700-5
- Display abstract
The JAK/STAT signaling pathway plays important roles in vertebrate development and the regulation of complex cellular processes. Components of the pathway are conserved in Dictyostelium, Caenorhabditis, and Drosophila, yet the complete sequencing and annotation of the D. melanogaster and C. elegans genomes has failed to identify a receptor, raising the possibility that an alternative type of receptor exists for the invertebrate JAK/STAT pathway. Here we show that domeless (dome) codes for a transmembrane protein required for all JAK/STAT functions in the Drosophila embryo. This includes its known requirement for embryonic segmentation and a newly discovered function in trachea specification. The DOME protein has a similar extracellular structure to the vertebrate cytokine class I receptors, although its sequence has greatly diverged. Like many interleukin receptors, DOME has a cytokine binding homology module (CBM) and three extracellular fibronectin-type-III domains (FnIII). Despite its low degree of overall similarity, key amino acids required for signaling in the vertebrate cytokine class I receptors [3] are conserved in the CBM region. DOME is a signal-transducing receptor with most similarities to the IL-6 receptor family, but it also has characteristics found in the IL-3 receptor family. This suggests that the vertebrate families evolved from a single ancestral receptor that also gave rise to dome.
- Ingham PW
- Hedgehog signaling: a tale of two lipids.
- Science. 2001; 294: 1879-81
- Display abstract
Hedgehog proteins constitute one of the major classes of intercellular signals that control inductive interactions during animal development. These proteins undergo unusual lipid modifications and signal through an unconventional transmembrane protein receptor that is characterized by a sequence motif implicated in sterol sensing. Recent studies suggest that the lipid adducts regulate the range and potency of the signals, whereas the sterol-sensing domain is essential for receptor activity.
- Shim K, Blake KJ, Jack J, Krasnow MA
- The Drosophila ribbon gene encodes a nuclear BTB domain protein that promotes epithelial migration and morphogenesis.
- Development. 2001; 128: 4923-33
- Display abstract
During development of the Drosophila tracheal (respiratory) system, the cell bodies and apical and basal surfaces of the tracheal epithelium normally move in concert as new branches bud and grow out to form tubes. We show that mutations in the Drosophila ribbon (rib) gene disrupt this coupling: the basal surface continues to extend towards its normal targets, but movement and morphogenesis of the tracheal cell bodies and apical surface is severely impaired, resulting in long basal membrane protrusions but little net movement or branch formation. rib mutant tracheal cells are still responsive to the Branchless fibroblast growth factor (FGF) that guides branch outgrowth, and they express apical membrane markers normally. This suggests that the defect lies either in transmission of the FGF signal from the basal surface to the rest of the cell or in the apical cell migration and tubulogenesis machinery. rib encodes a nuclear protein with a BTB/POZ domain and Pipsqueak DNA-binding motif. It is expressed in the developing tracheal system and other morphogenetically active epithelia, many of which are also affected in rib mutants. We propose that Rib is a key regulator of epithelial morphogenesis that promotes migration and morphogenesis of the tracheal cell bodies and apical surface and other morphogenetic movements.
- Hsiung F, Griffis ER, Pickup A, Powers MA, Moses K
- Function of the Drosophila TGF-alpha homolog Spitz is controlled by Star and interacts directly with Star.
- Mech Dev. 2001; 107: 13-23
- Display abstract
Drosophila Spitz is a homolog of transforming growth factor alpha (TGF-alpha) and is an activating ligand for the EGF receptor (Egfr). It has been shown that Star is required for Spitz activity. Here we show that Star is quantitatively limiting for Spitz production during eye development. We also show that Star and Spitz proteins colocalize in Spitz sending cells and that this association is not coincident with the site of translation--consistent with a function for Star in Spitz processing or transmission. Finally, we have defined minimal sequences within both Spitz and Star that mediate a direct interaction and show that this binding can occur in vivo.
- Hadari YR, Gotoh N, Kouhara H, Lax I, Schlessinger J
- Critical role for the docking-protein FRS2 alpha in FGF receptor-mediated signal transduction pathways.
- Proc Natl Acad Sci U S A. 2001; 98: 8578-83
- Display abstract
The docking protein FRS2 alpha has been implicated as a mediator of signaling via fibroblast growth factor receptors (FGFRs). We have demonstrated that targeted disruption of FRS2 alpha gene causes severe impairment in mouse development resulting in embryonal lethality at E7.0--E7.5. Experiments with FRS2 alpha-deficient fibroblasts demonstrate that FRS2 alpha plays a critical role in FGF-induced mitogen-activated protein (MAP) kinase stimulation, phosphatidylinositol-3 (PI-3) kinase activation, chemotactic response, and cell proliferation. Following FGF stimulation, tyrosine phosphorylated FRS2 alpha functions as a site for coordinated assembly of a multiprotein complex that includes Gab1 and the effector proteins that are recruited by this docking protein. Furthermore, we demonstrate that different tyrosine phosphorylation sites on FRS2 alpha are responsible for mediating different FGF-induced biological responses. These experiments establish the central role of FRS2 alpha in signaling via FGFRs and demonstrate that FRS2 alpha mediates multiple FGFR-dependent signaling pathways critical for embryonic development.
- Menon SD, Chia W
- Drosophila rolling pebbles: a multidomain protein required for myoblast fusion that recruits D-Titin in response to the myoblast attractant Dumbfounded.
- Dev Cell. 2001; 1: 691-703
- Display abstract
The fusion of myoblasts leading to the formation of myotubes is an integral part of skeletal myogenesis in many organisms. In Drosophila, specialized founder myoblasts initiate fusion through expression of the receptor-like attractant Dumbfounded (Duf), which brings them into close contact with other myoblasts. Here, we identify Rols7, a gene expressed in founders, as an essential component for fusion during myotube formation. During fusion, Rols7 localizes in a Duf-dependent manner at membrane sites that contact other myoblasts. These sites are also enriched with D-Titin, which functions to maintain myotube structure and morphology. When Rols7 is absent or its localization is perturbed, the enrichment of D-Titin fails to occur. Rols7 integrates the initial event of myoblast attraction with the downstream event of myotube structural organization by linking Duf to D-Titin.
- San Martin B, Bate M
- Hindgut visceral mesoderm requires an ectodermal template for normal development in Drosophila.
- Development. 2001; 128: 233-42
- Display abstract
During Drosophila embryogenesis, the development of the midgut endoderm depends on interactions with the overlying visceral mesoderm. Here we show that the development of the hindgut also depends on cellular interactions, in this case between the inner ectoderm and outer visceral mesoderm. In this section of the gut, the ectoderm is essential for the proper specification and differentiation of the mesoderm, whereas the mesoderm is not required for the normal development of the ectoderm. Wingless and the fibroblast growth factor receptor Heartless act over sequential but interdependent phases of hindgut visceral mesoderm development. Wingless is required to establish the primordium and to enhance Heartless expression. Later, Heartless is required to promote the proper differentiation of the hindgut visceral mesoderm itself.
- Parker JS, Mizuguchi K, Gay NJ
- A family of proteins related to Spatzle, the toll receptor ligand, are encoded in the Drosophila genome.
- Proteins. 2001; 45: 71-80
- Display abstract
The Drosophila gene Spatzle encodes the activating ligand for the Toll receptor. This signaling pathway is required for dorso-ventral patterning in the early embryo and an antifungal immune response in larvae and adults. The genome sequence of Drosophila shows that there are a total of eight Toll-like receptors and these may function in other aspects of embryonic development and innate immunity. Here we describe five Drosophila homologues of Spatzle (Spz2-6) found using an iterative searching method. All five appear to encode proteins containing neurotrophin-like cystine-knot domains. In addition, most retain a characteristic intron-exon structure shared with the prototype Spatzle gene. This provides evidence that the family arose by ancient gene duplication events and indicates that the gene products may represent activating ligands for corresponding Toll receptors. Expression studies show that only Spz4 is expressed strongly in larvae and adults and thus may be involved in an ancillary antifungal response mediated by Toll-5. By contrast, Spz6 shows a complex spatial and temporally regulated expression pattern in the late embryo. Thus the new Toll/Spatzle families of signaling molecules may have important roles in other aspects of development and immunity.
- Okada T, Maeda A, Iwamatsu A, Gotoh K, Kurosaki T
- BCAP: the tyrosine kinase substrate that connects B cell receptor to phosphoinositide 3-kinase activation.
- Immunity. 2000; 13: 817-27
- Display abstract
Tyrosine phosphorylation of adaptor proteins permits the B cell antigen receptor (BCR)-associated protein tyrosine kinases to regulate downstream effector molecules. Here, we report the identification of a novel B cell adaptor for phosphoinositide 3-kinase (PI3K), termed BCAP. Tyrosine phosphorylation of BCAP is mediated by Syk and Btk, thereby providing binding site(s) for the p85 subunit of PI3K. Disruption of the BCAP gene in the DT40 B cell line inhibits BCR-mediated phosphatidylinositol 3,4,5-trisphosphate generation, leading to impaired Akt response. Moreover, recruitment of PI3K to glycolipid-enriched microdomains (GEMs) is significantly attenuated in the absence of BCAP. Hence, these data suggest that BCAP bridges BCR-associated kinases to the PI3K pathway by regulating PI3K localization.
- Corvera S
- Signal transduction: stuck with FYVE domains.
- Sci STKE. 2000; 2000: 1-1
- Display abstract
The FYVE domain is a protein motif that allows the interaction of cytosolic proteins with membranes containing the lipid phosphatidylinositol 3-phosphate. Structural information about FYVE domains has come from two crystal structures and NMR analysis. Corvera discusses how these structures differ and what they tell us about how proteins with FYVE domains interact with biological membranes. The Perspective also addresses how proteins with FYVE domains and protein internalization are involved in signal transduction.
- Imam F, Sutherland D, Huang W, Krasnow MA
- stumps, a Drosophila gene required for fibroblast growth factor (FGF)-directed migrations of tracheal and mesodermal cells.
- Genetics. 1999; 152: 307-18
- Display abstract
Fibroblast growth factors (FGFs) bind to FGF receptors, transmembrane tyrosine kinases that activate mitogenic, motogenic, and differentiative responses in different tissues. While there has been substantial progress in elucidating the Ras-MAP kinase pathway that mediates the differentiative responses, the signal transduction pathways that lead to directed cell migrations are not well defined. Here we describe a Drosophila gene called stumps that is required for FGF-dependent migrations of tracheal and mesodermal cells. These migrations are controlled by different FGF ligands and receptors, and they occur by different cellular mechanisms: the tracheal migrations occur as part of an epithelium whereas the mesodermal migrations are fibroblast-like. In the stumps mutant, tracheal cells fail to move out from the epithelial sacs, and only rudimentary tracheal branches form. Mesodermal cells fail in their dorsal migrations after gastrulation. The stumps mutation does not block all FGF signaling effects in these tissues: both random cell migrations and Ras-MAP kinase-mediated induction of FGF-specific effector genes occurred upon ectopic expression of the ligand or upon expression of a constitutively activated Ras protein in the migrating cells. The results suggest that stumps function promotes FGF-directed cell migrations, either by potentiating the FGF signaling process or by coupling the signal to the cellular machinery required for directed cell movement.
- Montell DJ
- The genetics of cell migration in Drosophila melanogaster and Caenorhabditis elegans development.
- Development. 1999; 126: 3035-46
- Display abstract
Cell migrations are found throughout the animal kingdom and are among the most dramatic and complex of cellular behaviors. Historically, the mechanics of cell migration have been studied primarily in vitro, where cells can be readily viewed and manipulated. However, genetic approaches in relatively simple model organisms are yielding additional insights into the molecular mechanisms underlying cell movements and their regulation during development. This review will focus on these simple model systems where we understand some of the signaling and receptor molecules that stimulate and guide cell movements. The chemotactic guidance factor encoded by the Caenorhabditis elegans unc-6 locus, whose mammalian homolog is Netrin, is perhaps the best known of the cell migration guidance factors. In addition, receptor tyrosine kinases (RTKs), and FGF receptors in particular, have emerged as key mediators of cell migration in vivo, confirming the importance of molecules that were initially identified and studied in cell culture. Somewhat surprisingly, screens for mutations that affect primordial germ cell migration in Drosophila have revealed that enzymes involved in lipid metabolism play a role in guiding cell migration in vivo, possibly by producing and/or degrading lipid chemoattractants or chemorepellents. Cell adhesion molecules, such as integrins, have been extensively characterized with respect to their contribution to cell migration in vitro and genetic evidence now supports a role for these receptors in certain instances in vivo as well. The role for non-muscle myosin in cell motility was controversial, but has now been demonstrated genetically, at least in some cell types. Currently the best characterized link between membrane receptor signaling and regulation of the actin cytoskeleton is that provided by the Rho family of small GTPases. Members of this family are clearly essential for the migrations of some cells; however, key questions remain concerning how chemoattractant and chemorepellent signals are integrated within the cell and transduced to the cytoskeleton to produce directed cell migration. New types of genetic screens promise to fill in some of these gaps in the near future.
- Metzger RJ, Krasnow MA
- Genetic control of branching morphogenesis.
- Science. 1999; 284: 1635-9
- Display abstract
The genetic programs that direct formation of the treelike branching structures of two animal organs have begun to be elucidated. In both the developing Drosophila tracheal (respiratory) system and mammalian lung, a fibroblast growth factor (FGF) signaling pathway is reiteratively used to pattern successive rounds of branching. The initial pattern of signaling appears to be established by early, more global embryonic patterning systems. The FGF pathway is then modified at each stage of branching by genetic feedback controls and other signals to give distinct branching outcomes. The reiterative use of a signaling pathway by both insects and mammals suggests a general scheme for patterning branching morphogenesis.
- Jarecki J, Johnson E, Krasnow MA
- Oxygen regulation of airway branching in Drosophila is mediated by branchless FGF.
- Cell. 1999; 99: 211-20
- Display abstract
The Drosophila tracheal (respiratory) system is a tubular epithelial network that delivers oxygen to internal tissues. Sprouting of the major tracheal branches is stereotyped and controlled by hard-wired developmental cues. Here we show that ramification of the fine terminal branches is variable and regulated by oxygen, and that this process is controlled by a local signal or signals produced by oxygen-starved cells. We provide evidence that the critical signal is Branchless (Bnl) FGF, the same growth factor that patterns the major branches during embryogenesis. During larval life, oxygen deprivation stimulates expression of Bnl, and the secreted growth factor functions as a chemoattractant that guides new terminal branches to the expressing cells. Thus, a single growth factor is reiteratively used to pattern each level of airway branching, and the change in branch patterning results from a switch from developmental to physiological control of its expression.
- Wang HY, Zamorano J, Keegan AD
- A role for the insulin-interleukin (IL)-4 receptor motif of the IL-4 receptor alpha-chain in regulating activation of the insulin receptor substrate 2 and signal transducer and activator of transcription 6 pathways. Analysis by mutagenesis.
- J Biol Chem. 1998; 273: 9898-905
- Display abstract
The interleukin (IL)-4 receptor alpha-chain (IL-4Ralpha) contains a sequence motif (488PLVIAGNPAYRSFSD) termed the insulin IL-4 receptor motif (I4R motif). Mutation of the central Tyr497 to Phe blocks the tyrosine phosphorylation of the insulin receptor substrate 1 (IRS1) and diminishes proliferation in response to IL-4. Recent data suggest that the I4R motif encodes binding sites for several protein tyrosine binding (PTB) domain-containing proteins such as IRS1 and Shc and potentially for the Src homology 2 domain of signal transducer and activator of transcription 6 (STAT6). To analyze the function of the I4R motif in regulating IL-4 signaling, we changed conserved residues upstream and downstream of the central Tyr to Ala in the human IL-4Ralpha. We analyzed the ability of these constructs to signal the tyrosine phosphorylation of IRS2 and STAT6, the induction of DNA binding activity, and CD23 induction in response to human IL-4 (huIL-4) in transfected M12.4.1 cells. Mutagenesis of residues downstream of Tyr497, such as Arg498 or Phe500, to Ala had no effect on any of these responses, suggesting that the I4R motif may not be important for functional Src homology 2 domain interactions. However, mutagenesis of Pro488 to Ala (P488A) greatly diminished the tyrosine phosphorylation of IRS2 and abolished tyrosine phosphorylation of STAT6, induction of DNA binding activity, and CD23 induction in response to huIL-4. By contrast, a P488G mutant signaled these responses to huIL-4. Mutagenesis of hydrophobic amino acids previously shown to contact the PTB domain of IRS1, Leu489 or Ile491, to Ala had only minimal effects on responses to huIL-4. However, changing both Leu498 and Ile491 to Ala greatly diminished the tyrosine phosphorylation of IRS2 and abolished STAT6 activation. Taken together, these results indicate the important role of the I4R motif in regulating IRS docking and suggest that I4R docking to a PTB domain-containing protein regulates activation of the STAT6 pathway.
- Selfors LM, Schutzman JL, Borland CZ, Stern MJ
- soc-2 encodes a leucine-rich repeat protein implicated in fibroblast growth factor receptor signaling.
- Proc Natl Acad Sci U S A. 1998; 95: 6903-8
- Display abstract
Activation of fibroblast growth factor (FGF) receptors elicits diverse cellular responses including growth, mitogenesis, migration, and differentiation. The intracellular signaling pathways that mediate these important processes are not well understood. In Caenorhabditis elegans, suppressors of clr-1 identify genes, termed soc genes, that potentially mediate or activate signaling through the EGL-15 FGF receptor. We demonstrate that three soc genes, soc-1, soc-2, and sem-5, suppress the activity of an activated form of the EGL-15 FGF receptor, consistent with the soc genes functioning downstream of EGL-15. We show that soc-2 encodes a protein composed almost entirely of leucine-rich repeats, a domain implicated in protein-protein interactions. We identified a putative human homolog, SHOC-2, which is 54% identical to SOC-2. We find that shoc-2 maps to 10q25, shoc-2 mRNA is expressed in all tissues assayed, and SHOC-2 protein is cytoplasmically localized. Within the leucine-rich repeats of both SOC-2 and SHOC-2 are two YXNX motifs that are potential tyrosine-phosphorylated docking sites for the SEM-5/GRB2 Src homology 2 domain. However, phosphorylation of these residues is not required for SOC-2 function in vivo, and SHOC-2 is not observed to be tyrosine phosphorylated in response to FGF stimulation. We conclude that this genetic system has allowed for the identification of a conserved gene implicated in mediating FGF receptor signaling in C. elegans.
- Michelson AM, Gisselbrecht S, Buff E, Skeath JB
- Heartbroken is a specific downstream mediator of FGF receptor signalling in Drosophila.
- Development. 1998; 125: 4379-89
- Display abstract
Drosophila possesses two FGF receptors which are encoded by the heartless and breathless genes. HEARTLESS is essential for early migration and patterning of the embryonic mesoderm, while BREATHLESS is required for proper branching of the tracheal system. We have identified a new gene, heartbroken, that participates in the signalling pathways of both FGF receptors. Mutations in heartbroken are associated with defects in the migration and later specification of mesodermal and tracheal cells. Genetic interaction and epistasis experiments indicate that heartbroken acts downstream of the two FGF receptors but either upstream of or parallel to RAS1. Furthermore, heartbroken is involved in both the HEARTLESS- and BREATHLESS-dependent activation of MAPK. In contrast, EGF receptor-dependent embryonic functions and MAPK activation are not perturbed in heartbroken mutant embryos. A strong heartbroken allele also suppresses the effects of hyperactivated FGF but not EGF receptors. Thus, heartbroken may contribute to the specificity of developmental responses elicited by FGF receptor signalling.
- DeLotto Y, DeLotto R
- Proteolytic processing of the Drosophila Spatzle protein by easter generates a dimeric NGF-like molecule with ventralising activity.
- Mech Dev. 1998; 72: 141-8
- Display abstract
Biochemical interactions underlying the generation of the ventralising signal during Drosophila embryogenesis were investigated by the expression of recombinant Easter and Spatzle proteins. An active form of Easter protease cleaves the Spatzle protein, generating a carboxyterminal polypeptide fragment which, when microinjected into the perivitelline space of a spatzle deficient embryo, directs production of ventrolateral pattern elements. This Spatzle carboxyterminal fragment is a disulfide-linked dimer and modelling suggests that the core disulfide bonds and dimer arrangement of this fragment are highly similar to vertebrate nerve growth factor. Thus Spatzle is a member of a new family of neurotrophin-like signalling molecules in invertebrate development.
- Byrne JA, Nourse CR, Basset P, Gunning P
- Identification of homo- and heteromeric interactions between members of the breast carcinoma-associated D52 protein family using the yeast two-hybrid system.
- Oncogene. 1998; 16: 873-81
- Display abstract
The hD52 gene was originally identified through its elevated expression level in human breast carcinoma. Cloning of D52 homologues from other species has indicated that D52 may play roles in calcium-mediated signal transduction and cell proliferation. Two human homologues of hD52, hD53 and hD54, have also been identified, demonstrating the existence of a novel gene/protein family. Since D52-like protein sequences are all predicted to contain a coiled-coil domain, we used the yeast two-hybrid system and glutathione S-transferase pull-down assays to investigate whether homo- and/or heteromeric interactions occur between D52-like proteins. Analyses of yeast strains co-transfected with paired D52-like constructs indicated that D52-like fusion proteins interact in homo- and heteromeric fashions through their predicted coiled-coil domains. Similarly, extensive two-hybrid screenings of a human breast carcinoma expression library identified hD53 and hD52 as potential interactors for both hD52 and hD53 baits. Thus, D52-like proteins appear to exert and/or regulate their activities through specific interactions with other D52-like proteins, which in turn may be intrinsic to potential roles of these molecules in controlling cell proliferation.
- Ong SH, Lim YP, Low BC, Guy GR
- SHP2 associates directly with tyrosine phosphorylated p90 (SNT) protein in FGF-stimulated cells.
- Biochem Biophys Res Commun. 1997; 238: 261-6
- Display abstract
In a number of cell lines responsive to basic fibroblast growth factor (bFGF), two major tyrosine phosphorylated proteins, of molecular weights around 120kDa and 90kDa, are precipitated along with the tyrosine phosphatase SHP2 from the lysates of stimulated cells. The docker protein Gab-1 represents at least part of the 120kDa protein(s). The p90 protein was identified as the SNT protein. The two SH2 domains of SHP2 bind directly and synergistically to tyrosine phosphorylated SNT. Tyrosine phosphorylated SNT does not bind SHP1 and does not appear to be an in vivo substrate of SHP2 but is likely to function as an adapter protein in FGF-signalling.
- Ohshiro T, Saigo K
- Transcriptional regulation of breathless FGF receptor gene by binding of TRACHEALESS/dARNT heterodimers to three central midline elements in Drosophila developing trachea.
- Development. 1997; 124: 3975-86
- Display abstract
The development of Drosophila trachea is under the control of spatially and/or quantitatively regulated activity of BREATHLESS FGF receptor, which is also essential for midline glial migration. Here, we identified the minimum enhancer region of breathless, cloned the Drosophila ARNT gene (dARNT), and showed biochemical and genetic evidence that breathless expression in developing trachea is regulated by direct interactions between TRACHEALESS/dARNT heterodimers and three central midline elements (TACGTGs) situated in the minimum enhancer region. Our results also showed that SINGLE-MINDED/dARNT heterodimers, which are essential for breathless expression in midline precursor cells, share DNA targets in common with TRACHEALESS/dARNT, indicating that two different basic helix-loop-helix-PAS protein complexes act through the same target sites in vivo.
- Anderson MG, Certel SJ, Certel K, Lee T, Montell DJ, Johnson WA
- Function of the Drosophila POU domain transcription factor drifter as an upstream regulator of breathless receptor tyrosine kinase expression in developing trachea.
- Development. 1996; 122: 4169-78
- Display abstract
Organogenesis of the Drosophila tracheal system involves extensive directed cell migrations leading to a stereotypic series of interconnected tubules. Although numerous gene products have been shown to be essential for tracheal morphogenesis, direct functional relationships between participants have not been previously established. Both the breathless gene, encoding a Drosophila fibroblast growth factor receptor tyrosine kinase homologue, and the POU-domain transcription factor gene, drifter, are expressed in all tracheal cells and are essential for directed cell migrations. We demonstrate here that ubiquitously expressed Breathless protein under control of a heterologous heat-shock promoter is able to rescue the severely disrupted tracheal phenotype associated with drifter loss-of-function mutations. In the absence of Drifter function, breathless expression is initiated normally but transcript levels fall drastically to undetectable levels as tracheal differentiation proceeds. In addition, breathless regulatory DNA contains seven high affinity Drifter binding sites similar to previously identified Drifter recognition elements. These results suggest that the Drifter protein, which maintains its own expression through a tracheal-specific autoregulatory enhancer, is not necessary for initiation of breathless expression but functions as a direct transcriptional regulator necessary for maintenance of breathless transcripts at high levels during tracheal cell migration. This example of a mechanism for maintenance of a committed cell fate offers a model for understanding how essential gene activities can be maintained throughout organogenesis.
- Neilson KM, Friesel R
- Ligand-independent activation of fibroblast growth factor receptors by point mutations in the extracellular, transmembrane, and kinase domains.
- J Biol Chem. 1996; 271: 25049-57
- Display abstract
The fibroblast growth factor receptors (FGFRs) are a family of receptor protein tyrosine kinases that have been shown to mediate a variety of cellular processes including angiogenesis, wound healing, tumorigenesis, and embryonic development. Distinct FGFR mutations in individuals with autosomal dominant disorders of bone growth and development provide a unique opportunity to determine the function of FGFRs during embryonic development. To determine the consequences of these mutations on receptor function, we have made mutations in Xenopus FGFR1 (XFGFR1) and FGFR2 (XFGFR2) that correspond to several of the mutations identified in these dysmorphic syndromes. Analysis of mutant receptor proteins expressed in Xenopus oocytes indicates that all but one have elevated tyrosine kinase activity relative to their wild-type counterparts. Those mutations that give an unpaired cysteine residue in the extracellular domain result in intermolecular disulfide bond formation and covalent receptor dimerization. Microinjection of Xenopus embryos with RNA encoding mutant receptors with elevated tyrosine kinase activity results in ligand-independent induction of mesoderm in animal pole explants. Wild-type XFGFR1 and XFGFR2 do not induce mesoderm when injected at similar doses. Co-injection of RNA encoding a dominant negative FGF receptor, lacking the tyrosine kinase domain, together with RNA encoding various activated FGFRs inhibits mesoderm induction by a receptor activated by a transmembrane domain mutation or extracellular mutations that introduce an unpaired cysteine residue into the extracellular domain but does not inhibit mesoderm induction by receptors bearing a tyrosine kinase domain mutation. These results indicate that different point mutations may activate FGFRs by distinct mechanisms and that ligand-independent FGFR activation may be a feature in common to many skeletal disorders.
- Raabe T et al.
- DOS, a novel pleckstrin homology domain-containing protein required for signal transduction between sevenless and Ras1 in Drosophila.
- Cell. 1996; 85: 911-20
- Display abstract
The specification of the R7 photoreceptor cell in the developing eye of Drosophila is dependent upon activation of the Sevenless (SEV) receptor tyrosine kinase. By screening for mutations that suppress signaling via a constitutively activated SEV protein, we have identified a novel gene, daughter of sevenless (dos). DOS is required not only for signal transduction via SEV but also in other receptor tyrosine kinase signaling pathways throughout development. The presence of an amino-terminally located pleckstrin homology domain and many potential tyrosine phosphorylation sites suggests that DOS functions as an adaptor protein able to interact with multiple signaling molecules. Our genetic analysis demonstrates that DOS functions upstream of Ras1 and defines a signaling pathway that is independent of direct binding of the DRK SH2/SH3 adaptor protein to the SEV receptor tyrosine kinase.
- Uren AG, Vaux DL
- TRAF proteins and meprins share a conserved domain.
- Trends Biochem Sci. 1996; 21: 244-5
- Lee T, Hacohen N, Krasnow M, Montell DJ
- Regulated Breathless receptor tyrosine kinase activity required to pattern cell migration and branching in the Drosophila tracheal system.
- Genes Dev. 1996; 10: 2912-21
- Display abstract
Receptor tyrosine kinases (RTKs) are members of a diverse class of signaling molecules well known for their roles in cell fate specification, cell differentiation, and oncogenic transformation. Recently several RTKs have been implicated in cell and axon motility, and RTKs are known to mediate chemotactic guidance of tissue culture cells. We have investigated whether the Drosophila FGF receptor homolog, Breathless (BTL), whose activity is necessary for each phase of branching morphogenesis in the embryonic tracheal system, might play a role in guiding the directed migration of tracheal cells. We found that expression of a constitutively active receptor during tracheal development interfered with directed tracheal cell migration and led to extra secondary and terminal branch-forming cells. Reduction in endogenous BTL signaling enhanced the cell migration defects while suppressing the ectopic branching defects. These results are consistent with a model for tracheal development in which spatially regulated BTL activity guides tracheal cell migration and quantitatively regulated BTL activity determines the patterns of secondary and terminal branching cell fates.
- Simon MA, Dodson GS, Rubin GM
- An SH3-SH2-SH3 protein is required for p21Ras1 activation and binds to sevenless and Sos proteins in vitro.
- Cell. 1993; 73: 169-77
- Display abstract
Activation of the sevenless protein-tyrosine kinase is required for the proper specification of R7 photoreceptors in the Drosophila eye. The activation of a Ras protein, p21Ras1, is a crucial early event in the signaling pathway, and constitutive activation of p21Ras1 is sufficient to induce all of the effects of sevenless action. Here we report that another gene, E(sev)2B, required for proper signaling by sevenless encodes a protein of the structure SH3-SH2-SH3. We further provide evidence that the E(sev)2B protein is required for activation of p21Ras1 but not for any subsequent events, and that this protein can bind in vitro to sevenless and to Son of sevenless (Sos), a putative guanine nucleotide exchange factor for p21Ras1. These results suggest that the E(sev)2B protein may act to stimulate the ability of Sos to catalyze p21Ras1 activation by linking sevenless and Sos in a signaling complex. We have renamed the E(sev)2B locus downstream of receptor kinases (drk).
- Olivier JP et al.
- A Drosophila SH2-SH3 adaptor protein implicated in coupling the sevenless tyrosine kinase to an activator of Ras guanine nucleotide exchange, Sos.
- Cell. 1993; 73: 179-91
- Display abstract
A Drosophila gene (drk) encodes a widely expressed protein with a single SH2 domain and two flanking SH3 domains, which is homologous to the Sem-5 protein of C. elegans and mammalian GRB2. Genetic analysis suggests that drk function is essential for signaling by the sevenless receptor tyrosine kinase. Drk biological activity correlates with binding of its SH2 domain to activated receptor tyrosine kinases and concomitant localization of drk to the plasma membrane. In vitro, drk also binds directly to the C-terminal tail of Sos, a Ras guanine nucleotide-releasing protein (GNRP), which, like Ras1 and drk, is required for sevenless signaling. These results suggest that drk binds autophosphorylated receptor tyrosine kinases with its SH2 domain and the Sos GNRP through its SH3 domains, thereby coupling receptor tyrosine kinases to Ras activation. The conservation of these signaling proteins during evolution indicates that this is a general mechanism for linking tyrosine kinases to Ras.
- Shi E, Kan M, Xu J, Wang F, Hou J, McKeehan WL
- Control of fibroblast growth factor receptor kinase signal transduction by heterodimerization of combinatorial splice variants.
- Mol Cell Biol. 1993; 13: 3907-18
- Display abstract
A differentiated liver cell (HepG2), which exhibits a dose-dependent growth-stimulatory and growth-inhibitory response to heparin-binding fibroblast growth factor type 1 (FGF-1), displays high- and low-affinity receptor phenotypes and expresses specific combinatorial splice variants alpha 1, beta 1, and alpha 2 of the FGF receptor (FGF-R) gene (flg). The extracellular domains of the alpha and beta variants consist of three and two immunoglobulin loops, respectively, while the intracellular variants consist of a tyrosine kinase (type 1) isoform and a kinase-defective (type 2) isoform. The type 2 isoform is also devoid of the two major intracellular tyrosine autophosphorylation sites (Tyr-653 and Tyr-766) in the type 1 kinase. An analysis of ligand affinity, dimerization, autophosphorylation, and interaction with src homology region 2 (SH2) substrates of the recombinant alpha 1, beta 1, and alpha 2 isoforms was carried out to determine whether dimerization of the combinatorial splice variants might explain the dose-dependent opposite mitogenic effects of FGF. Scatchard analysis indicated that the alpha and beta isoforms exhibit low and high affinity for ligand, respectively. The three combinatorial splice variants dimerized in all combinations. FGF enhanced dimerization and kinase activity, as assessed by receptor autophosphorylation. Phosphopeptide analysis revealed that phosphorylation of Tyr-653 was reduced relative to phosphorylation of Tyr-766 in the type 1 kinase component of heterodimers of the type 1 and type 2 isoforms. The SH2 domain substrate, phospholipase C gamma 1 (PLC gamma 1), associated with the phosphorylated type 1-type 2 heterodimers but was phosphorylated only in preparations containing the type 1 kinase homodimer. The results suggest that phosphorylation of Tyr-653 within the kinase catalytic domain, but not Tyr-766 in the COOH-terminal domain, may be stringently dependent on a trans intermolecular mechanism within FGF-R kinase homodimers. Although phosphotyrosine 766 is sufficient for interaction of PLC gamma 1 and other SH2 substrates with the FGF-R kinase, phosphorylation and presumably activation of substrates require the kinase homodimer and phosphorylation of Tyr-653. We propose that complexes of phosphotyrosine 766 kinase monomers and SH2 domain signal transducers may constitute unactivated presignal complexes whose active or inactive fate depends on homodimerization with a kinase or heterodimerization with a kinase-defective monomer, respectively. The results suggest a mechanism for control of signal transduction by different concentrations of ligand through heterodimerization of combinatorial splice variants from the same receptor gene.
- Pazin MJ, Williams LT
- Triggering signaling cascades by receptor tyrosine kinases.
- Trends Biochem Sci. 1992; 17: 374-8
- Display abstract
Growth factor receptors that are tyrosine kinases (RTKs) regulate growth and differentiation of cells in many organisms, including flies, worms, frogs, mice and humans. There has been recent progress in understanding the mechanism by which these receptors transduce signals. Worm and insect studies on RTKs have relied primarily on genetics, while the mammalian studies have employed a combination of molecular genetics and biochemistry. While many RTKs seem to have unique features, there are also many general signal transduction principles that emerge from these studies. In this review, we will focus on common signaling molecules, using RTKs from both vertebrates and invertebrates as examples.
- Mohammadi M et al.
- Point mutation in FGF receptor eliminates phosphatidylinositol hydrolysis without affecting mitogenesis.
- Nature. 1992; 358: 681-4
- Display abstract
Stimulation of growth factor receptors with tyrosine kinase activity is followed by rapid receptor dimerization, tyrosine autophosphorylation and phosphorylation of signalling molecules such as phospholipase C gamma (PLC gamma) and the ras GTPase-activating protein. PLC gamma and GTPase-activating protein bind to specific tyrosine-phosphorylated regions in growth factor receptors through their src-homologous SH2 domains. Growth factor-induced tyrosine phosphorylation of PLC gamma is essential for stimulation of phosphatidylinositol hydrolysis in vitro and in vivo. We have shown that a short phosphorylated peptide containing tyrosine at position 766 from a conserved region of the fibroblast growth factor (FGF) receptor is a binding site for the SH2 domain of PLC gamma (ref. 8). Here we show that an FGF receptor point mutant in which Tyr 766 is replaced by a phenylalanine residue (Y766F) is unable to associate with and tyrosine-phosphorylate PLC gamma or to stimulate hydrolysis of phosphatidylinositol. Nevertheless, the Y766F FGF receptor mutant can be autophosphorylated, and can phosphorylate several cellular proteins and stimulate DNA synthesis. Our data show that phosphorylation of the conserved Tyr 766 of the FGF receptor is essential for phosphorylation of PLC gamma and for hydrolysis of phosphatidylinositol, but that elimination of this hydrolysis does not affect FGF-induced mitogenesis.
- Marengere LE, Pawson T
- Identification of residues in GTPase-activating protein Src homology 2 domains that control binding to tyrosine phosphorylated growth factor receptors and p62.
- J Biol Chem. 1992; 267: 22779-86
- Display abstract
Ras GTPase-activating protein (GAP) contains two Src homology 2 (SH2) domains which are implicated in binding to tyrosine-phosphorylated sites in specific activated growth factor receptors and to a cytoplasmic tyrosine-phosphorylated protein, p62. We have used site-directed mutagenesis of the two GAP SH2 domains (SH2-N and SH2-C) to identify residues involved in receptor and p62 binding. A bacterial fusion protein containing the precise SH2-N domain, as defined by sequence homology, associated with both the activated beta platelet-derived growth factor receptor and epidermal growth factor receptor, and p62 in vitro. However, short deletions at either the N or C termini of the SH2-N domain abolished binding, suggesting that the entire SH2 sequence is required for formation of an active domain. Conservative substitutions of 2 highly conserved basic residues in the SH2-N domain, an arginine and a histidine, resulted in complete loss of receptor and p62 binding, whereas other basic residues, and residues at variable SH2 sites, were more tolerant of substitution. The conserved arginine and histidine therefore appear critical for association with phosphotyrosine-containing proteins, possibly through an interaction with phosphotyrosine. The GAP SH2-C domain, unlike SH2-N, does not bind efficiently to activated receptors or p62 in vitro. The SH2-C domain lacks 3 residues which are otherwise well conserved, and contribute to high affinity SH2-N binding. Replacement of 1 of these residues, a cysteine, with the consensus glycine, conferred SH2-C binding activity toward tyrosine-phosphorylated p62 and epidermal growth factor receptor. Loss-of-function and gain-of-function mutations in the GAP SH2 domains can therefore be used to identify residues that are critical for receptor and p62 binding.
- Glazer L, Shilo BZ
- The Drosophila FGF-R homolog is expressed in the embryonic tracheal system and appears to be required for directed tracheal cell extension.
- Genes Dev. 1991; 5: 697-705
- Display abstract
The Drosophila homolog of the vertebrate fibroblast growth factor receptor (FGF-R) was isolated by low-stringency hybridization. In contrast to the diversity of this subclass of receptor tyrosine kinases in vertebrates, the Drosophila genome appears to encode only a single homolog. Nucleotide sequence analysis demonstrates that the Drosophila FGF-R homolog (DFGF-R) protein has a conserved sequence, size, and organization. The extracellular region encodes three immunoglobulin-like domains, and the cytoplasmic kinase domain exhibits a high degree of similarity to the vertebrate FGF-Rs with the typical split kinase and comparably sized juxtamembrane and carboxy-terminal regions. The DFGF-R was mapped to position 70C on the third chromosome, and two overlapping chromosomal deficiencies that remove the gene were identified. Developmental Northern blots show that the gene has a single transcript of 4.3 kb and is expressed at all stages of development. Localization of the transcript and protein in embryos has shown that the gene is predominantly expressed in a restricted set of tissues: the developing tracheal system and the delaminating midline glial and neural cells. In embryos homozygous for a deletion of several genes including the DFGF-R locus, the initial formation of the tracheal pits is not affected. However, the extension of tracheal cell processes leading to the formation of the elaborate tree structure is blocked. The DFGF-R protein may thus participate in receiving spatial cues that guide tracheal cell outgrowth.