Secondary literature sources for H2TH
The following references were automatically generated.
- Kuznetsov NA et al.
- Active destabilization of base pairs by a DNA glycosylase wedge initiates damage recognition.
- Nucleic Acids Res. 2015; 43: 272-81
- Display abstract
Formamidopyrimidine-DNA glycosylase (Fpg) excises 8-oxoguanine (oxoG) from DNA but ignores normal guanine. We combined molecular dynamics simulation and stopped-flow kinetics with fluorescence detection to track the events in the recognition of oxoG by Fpg and its mutants with a key phenylalanine residue, which intercalates next to the damaged base, changed to either alanine (F110A) or fluorescent reporter tryptophan (F110W). Guanine was sampled by Fpg, as evident from the F110W stopped-flow traces, but less extensively than oxoG. The wedgeless F110A enzyme could bend DNA but failed to proceed further in oxoG recognition. Modeling of the base eversion with energy decomposition suggested that the wedge destabilizes the intrahelical base primarily through buckling both surrounding base pairs. Replacement of oxoG with abasic (AP) site rescued the activity, and calculations suggested that wedge insertion is not required for AP site destabilization and eversion. Our results suggest that Fpg, and possibly other DNA glycosylases, convert part of the binding energy into active destabilization of their substrates, using the energy differences between normal and damaged bases for fast substrate discrimination.
- Biela A et al.
- Zinc finger oxidation of Fpg/Nei DNA glycosylases by 2-thioxanthine: biochemical and X-ray structural characterization.
- Nucleic Acids Res. 2014; 42: 10748-61
- Display abstract
DNA glycosylases from the Fpg/Nei structural superfamily are base excision repair enzymes involved in the removal of a wide variety of mutagen and potentially lethal oxidized purines and pyrimidines. Although involved in genome stability, the recent discovery of synthetic lethal relationships between DNA glycosylases and other pathways highlights the potential of DNA glycosylase inhibitors for future medicinal chemistry development in cancer therapy. By combining biochemical and structural approaches, the physical target of 2-thioxanthine (2TX), an uncompetitive inhibitor of Fpg, was identified. 2TX interacts with the zinc finger (ZnF) DNA binding domain of the enzyme. This explains why the zincless hNEIL1 enzyme is resistant to 2TX. Crystal structures of the enzyme bound to DNA in the presence of 2TX demonstrate that the inhibitor chemically reacts with cysteine thiolates of ZnF and induces the loss of zinc. The molecular mechanism by which 2TX inhibits Fpg may be generalized to all prokaryote and eukaryote ZnF-containing Fpg/Nei-DNA glycosylases. Cell experiments show that 2TX can operate in cellulo on the human Fpg/Nei DNA glycosylases. The atomic elucidation of the determinants for the interaction of 2TX to Fpg provides the foundation for the future design and synthesis of new inhibitors with high efficiency and selectivity.
- Burroughs AM, Aravind L
- A highly conserved family of domains related to the DNA-glycosylase fold helps predict multiple novel pathways for RNA modifications.
- RNA Biol. 2014; 11: 360-72
- Display abstract
A protein family including mammalian NEMF, Drosophila caliban, yeast Tae2, and bacterial FpbA-like proteins was first defined over a decade ago and found to be universally distributed across the three domains/superkingdoms of life. Since its initial characterization, this family of proteins has been tantalizingly linked to a wide range of biochemical functions. Tapping the enormous wealth of genome information that has accumulated since the initial characterization of these proteins, we perform a detailed computational analysis of the family, identifying multiple conserved domains. Domains identified include an enzymatic domain related to the formamidopyrimidine (Fpg), MutM, and Nei/EndoVIII family of DNA glycosylases, a novel, predicted RNA-binding domain, and a domain potentially mediating protein-protein interactions. Through this characterization, we predict that the DNA glycosylase-like domain catalytically operates on double-stranded RNA, as part of a hitherto unknown base modification mechanism that probably targets rRNAs. At least in archaea, and possibly eukaryotes, this pathway might additionally include the AMMECR1 family of proteins. The predicted RNA-binding domain associated with this family is also observed in distinct architectural contexts in other proteins across phylogenetically diverse prokaryotes. Here it is predicted to play a key role in a new pathway for tRNA 4-thiouridylation along with TusA-like sulfur transfer proteins.
- Lee AJ, Warshaw DM, Wallace SS
- Insights into the glycosylase search for damage from single-molecule fluorescence microscopy.
- DNA Repair (Amst). 2014; 20: 23-31
- Display abstract
The first step of base excision repair utilizes glycosylase enzymes to find damage within a genome. A persistent question in the field of DNA repair is how glycosylases interact with DNA to specifically find and excise target damaged bases with high efficiency and specificity. Ensemble studies have indicated that glycosylase enzymes rely upon both sliding and distributive modes of search, but ensemble methods are limited in their ability to directly observe these modes. Here we review insights into glycosylase scanning behavior gathered through single-molecule fluorescence studies of enzyme interactions with DNA and provide a context for these results in relation to ensemble experiments.
- Zhou T et al.
- Structural basis for hydroxymethylcytosine recognition by the SRA domain of UHRF2.
- Mol Cell. 2014; 54: 879-86
- Display abstract
Methylated cytosine of CpG dinucleotides in vertebrates may be oxidized by Tet proteins, a process that can lead to DNA demethylation. The predominant oxidation product, 5-hydroxymethylcytosine (5hmC), has been implicated in embryogenesis, cell differentiation, and human diseases. Recently, the SRA domain of UHRF2 (UHRF2-SRA) has been reported to specifically recognize 5hmC, but how UHRF2 recognizes this modification is unclear. Here we report the structure of UHRF2-SRA in complex with a 5hmC-containing DNA. The structure reveals that the conformation of a phenylalanine allows the formation of an optimal 5hmC binding pocket, and a hydrogen bond between the hydroxyl group of 5hmC and UHRF2-SRA is critical for their preferential binding. Further structural and biochemical analyses unveiled the role of SRA domains as a versatile reader of modified DNA, and the knowledge should facilitate further understanding of the biological function of UHRF2 and the comprehension of DNA hydroxymethylation in general.
- Prakash A, Eckenroth BE, Averill AM, Imamura K, Wallace SS, Doublie S
- Structural investigation of a viral ortholog of human NEIL2/3 DNA glycosylases.
- DNA Repair (Amst). 2013; 12: 1062-71
- Display abstract
Assault to DNA that leads to oxidative base damage is repaired by the base excision repair (BER) pathway with specialized enzymes called DNA glycosylases catalyzing the first step of this pathway. These glycosylases can be categorized into two families: the HhH superfamily, which includes endonuclease III (or Nth), and the Fpg/Nei family, which comprises formamidopyrimidine DNA glycosylase (or Fpg) and endonuclease VIII (or Nei). In humans there are three Nei-like (NEIL) glycosylases: NEIL1, 2, and 3. Here we present the first crystal structure of a viral ortholog of the human NEIL2/NEIL3 proteins, Mimivirus Nei2 (MvNei2), determined at 2.04A resolution. The C-terminal region of the MvNei2 enzyme comprises two conserved DNA binding motifs: the helix-two-turns-helix (H2TH) motif and a C-H-C-C type zinc-finger similar to that of human NEIL2. The N-terminal region of MvNei2 is most closely related to NEIL3. Like NEIL3, MvNei2 bears a valine at position 2 instead of the usual proline and it lacks two of the three conserved void-filling residues present in other members of the Fpg/Nei family. Mutational analysis of the only conserved void-filling residue methionine 72 to alanine yields an MvNei2 variant with impaired glycosylase activity. Mutation of the adjacent His73 causes the enzyme to be more productive thereby suggesting a plausible role for this residue in the DNA lesion search process.
- Brooks SC, Adhikary S, Rubinson EH, Eichman BF
- Recent advances in the structural mechanisms of DNA glycosylases.
- Biochim Biophys Acta. 2013; 1834: 247-71
- Display abstract
DNA glycosylases safeguard the genome by locating and excising a diverse array of aberrant nucleobases created from oxidation, alkylation, and deamination of DNA. Since the discovery 28years ago that these enzymes employ a base flipping mechanism to trap their substrates, six different protein architectures have been identified to perform the same basic task. Work over the past several years has unraveled details for how the various DNA glycosylases survey DNA, detect damage within the duplex, select for the correct modification, and catalyze base excision. Here, we provide a broad overview of these latest advances in glycosylase mechanisms gleaned from structural enzymology, highlighting features common to all glycosylases as well as key differences that define their particular substrate specificities.
- Fedorova OS, Tsvetkov YD
- Pulsed electron double resonance in structural studies of spin-labeled nucleic acids.
- Acta Naturae. 2013; 5: 9-32
- Display abstract
This review deals with the application of the pulsed electron double resonance (PELDOR) method to studies of spin-labeled DNA and RNA with complicated spatial structures, such as tetramers, aptamers, riboswitches, and three- and four-way junctions. The use of this method for studying DNA damage sites is also described.
- Swiercz JP, Nanji T, Gloyd M, Guarne A, Elliot MA
- A novel nucleoid-associated protein specific to the actinobacteria.
- Nucleic Acids Res. 2013; 41: 4171-84
- Display abstract
Effective chromosome organization is central to the functioning of any cell. In bacteria, this organization is achieved through the concerted activity of multiple nucleoid-associated proteins. These proteins are not, however, universally conserved, and different groups of bacteria have distinct subsets that contribute to chromosome architecture. Here, we describe the characterization of a novel actinobacterial-specific protein in Streptomyces coelicolor. We show that sIHF (SCO1480) associates with the nucleoid and makes important contributions to chromosome condensation and chromosome segregation during Streptomyces sporulation. It also affects antibiotic production, suggesting an additional role in gene regulation. In vitro, sIHF binds DNA in a length-dependent but sequence-independent manner, without any obvious structural preferences. It does, however, impact the activity of topoisomerase, significantly altering DNA topology. The sIHF-DNA co-crystal structure reveals sIHF to be composed of two domains: a long N-terminal helix and a C-terminal helix-two turns-helix domain with two separate DNA interaction sites, suggesting a potential role in bridging DNA molecules.
- Wallace SS
- DNA glycosylases search for and remove oxidized DNA bases.
- Environ Mol Mutagen. 2013; 54: 691-704
- Display abstract
This review article presents, an overview of the DNA glycosylases that recognize oxidized DNA bases using the Fpg/Nei family of DNA glycosylases as models for how structure can inform function. For example, even though human NEIL1 and the plant and fungal orthologs lack the zinc finger shown to be required for binding, DNA crystal structures revealed a "zincless finger" with the same properties. Moreover, the "lesion recognition loop" is not involved in lesion recognition, rather, it stabilizes 8-oxoG in the active site pocket. Unlike the other Fpg/Nei family members, Neil3 lacks two of the three void-filling residues that stabilize the DNA duplex and interact with the opposite strand to the damage which may account for its preference for lesions in single-stranded DNA. Also single-molecule approaches show that DNA glycosylases search for their substrates in a sea of undamaged DNA by using a wedge residue that is inserted into the DNA helix to probe for the presence of damage.
- Liu M, Imamura K, Averill AM, Wallace SS, Doublie S
- Structural characterization of a mouse ortholog of human NEIL3 with a marked preference for single-stranded DNA.
- Structure. 2013; 21: 247-56
- Display abstract
Endonuclease VIII-like 3 (Neil3) is a DNA glycosylase of the base excision repair pathway that protects cells from oxidative DNA damage by excising a broad spectrum of cytotoxic and mutagenic base lesions. Interestingly, Neil3 exhibits an unusual preference for DNA with single-stranded regions. Here, we report the 2.0 A crystal structure of a Neil3 enzyme. Although the glycosylase region of mouse Neil3 (MmuNeil3Delta324) exhibits the same overall fold as that of other Fpg/Nei proteins, it presents distinct structural features. First, MmuNeil3Delta324 lacks the alphaF-beta9/10 loop that caps the flipped-out 8-oxoG in bacterial Fpg, which is consistent with its inability to cleave 8-oxoguanine. Second, Neil3 not only lacks two of the three void-filling residues that stabilize the opposite strand, but it also harbors negatively charged residues that create an unfavorable electrostatic environment for the phosphate backbone of that strand. These structural features provide insight into the substrate specificity and marked preference of Neil3 for ssDNA.
- Rubinson EH, Christov PP, Eichman BF
- Depurination of N7-methylguanine by DNA glycosylase AlkD is dependent on the DNA backbone.
- Biochemistry. 2013; 52: 7363-5
- Display abstract
DNA glycosylase AlkD excises N7-methylguanine (7mG) by a unique but unknown mechanism, in which the damaged nucleotide is positioned away from the protein and the phosphate backbone is distorted. Here, we show by methylphosphonate substitution that a phosphate proximal to the lesion has a significant effect on the rate enhancement of 7mG depurination by the enzyme. Thus, instead of a conventional mechanism whereby protein side chains participate in N-glycosidic bond cleavage, AlkD remodels the DNA into an active site composed exclusively of DNA functional groups that provide the necessary chemistry to catalyze depurination.
- Dalhus B et al.
- Sculpting of DNA at abasic sites by DNA glycosylase homolog mag2.
- Structure. 2013; 21: 154-66
- Display abstract
Modifications and loss of bases are frequent types of DNA lesions, often handled by the base excision repair (BER) pathway. BER is initiated by DNA glycosylases, generating abasic (AP) sites that are subsequently cleaved by AP endonucleases, which further pass on nicked DNA to downstream DNA polymerases and ligases. The coordinated handover of cytotoxic intermediates between different BER enzymes is most likely facilitated by the DNA conformation. Here, we present the atomic structure of Schizosaccharomyces pombe Mag2 in complex with DNA to reveal an unexpected structural basis for nonenzymatic AP site recognition with an unflipped AP site. Two surface-exposed loops intercalate and widen the DNA minor groove to generate a DNA conformation previously only found in the mismatch repair MutS-DNA complex. Consequently, the molecular role of Mag2 appears to be AP site recognition and protection, while possibly facilitating damage signaling by structurally sculpting the DNA substrate.
- Prakash A, Doublie S, Wallace SS
- The Fpg/Nei family of DNA glycosylases: substrates, structures, and search for damage.
- Prog Mol Biol Transl Sci. 2012; 110: 71-91
- Display abstract
During the initial stages of the base excision DNA repair pathway, DNA glycosylases are responsible for locating and removing the majority of endogenous oxidative base lesions. The bifunctional formamidopyrimidine DNA glycosylase (Fpg) and endonuclease VIII (Nei) are members of the Fpg/Nei family, one of the two families of glycosylases that recognize oxidized DNA bases, the other being the HhH/GPD (or Nth) superfamily. Structural and biochemical developments over the past decades have led to novel insights into the mechanism of damage recognition by the Fpg/Nei family of enzymes. Despite the overall structural similarity among members of this family, these enzymes exhibit distinct features that make them unique. This review summarizes the current structural knowledge of the Fpg/Nei family members, emphasizes their substrate specificities, and describes how these enzymes search for lesions.
- Qi Y et al.
- Strandwise translocation of a DNA glycosylase on undamaged DNA.
- Proc Natl Acad Sci U S A. 2012; 109: 1086-91
- Display abstract
Base excision repair of genotoxic nucleobase lesions in the genome is critically dependent upon the ability of DNA glycosylases to locate rare sites of damage embedded in a vast excess of undamaged DNA, using only thermal energy to fuel the search process. Considerable interest surrounds the question of how DNA glycosylases translocate efficiently along DNA while maintaining their vigilance for target damaged sites. Here, we report the observation of strandwise translocation of 8-oxoguanine DNA glycosylase, MutM, along undamaged DNA. In these complexes, the protein is observed to translocate by one nucleotide on one strand while remaining untranslocated on the complementary strand. We further report that alterations of single base-pairs or a single amino acid substitution (R112A) can induce strandwise translocation. Molecular dynamics simulations confirm that MutM can translocate along DNA in a strandwise fashion. These observations reveal a previously unobserved mode of movement for a DNA-binding protein along the surface of DNA.
- Imamura K, Averill A, Wallace SS, Doublie S
- Structural characterization of viral ortholog of human DNA glycosylase NEIL1 bound to thymine glycol or 5-hydroxyuracil-containing DNA.
- J Biol Chem. 2012; 287: 4288-98
- Display abstract
Thymine glycol (Tg) and 5-hydroxyuracil (5-OHU) are common oxidized products of pyrimidines, which are recognized and cleaved by two DNA glycosylases of the base excision repair pathway, endonuclease III (Nth) and endonuclease VIII (Nei). Although there are several structures of Nei enzymes unliganded or bound to an abasic (apurinic or apyrimidinic) site, until now there was no structure of an Nei bound to a DNA lesion. Mimivirus Nei1 (MvNei1) is an ortholog of human NEIL1, which was previously crystallized bound to DNA containing an apurinic site (Imamura, K., Wallace, S. S., and Doublie, S. (2009) J. Biol. Chem. 284, 26174-26183). Here, we present two crystal structures of MvNei1 bound to two oxidized pyrimidines, Tg and 5-OHU. Both lesions are flipped out from the DNA helix. Tg is in the anti conformation, whereas 5-OHU adopts both anti and syn conformations in the glycosylase active site. Only two protein side chains (Glu-6 and Tyr-253) are within hydrogen-bonding contact with either damaged base, and mutating these residues did not markedly affect the glycosylase activity. This finding suggests that lesion recognition by Nei occurs before the damaged base flips into the glycosylase active site.
- Duclos S, Aller P, Jaruga P, Dizdaroglu M, Wallace SS, Doublie S
- Structural and biochemical studies of a plant formamidopyrimidine-DNA glycosylase reveal why eukaryotic Fpg glycosylases do not excise 8-oxoguanine.
- DNA Repair (Amst). 2012; 11: 714-25
- Display abstract
Formamidopyrimidine-DNA glycosylase (Fpg; MutM) is a DNA repair enzyme widely distributed in bacteria. Fpg recognizes and excises oxidatively modified purines, 4,6-diamino-5-formamidopyrimidine, 2,6-diamino-4-hydroxy-5-formamidopyrimidine and 8-oxoguanine (8-oxoG), with similar excision kinetics. It exhibits some lesser activity toward 8-oxoadenine. Fpg enzymes are also present in some plant and fungal species. The eukaryotic Fpg homologs exhibit little or no activity on DNA containing 8-oxoG, but they recognize and process its oxidation products, guanidinohydantoin (Gh) and spiroiminohydantoin (Sp). To date, several structures of bacterial Fpg enzymes unliganded or in complex with DNA containing a damaged base have been published but there is no structure of a eukaryotic Fpg. Here we describe the first crystal structure of a plant Fpg, Arabidopsis thaliana (AthFpg), unliganded and bound to DNA containing an abasic site analog, tetrahydrofuran (THF). Although AthFpg shares a common architecture with other Fpg glycosylases, it harbors a zincless finger, previously described in a subset of Nei enzymes, such as human NEIL1 and Mimivirus Nei1. Importantly the "alphaF-beta9/10 loop" capping 8-oxoG in the active site of bacterial Fpg is very short in AthFpg. Deletion of a segment encompassing residues 213-229 in Escherichia coli Fpg (EcoFpg) and corresponding to the "alphaF-beta9/10 loop" does not affect the recognition and removal of oxidatively damaged DNA base lesions, with the exception of 8-oxoG. Although the exact role of the loop remains to be further explored, it is now clear that this protein segment is specific to the processing of 8-oxoG.
- Dunn AR, Kad NM, Nelson SR, Warshaw DM, Wallace SS
- Single Qdot-labeled glycosylase molecules use a wedge amino acid to probe for lesions while scanning along DNA.
- Nucleic Acids Res. 2011; 39: 7487-98
- Display abstract
Within the base excision repair (BER) pathway, the DNA N-glycosylases are responsible for locating and removing the majority of oxidative base damages. Endonuclease III (Nth), formamidopyrimidine DNA glycosylase (Fpg) and endonuclease VIII (Nei) are members of two glycosylase families: the helix-hairpin-helix (HhH) superfamily and the Fpg/Nei family. The search mechanisms employed by these two families of glycosylases were examined using a single molecule assay to image quantum dot (Qdot)-labeled glycosylases interacting with YOYO-1 stained lambda-DNA molecules suspended between 5 microm silica beads. The HhH and Fpg/Nei families were found to have a similar diffusive search mechanism described as a continuum of motion, in keeping with rotational diffusion along the DNA molecule ranging from slow, sub-diffusive to faster, unrestricted diffusion. The search mechanism for an Fpg variant, F111A, lacking a phenylalanine wedge residue no longer displayed slow, sub-diffusive motion compared to wild type, suggesting that Fpg base interrogation may be accomplished by Phe(111) insertion.
- Bergonzo C, Campbell AJ, de los Santos C, Grollman AP, Simmerling C
- Energetic preference of 8-oxoG eversion pathways in a DNA glycosylase.
- J Am Chem Soc. 2011; 133: 14504-6
- Display abstract
Base eversion is a fundamental process in the biochemistry of nucleic acids, allowing proteins engaged in DNA repair and epigenetic modifications to access target bases in DNA. Crystal structures reveal end points of these processes, but not the pathways involved in the dynamic process of base recognition. To elucidate the pathway taken by 8-oxoguanine during base excision repair by Fpg, we calculated free energy surfaces during eversion of the damaged base through the major and minor grooves. The minor groove pathway and free energy barrier (6-7 kcal/mol) are consistent with previously reported results (Qi, Y.; Spong, M. C.; Nam, K.; Banerjee, A.; Jiralerspong, S.; Karplus, M.; Verdine, G. L. Nature 2009, 462, 762.) However, eversion of 8-oxoG through the major groove encounters a significantly lower barrier (3-4 kcal/mol) more consistent with experimentally determined rates of enzymatic sliding during lesion search (Blainey, P. C.; van Oijent, A. M.; Banerjee, A.; Verdine, G. L.; Xie, X. S. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 5752.). Major groove eversion has been suggested for other glycosylases, suggesting that in addition to function, dynamics of base eversion may also be conserved.
- Kirpota OO, Endutkin AV, Ponomarenko MP, Ponomarenko PM, Zharkov DO, Nevinsky GA
- Thermodynamic and kinetic basis for recognition and repair of 8-oxoguanine in DNA by human 8-oxoguanine-DNA glycosylase.
- Nucleic Acids Res. 2011; 39: 4836-50
- Display abstract
We have used a stepwise increase in ligand complexity approach to estimate the relative contributions of the nucleotide units of DNA containing 7,8-dihydro-8-oxoguanine (oxoG) to its total affinity for human 8-oxoguanine DNA glycosylase (OGG1) and construct thermodynamic models of the enzyme interaction with cognate and non-cognate DNA. Non-specific OGG1 interactions with 10-13 nt pairs within its DNA-binding cleft provides approximately 5 orders of magnitude of its affinity for DNA (DeltaG degrees approximately -6.7 kcal/mol). The relative contribution of the oxoG unit of DNA (DeltaG degrees approximately -3.3 kcal/mol) together with other specific interactions (DeltaG degrees approximately -0.7 kcal/mol) provide approximately 3 orders of magnitude of the affinity. Formation of the Michaelis complex of OGG1 with the cognate DNA cannot account for the major part of the enzyme specificity, which lies in the k(cat) term instead; the rate increases by 6-7 orders of magnitude for cognate DNA as compared with non-cognate one. The k(cat) values for substrates of different sequences correlate with the DNA twist, while the K(M) values correlate with DeltaG degrees of the DNA fragments surrounding the lesion (position from -6 to +6). The functions for predicting the K(M) and k(cat) values for different sequences containing oxoG were found.
- Le Bihan YV et al.
- 5-Hydroxy-5-methylhydantoin DNA lesion, a molecular trap for DNA glycosylases.
- Nucleic Acids Res. 2011; 39: 6277-90
- Display abstract
DNA base-damage recognition in the base excision repair (BER) is a process operating on a wide variety of alkylated, oxidized and degraded bases. DNA glycosylases are the key enzymes which initiate the BER pathway by recognizing and excising the base damages guiding the damaged DNA through repair synthesis. We report here biochemical and structural evidence for the irreversible entrapment of DNA glycosylases by 5-hydroxy-5-methylhydantoin, an oxidized thymine lesion. The first crystal structure of a suicide complex between DNA glycosylase and unrepaired DNA has been solved. In this structure, the formamidopyrimidine-(Fapy) DNA glycosylase from Lactococcus lactis (LlFpg/LlMutM) is covalently bound to the hydantoin carbanucleoside-containing DNA. Coupling a structural approach by solving also the crystal structure of the non-covalent complex with site directed mutagenesis, this atypical suicide reaction mechanism was elucidated. It results from the nucleophilic attack of the catalytic N-terminal proline of LlFpg on the C5-carbon of the base moiety of the hydantoin lesion. The biological significance of this finding is discussed.
- Volker J, Plum GE, Klump HH, Breslauer KJ
- Energetic coupling between clustered lesions modulated by intervening triplet repeat bulge loops: allosteric implications for DNA repair and triplet repeat expansion.
- Biopolymers. 2010; 93: 355-69
- Display abstract
Clusters of closely spaced oxidative DNA lesions present challenges to the cellular repair machinery. When located in opposing strands, base excision repair (BER) of such lesions can lead to double strand DNA breaks (DSB). Activation of BER and DSB repair pathways has been implicated in inducing enhanced expansion of triplet repeat sequences. We show here that energy coupling between distal lesions (8oxodG and/or abasic sites) in opposing DNA strands can be modulated by a triplet repeat bulge loop located between the lesion sites. We find this modulation to be dependent on the identity of the lesions (8oxodG vs. abasic site) and the positions of the lesions (upstream vs. downstream) relative to the intervening bulge loop domain. We discuss how such bulge loop-mediated lesion crosstalk might influence repair processes, while favoring DNA expansion, the genotype of triplet repeat diseases.
- Koval VV, Kuznetsov NA, Ishchenko AA, Saparbaev MK, Fedorova OS
- Real-time studies of conformational dynamics of the repair enzyme E. coli formamidopyrimidine-DNA glycosylase and its DNA complexes during catalytic cycle.
- Mutat Res. 2010; 685: 3-10
- Display abstract
Fpg protein from Escherichia coli belongs to the class of DNA glycosylases/abasic site lyases excising several oxidatively damaged purines in the base excision repair pathway. In this review, we summarize the results of our studies of Fpg protein from E. coli, elucidating the intrinsic mechanism of recognition and excision of damaged bases in DNA.
- Garau G, Muzzolini L, Tornaghi P, Degano M
- Active site plasticity revealed from the structure of the enterobacterial N-ribohydrolase RihA bound to a competitive inhibitor.
- BMC Struct Biol. 2010; 10: 14-14
- Display abstract
BACKGROUND: Pyrimidine-preferring N-ribohydrolases (CU-NHs) are a class of Ca2+-dependent enzymes that catalyze the hydrolytic cleavage of the N-glycosidic bond in pyrimidine nucleosides. With the exception of few selected organisms, their physiological relevance in prokaryotes and eukaryotes is yet under investigation. RESULTS: Here, we report the first crystal structure of a CU-NH bound to a competitive inhibitor, the complex between the Escherichia coli enzyme RihA bound to 3, 4-diaminophenyl-iminoribitol (DAPIR) to a resolution of 2.1 A. The ligand can bind at the active site in two distinct orientations, and the stabilization of two flexible active site regions is pivotal to establish the interactions required for substrate discrimination and catalysis. CONCLUSIONS: A comparison with the product-bound RihA structure allows a rationalization of the structural rearrangements required for an enzymatic catalytic cycle, highlighting a substrate-assisted cooperative motion, and suggesting a yet overlooked role of the conserved His82 residue in modulating product release. Differences in the structural features of the active sites in the two homologous CU-NHs RihA and RihB from E. coli provide a rationale for their fine differences in substrate specificity. These new findings hint at a possible role of CU-NHs in the breakdown of modified nucleosides derived from RNA molecules.
- Jiricny J
- DNA repair: how MutM finds the needle in a haystack.
- Curr Biol. 2010; 20: 1457-1457
- Display abstract
High-resolution crystal structures of DNA complexes with the bacterial MutM protein show how the enzyme feels its way around the double helix in search of an oxidized guanine before flipping it out into its active site and excising it.
- Guo Y et al.
- The oxidative DNA glycosylases of Mycobacterium tuberculosis exhibit different substrate preferences from their Escherichia coli counterparts.
- DNA Repair (Amst). 2010; 9: 177-90
- Display abstract
The DNA glycosylases that remove oxidized DNA bases fall into two general families: the Fpg/Nei family and the Nth superfamily. Based on protein sequence alignments, we identified four putative Fpg/Nei family members, as well as a putative Nth protein in Mycobacterium tuberculosis H37Rv. All four Fpg/Nei proteins were successfully overexpressed using a bicistronic vector created in our laboratory. The MtuNth protein was also overexpressed in soluble form. The substrate specificities of the purified enzymes were characterized in vitro with oligodeoxynucleotide substrates containing single lesions. Some were further characterized by gas chromatography/mass spectrometry (GC/MS) analysis of products released from gamma-irradiated DNA. MtuFpg1 has substrate specificity similar to that of EcoFpg. Both EcoFpg and MtuFpg1 are more efficient at removing spiroiminodihydantoin (Sp) than 7,8-dihydro-8-oxoguanine (8-oxoG). However, MtuFpg1 shows a substantially increased opposite base discrimination compared to EcoFpg. MtuFpg2 contains only the C-terminal domain of an Fpg protein and has no detectable DNA binding activity or DNA glycosylase/lyase activity and thus appears to be a pseudogene. MtuNei1 recognizes oxidized pyrimidines on both double-stranded and single-stranded DNA and exhibits uracil DNA glycosylase activity. MtuNth recognizes a variety of oxidized bases, including urea, 5,6-dihydrouracil (DHU), 5-hydroxyuracil (5-OHU), 5-hydroxycytosine (5-OHC) and methylhydantoin (MeHyd). Both MtuNei1 and MtuNth excise thymine glycol (Tg); however, MtuNei1 strongly prefers the (5R) isomers, whereas MtuNth recognizes only the (5S) isomers. MtuNei2 did not demonstrate activity in vitro as a recombinant protein, but like MtuNei1 when expressed in Escherichia coli, it decreased the spontaneous mutation frequency of both the fpg mutY nei triple and nei nth double mutants, suggesting that MtuNei2 is functionally active in vivo recognizing both guanine and cytosine oxidation products. The kinetic parameters of the MtuFpg1, MtuNei1 and MtuNth proteins on selected substrates were also determined and compared to those of their E. coli homologs.
- Gao X et al.
- Mechanism of substrate recognition and transport by an amino acid antiporter.
- Nature. 2010; 463: 828-32
- Display abstract
In extremely acidic environments, enteric bacteria such as Escherichia coli rely on the amino acid antiporter AdiC to expel protons by exchanging intracellular agmatine (Agm(2+)) for extracellular arginine (Arg(+)). AdiC is a representative member of the amino acid-polyamine-organocation (APC) superfamily of membrane transporters. The structure of substrate-free AdiC revealed a homodimeric assembly, with each protomer containing 12 transmembrane segments and existing in an outward-open conformation. The overall folding of AdiC is similar to that of the Na(+)-coupled symporters. Despite these advances, it remains unclear how the substrate (arginine or agmatine) is recognized and transported by AdiC. Here we report the crystal structure of an E. coli AdiC variant bound to Arg at 3.0 A resolution. The positively charged Arg is enclosed in an acidic binding chamber, with the head groups of Arg hydrogen-bonded to main chain atoms of AdiC and the aliphatic portion of Arg stacked by hydrophobic side chains of highly conserved residues. Arg binding induces pronounced structural rearrangement in transmembrane helix 6 (TM6) and, to a lesser extent, TM2 and TM10, resulting in an occluded conformation. Structural analysis identified three potential gates, involving four aromatic residues and Glu 208, which may work in concert to differentially regulate the upload and release of Arg and Agm.
- Takao M et al.
- Human Nei-like protein NEIL3 has AP lyase activity specific for single-stranded DNA and confers oxidative stress resistance in Escherichia coli mutant.
- Genes Cells. 2009; 14: 261-70
- Display abstract
Oxidative base damage leads to alteration of genomic information and is implicated as a cause of aging and carcinogenesis. To combat oxidative damage to DNA, cells contain several DNA glycosylases including OGG1, NTH1 and the Nei-like proteins, NEIL1 and NEIL2. A third Nei-like protein, NEIL3, is composed of an amino-terminal Nei-like domain and an unknown carboxy-terminal domain. In contrast to the other well-described DNA glycosylases, the DNA glycosylase activity and in vivo repair function of NEIL3 remains unclear. We show here that the structural modeling of the putative NEIL3 glycosylase domain (1-290) fits well to the known Escherichia coli Fpg crystal structure. In spite of the structural similarity, the recombinant NEIL3 and NEIL3(1-290) proteins do not cleave any of several test oligonucleotides containing a single modified base. Within the substrates, we detected AP lyase activity for single-stranded (ss) DNA but double-stranded (ds) DNA. The activity is abrogated completely in mutants with an amino-terminal deletion and at the zinc-finger motif. Surprisingly, NEIL3 partially rescues an E. coli nth nei mutant from hydrogen peroxide sensitivity. Taken together, repair of certain base damage including base loss in ssDNA may be mediated by NEIL3.
- Imamura K, Wallace SS, Doublie S
- Structural characterization of a viral NEIL1 ortholog unliganded and bound to abasic site-containing DNA.
- J Biol Chem. 2009; 284: 26174-83
- Display abstract
Endonuclease VIII (Nei) is a DNA glycosylase of the base excision repair pathway that recognizes and excises oxidized pyrimidines. We determined the crystal structures of a NEIL1 ortholog from the giant Mimivirus (MvNei1) unliganded and bound to DNA containing tetrahydrofuran (THF), which is the first structure of any Nei with an abasic site analog. The MvNei1 structures exhibit the same overall architecture as other enzymes of the Fpg/Nei family, which consists of two globular domains joined by a linker region. MvNei1 harbors a zincless finger, first described in human NEIL1, rather than the signature zinc finger generally found in the Fpg/Nei family. In contrast to Escherichia coli Nei, where a dramatic conformational change was observed upon binding DNA, the structure of MvNei1 bound to DNA does not reveal any substantial movement compared with the unliganded enzyme. A protein segment encompassing residues 217-245 in MvNei1 corresponds to the "missing loop" in E. coli Nei and the "alphaF-beta10 loop" in E. coli Fpg, which has been reported to be involved in lesion recognition. Interestingly, the corresponding loop in MvNei1 is ordered in both the unliganded and furan-bound structures, unlike other Fpg/Nei enzymes where the loop is generally ordered in the unliganded enzyme or in complexes with a lesion, and disordered otherwise. In the MvNei1.tetrahydrofuran complex a tyrosine located at the tip of the putative lesion recognition loop stacks against the furan ring; the tyrosine is predicted to adopt a different conformation to accommodate a modified base.
- Kathe SD et al.
- Plant and fungal Fpg homologs are formamidopyrimidine DNA glycosylases but not 8-oxoguanine DNA glycosylases.
- DNA Repair (Amst). 2009; 8: 643-53
- Display abstract
Formamidopyrimidine DNA glycosylase (Fpg) and endonuclease VIII (Nei) share an overall common three-dimensional structure and primary amino acid sequence in conserved structural motifs but have different substrate specificities, with bacterial Fpg proteins recognizing formamidopyrimidines, 8-oxoguanine (8-oxoG) and its oxidation products guanidinohydantoin (Gh), and spiroiminodihydantoin (Sp) and bacterial Nei proteins recognizing primarily damaged pyrimidines. In addition to bacteria, Fpg has also been found in plants, while Nei is sparsely distributed among the prokaryotes and eukaryotes. Phylogenetic analysis of Fpg and Nei DNA glycosylases demonstrated, with 95% bootstrap support, a clade containing exclusively sequences from plants and fungi. Members of this clade exhibit sequence features closer to bacterial Fpg proteins than to any protein designated as Nei based on biochemical studies. The Candida albicans (Cal) Fpg DNA glycosylase and a previously studied Arabidopsis thaliana (Ath) Fpg DNA glycosylase were expressed, purified and characterized. In oligodeoxynucleotides, the preferred glycosylase substrates for both enzymes were Gh and Sp, the oxidation products of 8-oxoG, with the best substrate being a site of base loss. GC/MS analysis of bases released from gamma-irradiated DNA show FapyAde and FapyGua to be excellent substrates as well. Studies carried out with oligodeoxynucleotide substrates demonstrate that both enzymes discriminated against A opposite the base lesion, characteristic of Fpg glycosylases. Single turnover kinetics with oligodeoxynucleotides showed that the plant and fungal glycosylases were most active on Gh and Sp, less active on oxidized pyrimidines and exhibited very little or no activity on 8-oxoG. Surprisingly, the activity of AthFpg1 on an AP site opposite a G was extremely robust with a k(obs) of over 2500min(-1).
- Kuznetsov NA, Zharkov DO, Koval VV, Buckle M, Fedorova OS
- Reversible chemical step and rate-limiting enzyme regeneration in the reaction catalyzed by formamidopyrimidine-DNA glycosylase.
- Biochemistry. 2009; 48: 11335-43
- Display abstract
Formamidopyrimidine-DNA N-glycosylase (Fpg) operates in the base excision repair pathway in bacteria by removing oxidized guanine bases from DNA and can also cleave the nascent or preformed abasic DNA by beta,delta-elimination. In this work, we have used the quench-flow technique (i) to show that the kinetics of processing of 7,8-dihydro-8-oxoguanine and abasic site lesions by Fpg from Escherichia coli involves a burst phase and a stationary phase, (ii) to establish the reaction kinetic scheme, and (iii) to calculate the rate constants for the reaction steps. A comparison of the quench-flow results with the data from earlier stopped-flow kinetics with tryptophan and 2-aminopurine fluorescence detection reveals that the cleaved product formation is initially reversible; it is followed by conformational changes in the enzyme and DNA molecules that represent the postchemical irreversible rate-limiting steps. We have applied mass spectrometry with electrospray ionization to follow the appearance and disappearance of transient covalent intermediates between Fpg and the substrate DNA. The overall rate-limiting step of the enzymatic reaction seems to be the release of Fpg from its adduct with the 4-oxo-2-pentenal remnant of the deoxyribose moiety formed as a result of DNA strand cleavage by beta,delta-elmination.
- Addlagatta A, Gay L, Matthews BW
- Structural basis for the unusual specificity of Escherichia coli aminopeptidase N.
- Biochemistry. 2008; 47: 5303-11
- Display abstract
Aminopeptidase N from Escherichia coli is a M1 class aminopeptidase with the active-site region related to that of thermolysin. The enzyme has unusual specificity, cleaving adjacent to the large, nonpolar amino acids Phe and Tyr but also cleaving next to the polar residues Lys and Arg. To try to understand the structural basis for this pattern of hydrolysis, the structure of the enzyme was determined in complex with the amino acids L-arginine, L-lysine, L-phenylalanine, L-tryptophan, and L-tyrosine. These amino acids all bind with their backbone atoms close to the active-site zinc ion and their side chain occupying the S1 subsite. This subsite is in the form of a cylinder, about 10 A in cross-section and 12 A in length. The bottom of the cylinder includes the zinc ion and a number of polar side chains that make multiple hydrogen-bonding and other interactions with the alpha-amino group and the alpha-carboxylate of the bound amino acid. The walls of the S1 cylinder are hydrophobic and accommodate the nonpolar or largely nonpolar side chains of Phe and Tyr. The top of the cylinder is polar in character and includes bound water molecules. The epsilon-amino group of the bound lysine side chain and the guanidinium group of arginine both make multiple hydrogen bonds to this part of the S1 site. At the same time, the hydrocarbon part of the lysine and arginine side chains is accommodated within the nonpolar walls of the S1 cylinder. This combination of hydrophobic and hydrophilic binding surfaces explains the ability of ePepN to cleave Lys, Arg, Phe, and Tyr. Another favored substrate has Ala at the P1 position. The short, nonpolar side chain of this residue can clearly be bound within the hydrophobic part of the S1 cylinder, but the reason for its facile hydrolysis remains uncertain.
- Coste F et al.
- Bacterial base excision repair enzyme Fpg recognizes bulky N7-substituted-FapydG lesion via unproductive binding mode.
- Chem Biol. 2008; 15: 706-17
- Display abstract
Fpg is a bacterial base excision repair enzyme that removes oxidized purines from DNA. This work shows that Fpg and its eukaryote homolog Ogg1 recognize with high affinity FapydG and bulky N7-benzyl-FapydG (Bz-FapydG). The comparative crystal structure analysis of stable complexes between Fpg and carbocyclic cFapydG or Bz-cFapydG nucleoside-containing DNA provides the molecular basis of the ability of Fpg to bind both lesions with the same affinity and to differently process them. To accommodate the steric hindrance of the benzyl group, Fpg selects the adequate rotamer of the extrahelical Bz-cFapydG formamido group, forcing the bulky group to go outside the binding pocket. Contrary to the binding mode of cFapydG, the particular recognition of Bz-cFapydG leads the BER enzymes to unproductive complexes which would hide the lesion and slow down its repair by the NER machinery.
- Minetti CA, Remeta DP, Breslauer KJ
- A continuous hyperchromicity assay to characterize the kinetics and thermodynamics of DNA lesion recognition and base excision.
- Proc Natl Acad Sci U S A. 2008; 105: 70-5
- Display abstract
We report a continuous hyperchromicity assay (CHA) for monitoring and characterizing enzyme activities associated with DNA processing. We use this assay to determine kinetic and thermodynamic parameters for a repair enzyme that targets nucleic acid substrates containing a specific base lesion. This optically based kinetics assay exploits the free-energy differences between a lesion-containing DNA duplex substrate and the enzyme-catalyzed, lesion-excised product, which contains at least one hydrolyzed phosphodiester bond. We apply the assay to the bifunctional formamidopyrimidine glycosylase (Fpg) repair enzyme (E) that recognizes an 8-oxodG lesion within a 13-mer duplex substrate (S). Base excision/elimination yields a gapped duplex product (P) that dissociates to produce the diagnostic hyperchromicity signal. Analysis of the kinetic data at 25 degrees C yields a K(m) of 46.6 nM for the E.S interaction, and a k(cat) of 1.65 min(-1) for conversion of the ES complex into P. The temperature dependence reveals a free energy (DeltaG(b)) of -10.0 kcal.mol(-1) for the binding step (E + S <--> ES) that is enthalpy-driven (DeltaH(b) = -16.4 kcal.mol(-1)). The activation barrier (DeltaG) of 19.6 kcal.mol(-1) for the chemical step (ES <--> P) also is enthalpic in nature (DeltaH = 19.2 kcal.mol(-1)). Formation of the transition state complex from the reactants (E + S <--> ES), a pathway that reflects Fpg catalytic specificity (k(cat)/K(m)) toward excision of the 8-oxodG lesion, exhibits an overall activation free energy (DeltaG(T)) of 9.6 kcal.mol(-1). These parameters characterize the driving forces that dictate Fpg enzyme efficiency and specificity and elucidate the energy landscape for lesion recognition and repair.
- Krishnamurthy N, Muller JG, Burrows CJ, David SS
- Unusual structural features of hydantoin lesions translate into efficient recognition by Escherichia coli Fpg.
- Biochemistry. 2007; 46: 9355-65
- Display abstract
Oxidation of guanine (G) and 8-oxoguanine (OG) with a wide variety of oxidants yields the hydantoin lesions, guanidinohydantoin (Gh) and spiroiminodihydantoin (Sp). These two lesions have garnered much recent attention due to their unusual structures and high mutagenic potential. We have previously shown that duplexes containing Gh and Sp are substrates for the base excision repair glycosylase Escherichia coli Fpg (EcFpg). To evaluate the recognition features of these unusual lesions, binding and footprinting experiments were performed using a glycosylase inactive variant, E3Q EcFpg, and 30 bp duplexes containing the embedded lesions. Surprisingly, E3Q EcFpg was found to bind significantly more tightly ( approximately 1000-fold) to duplexes containing Gh or Sp over the corresponding duplexes containing OG. This may be a consequence of the helix-destabilizing nature of the hydantoin lesions that facilitates their recognition within duplex DNA. Though DNA binding affinities of E3Q EcFpg with Gh- and Sp-containing duplexes were found to be similar to each other, hydroxyl radical footprinting using methidium-propyl-EDTA (MPE)-Fe(II) revealed subtle differences between binding of E3Q EcFpg to the two lesions. Most notably, in the presence of E3Q EcFpg, the Sp nucleotide (nt) is hyperreactive toward cleavage by MPE-Fe(II)-generated hydroxyl radicals, suggestive of the formation of an intercalation site for the MPE-Fe(II) reagent at the Sp nt. Interestingly, increasing the duplex length from 18 to 30 bp enhanced the excision efficiency of Gh and Sp paired with C, G, or T by EcFpg such that these substrates are processed as efficiently as the signature substrate lesion, OG. Moreover, the base removal activity with these two lesions was more efficient than removal of OG when in a base pairing context opposite A. The high affinity and efficient activity of EcFpg toward the hydantoin lesions suggest that EcFpg mediates repair of the lesions in vivo. Notably, the facile activity of EcFpg toward Gh and Sp in base pairing contexts with G and A, which are likely to be present after DNA replication, would be detrimental and enhance mutagenesis.
- Kuznetsov NA et al.
- Pre-steady-state kinetic study of substrate specificity of Escherichia coli formamidopyrimidine--DNA glycosylase.
- Biochemistry. 2007; 46: 424-35
- Display abstract
Formamidopyrimidine-DNA glycosylase (Fpg) is responsible for removal of 8-oxoguanine (8-oxoG) and other oxidized purine lesions from DNA and can also excise some oxidatively modified pyrimidines [such as dihydrouracil (DHU)]. Fpg is also specific for a base opposite the lesion, efficiently excising 8-oxoG paired with C but not with A. We have applied stopped-flow kinetics using intrinsic tryptophan fluorescence of the enzyme and fluorescence of 2-aminopurine-labeled DNA to analyze the conformational dynamics of Escherichia coli Fpg during processing of good substrates (8-oxoG.C), poor substrates (8-oxoG.A), and substrates of unclear specificity (such as DHU and 8-oxoG opposite T or G). The analysis of fluorescence traces allows us to conclude that when the enzyme encounters its true substrate, 8-oxoG.C, the complex enters the productive catalytic reaction after approximately 50 ms, partitioning the substrate away from the competing dissociation process, while poor substrates linger in the initial encounter complex for longer. Several intermediate ES complexes were attributed to different structures that exist along the reaction pathway. A likely sequence of events is that the damaged base is first destabilized by the enzyme binding and then everted from DNA, followed by insertion of several amino acid residues into DNA and isomerization of the enzyme into a pre-excision complex. We conclude that rejection of the incorrect substrates occurs mostly at the early stage of formation of the pre-eversion recognition complex, supporting the role of indirect readout in damage recognition.
- Huang H, Yuan HS
- The conserved asparagine in the HNH motif serves an important structural role in metal finger endonucleases.
- J Mol Biol. 2007; 368: 812-21
- Display abstract
The HNH motif is a small nucleic acid binding and cleavage module, widespread in metal finger endonucleases in all life kingdoms. Here we studied a non-specific endonuclease, the nuclease domain of ColE7 (N-ColE7), to decipher the role of the conserved asparagine and histidine residues in the HNH motif. We found, using fluorescence resonance energy transfer (FRET) assays, that the DNA hydrolysis activity of H545 N-ColE7 mutants was completely abolished while activities of N560 and H573 mutants varied from 6.9% to 83.2% of the wild-type activity. The crystal structures of three N-ColE7 mutants in complex with the inhibitor Im7, N560A-Im7, N560D-Im7 and H573A-Im7, were determined at a resolution of 1.9 A to 2.2 A. H573 is responsible for metal ion binding in the wild-type protein, as the zinc ion is still partially associated in the structure of H573A, suggesting that H573 plays a supportive role in metal binding. Both N560A and N560D contain a disordered loop in the HNH motif due to the disruption of the hydrogen bond network surrounding the side-chain of residue 560, and as a result, the imidazole ring of the general base residue H545 is tilted slightly and the scissile phosphate is shifted, leading to the large reductions in hydrolysis activities. These results suggest that the highly conserved asparagine in the HNH motif, in general, plays a structural role in constraining the loop in the metal finger structure and keeping the general base histidine and scissile phosphate in the correct position for DNA hydrolysis.
- Kropachev KY, Zharkov DO, Grollman AP
- Catalytic mechanism of Escherichia coli endonuclease VIII: roles of the intercalation loop and the zinc finger.
- Biochemistry. 2006; 45: 12039-49
- Display abstract
Endonuclease VIII (Nei) excises oxidatively damaged pyrimidines from DNA and shares structural and functional homology with formamidopyrimidine-DNA glycosylase. Although the structure of Escherichia coli Nei is solved [Zharkov et al. (2002) EMBO J. 21, 789-800], the functions of many of its amino acid residues involved in catalysis and substrate specificity are not known. We constructed a series of Nei mutants that interfere with eversion of the damaged base from the helix (QLY69-71AAA, DeltaQLY69-71) or perturb the conserved zinc finger (R171A, Q261A). Steady-state kinetics were measured with these mutant enzymes using substrates containing 5,6-dihydrouracil, two enantiomers of thymine glycol, 8-oxo-7,8-dihydroguanine, and an abasic site positioned opposite each of the four canonical DNA bases. To some extent, all Nei mutants were deficient in processing damaged DNA, with mutations in the zinc finger generally having a more profound effect. Wild-type Nei showed prominent opposite-base specificity (G > C approximately = T > A) when the lesion was 5,6-dihydrouracil or cis-(5S,6R)-thymine glycol but not for other lesions tested. Mutations in the Q69-Y71 loop eliminated this effect. Only wild-type Nei and Nei-Q261A mutants could be reductively cross-linked to damaged base-containing DNA. Experiments involving trapping with NaBH4 and the kinetics of DNA cleavage catalyzed by Nei-Q261A suggested that this mutant was deficient in regenerating free enzyme from the Nei-DNA covalent complex formed during the reaction. We conclude that the opposite-base specificity of Nei is primarily governed by residues in the Q69-Y71 loop and that both this loop and the zinc finger contribute significantly to the substrate specificity of Nei.
- Horsefield R et al.
- Structural and computational analysis of the quinone-binding site of complex II (succinate-ubiquinone oxidoreductase): a mechanism of electron transfer and proton conduction during ubiquinone reduction.
- J Biol Chem. 2006; 281: 7309-16
- Display abstract
The transfer of electrons and protons between membrane-bound respiratory complexes is facilitated by lipid-soluble redox-active quinone molecules (Q). This work presents a structural analysis of the quinone-binding site (Q-site) identified in succinate:ubiquinone oxidoreductase (SQR) from Escherichia coli. SQR, often referred to as Complex II or succinate dehydrogenase, is a functional member of the Krebs cycle and the aerobic respiratory chain and couples the oxidation of succinate to fumarate with the reduction of quinone to quinol (QH(2)). The interaction between ubiquinone and the Q-site of the protein appears to be mediated solely by hydrogen bonding between the O1 carbonyl group of the quinone and the side chain of a conserved tyrosine residue. In this work, SQR was co-crystallized with the ubiquinone binding-site inhibitor Atpenin A5 (AA5) to confirm the binding position of the inhibitor and reveal additional structural details of the Q-site. The electron density for AA5 was located within the same hydrophobic pocket as ubiquinone at, however, a different position within the pocket. AA5 was bound deeper into the site prompting further assessment using protein-ligand docking experiments in silico. The initial interpretation of the Q-site was re-evaluated in the light of the new SQR-AA5 structure and protein-ligand docking data. Two binding positions, the Q(1)-site and Q(2)-site, are proposed for the E. coli SQR quinone-binding site to explain these data. At the Q(2)-site, the side chains of a serine and histidine residue are suitably positioned to provide hydrogen bonding partners to the O4 carbonyl and methoxy groups of ubiquinone, respectively. This allows us to propose a mechanism for the reduction of ubiquinone during the catalytic turnover of the enzyme.
- Amara P, Serre L
- Functional flexibility of Bacillus stearothermophilus formamidopyrimidine DNA-glycosylase.
- DNA Repair (Amst). 2006; 5: 947-58
- Display abstract
The formamidopyrimidine-DNA glycosylase (Fpg) recognizes and eliminates efficiently 8-oxoguanine, an abundant mutagenic DNA lesion. The X-ray structure of the inactive E3Q mutant of Fpg from Bacillus stearothermophilus, complexed to an 8-oxoG-containing DNA, revealed a small peptide (called the alphaF-beta10 loop) involved in the recognition of the lesion via an interaction with the protonated N(7) atom. This region, which is disordered in the X-ray models where an abasic site-containing DNA is bound to Fpg, interacts tightly with the 8-oxoG which appears to be confined within the enzyme. Molecular dynamics simulations were performed on this mutant and the wild type derived model at 298 and 323K, to determine if this tight assembly around the 8-oxoG was due to the mutation and/or to an inappropriate experimental temperature. Differences in the relative orientation of the protein structural domains and in the architecture around the damaged base were observed, depending on the presence of the mutation and/or on the temperature. This data allowed us to show that the recognition of the damaged base by the wild type enzyme close to its optimal temperature might require significant movements of the enzyme, leading to conformational changes that could not be detected within the only X-ray structure. In addition, a dynamics performed with a normal guanine suggests that the alphaF-beta10 loop dynamics could be needed by the active Fpgs to distinguish a damaged guanine from a normal nucleotide.
- Boer R et al.
- Unveiling the molecular mechanism of a conjugative relaxase: The structure of TrwC complexed with a 27-mer DNA comprising the recognition hairpin and the cleavage site.
- J Mol Biol. 2006; 358: 857-69
- Display abstract
TrwC is a DNA strand transferase that catalyzes the initial and final stages of conjugative DNA transfer. We have solved the crystal structure of the N-terminal relaxase domain of TrwC in complex with a 27 base-long DNA oligonucleotide that contains both the recognition hairpin and the scissile phosphate. In addition, a series of ternary structures of protein-DNA complexes with different divalent cations at the active site have been solved. Systematic anomalous difference analysis allowed us to determine unambiguously the nature of the metal bound. Zn2+, Ni2+ and Cu2+ were found to bind the histidine-triad metal binding site. Comparison of the structures of the different complexes suggests two pathways for the DNA to exit the active pocket. They are probably used at different steps of the conjugative DNA-processing reaction. The structural information allows us to propose (i) an enzyme mechanism where the scissile phosphate is polarized by the metal ion facilitating the nucleophilic attack of the catalytic tyrosine, and (ii) a probable sequence of events during conjugative DNA processing that explains the biological function of the relaxase.
- Song K, Hornak V, de Los Santos C, Grollman AP, Simmerling C
- Computational analysis of the mode of binding of 8-oxoguanine to formamidopyrimidine-DNA glycosylase.
- Biochemistry. 2006; 45: 10886-94
- Display abstract
8-Oxoguanine (8OG) is the most prevalent form of oxidative DNA damage. In bacteria, 8OG is excised by formamidopyrimidine glycosylase (Fpg) as the initial step in base excision repair. To efficiently excise this lesion, Fpg must discriminate between 8OG and an excess of guanine in duplex DNA. In this study, we explore the structural basis underlying this high degree of selectivity. Two structures have been reported in which Fpg is bound to DNA, differing with respect to the position of the lesion in the active site, one structure showing 8OG bound in the syn conformation and the other in the anti conformation. Remarkably, the results of our all-atom simulations are consistent with both structures. The syn conformation observed in the crystallographic structure of Fpg obtained from Bacillus stearothermophilus is stabilized through interaction with E77, a nonconserved residue. Replacement of E77 with Ser, creating the Fpg sequence found in Escherichia coli and other bacteria, results in preferred binding of 8OG in the anti conformation. Our calculations provide novel insights into the roles of active site residues in binding and recognition of 8OG by Fpg.
- Harbut MB, Meador M, Dodson ML, Lloyd RS
- Modulation of the turnover of formamidopyrimidine DNA glycosylase.
- Biochemistry. 2006; 45: 7341-6
- Display abstract
In recent years, significant progress has been made in determining the catalytic mechanisms by which base excision repair (BER) DNA glycosylases and glycosylase-abasic site (AP) lyases cleave the glycosyl bond. While these investigations have identified active site residues and active site architectures, few investigations have analyzed postincision turnover events. Previously, we identified a critical residue (His16) in the T4-pyrimidine dimer glycosylase (T4-Pdg) that, when mutated, interferes with enzyme turnover [Meador et al. (2004) J. Biol. Chem. 279, 3348-3353]. To test whether comparable residues and mechanisms might be operative for other BER glycosylase:AP-lyases, molecular modeling studies were conducted comparing the active site regions of T4-Pdg and the Escherichia coli formamidopyrimidine DNA glycosylase (Fpg). These analyses revealed that His71 in Fpg might perform a similar function to His16 in T4-Pdg. Site-directed mutagenesis of the Fpg gene and analyses of the reaction mechanism of the mutant enzyme revealed that the H71A enzyme retained activity on a DNA substrate containing an 8-oxo-7,8-dihydroguanine (8-oxoG) opposite cytosine and DNA containing an AP site. The H71A Fpg mutant was severely compromised in enzyme turnover on the 8-oxoG-C substrate but had turnover rates comparable to that of wild-type Fpg on AP-containing DNA. The similar mutant phenotypes for these two enzymes, despite a complete lack of structural or sequence homology between them, suggest a common mechanism for the rate-limiting step catalyzed by BER glycosylase:AP-lyases.
- Ito K et al.
- Crystal structure of aminopeptidase N (proteobacteria alanyl aminopeptidase) from Escherichia coli and conformational change of methionine 260 involved in substrate recognition.
- J Biol Chem. 2006; 281: 33664-76
- Display abstract
Aminopeptidase N from Escherichia coli is a broad specificity zinc exopeptidase belonging to aminopeptidase clan MA, family M1. The structures of the ligand-free form and the enzyme-bestatin complex were determined at 1.5- and 1.6-A resolution, respectively. The enzyme is composed of four domains: an N-terminal beta-domain (Met(1)-Asp(193)), a catalytic domain (Phe(194)-Gly(444)), a middle beta-domain (Thr(445)-Trp(546)), and a C-terminal alpha-domain (Ser(547)-Ala(870)). The structure of the catalytic domain exhibits similarity to thermolysin, and a metal-binding motif (HEXXHX(18)E) is found in the domain. The zinc ion is coordinated by His(297), His(301), Glu(320), and a water molecule. The groove on the catalytic domain that contains the active site is covered by the C-terminal alpha-domain, and a large cavity is formed inside the protein. However, there exists a small hole at the center of the C-terminal alpha-domain. The N terminus of bestatin is recognized by Glu(121) and Glu(264), which are located in the N-terminal and catalytic domains, respectively. Glu(298) and Tyr(381), located near the zinc ion, are considered to be involved in peptide cleavage. A difference revealed between the ligand-free form and the enzyme-bestatin complex indicated that Met(260) functions as a cushion to accept substrates with different N-terminal residue sizes, resulting in the broad substrate specificity of this enzyme.
- Szyk A, Maurizi MR
- Crystal structure at 1.9A of E. coli ClpP with a peptide covalently bound at the active site.
- J Struct Biol. 2006; 156: 165-74
- Display abstract
ClpP, the proteolytic component of the ATP-dependent ClpAP and ClpXP chaperone/protease complexes, has 14 identical subunits organized in two stacked heptameric rings. The active sites are in an interior aqueous chamber accessible through axial channels. We have determined a 1.9 A crystal structure of Escherichia coli ClpP with benzyloxycarbonyl-leucyltyrosine chloromethyl ketone (Z-LY-CMK) bound at each active site. The complex mimics a tetrahedral intermediate during peptide cleavage, with the inhibitor covalently linked to the active site residues, Ser97 and His122. Binding is further stabilized by six hydrogen bonds between backbone atoms of the peptide and ClpP as well as by hydrophobic binding of the phenolic ring of tyrosine in the S1 pocket. The peptide portion of Z-LY-CMK displaces three water molecules in the native enzyme resulting in little change in the conformation of the peptide binding groove. The heptameric rings of ClpP-CMK are slightly more compact than in native ClpP, but overall structural changes were minimal (rmsd approximately 0.5 A). The side chain of Ser97 is rotated approximately 90 degrees in forming the covalent adduct with Z-LY-CMK, indicating that rearrangement of the active site residues to a active configuration occurs upon substrate binding. The N-terminal peptide of ClpP-CMK is stabilized in a beta-hairpin conformation with the proximal N-terminal residues lining the axial channel and the loop extending beyond the apical surface of the heptameric ring. The lack of major substrate-induced conformational changes suggests that changes in ClpP structure needed to facilitate substrate entry or product release must be limited to rigid body motions affecting subunit packing or contacts between ClpP rings.
- Li C, Li JJ, Montgomery MG, Wood SP, Bugg TD
- Catalytic role for arginine 188 in the C-C hydrolase catalytic mechanism for Escherichia coli MhpC and Burkholderia xenovorans LB400 BphD.
- Biochemistry. 2006; 45: 12470-9
- Display abstract
The alpha/beta-hydrolase superfamily, comprised mainly of esterase and lipase enzymes, contains a family of bacterial C-C hydrolases, including MhpC and BphD which catalyze the hydrolytic C-C cleavage of meta-ring fission intermediates on the Escherichia coli phenylpropionic acid pathway and Burkholderia xenovorans LB400 biphenyl degradation pathway, respectively. Five active site amino acid residues (Arg-188, Asn-109, Phe-173, Cys-261, and Trp-264) were identified from sequence alignments that are conserved in C-C hydrolases, but not in enzymes of different function. Replacement of Arg-188 in MhpC with Gln and Lys led to 200- and 40-fold decreases, respectively, in k(cat); the same replacements for Arg-190 of BphD led to 400- and 700-fold decreases, respectively, in k(cat). Pre-steady-state kinetic analysis of the R188Q MhpC mutant revealed that the first step of the reaction, keto-enol tautomerization, had become rate-limiting, indicating that Arg-188 has a catalytic role in ketonization of the dienol substrate, which we propose is via substrate destabilization. Mutation of nearby residues Phe-173 and Trp-264 to Gly gave 4-10-fold reductions in k(cat) but 10-20-fold increases in K(m), indicating that these residues are primarily involved in substrate binding. The X-ray structure of a succinate-H263A MhpC complex shows concerted movements in the positions of both Phe-173 and Trp-264 that line the approach to Arg-188. Mutation of Asn-109 to Ala and His yielded 200- and 350-fold reductions, respectively, in k(cat) and pre-steady-state kinetic behavior similar to that of a previous S110A mutant, indicating a role for Asn-109 is positioning the active site loop containing Ser-110. The catalytic role of Arg-188 is rationalized by a hydrogen bond network close to the C-1 carboxylate of the substrate, which positions the substrate and promotes substrate ketonization, probably via destabilization of the bound substrate.
- Maris AE, Kaczor-Grzeskowiak M, Ma Z, Kopka ML, Gunsalus RP, Dickerson RE
- Primary and secondary modes of DNA recognition by the NarL two-component response regulator.
- Biochemistry. 2005; 44: 14538-52
- Display abstract
NarL is a model response regulator for bacterial two-component signal transduction. The NarL C-terminal domain DNA binding domain alone (NarL(C)) contains all essential DNA binding determinants of the full-length NarL transcription factor. In the full-length NarL protein, the N-terminal regulatory domain must be phosphorylated to release the DNA binding determinants; however, the first NarL(C)-DNA cocrystal structure showed that dimerization of NarL(C) on DNA occurs in a manner independent of the regulatory domain [Maris, A. E., et al. (2002) Nat. Struct. Biol. 9, 771-778]. Dimerization via the NarL(C) C-terminal helix conferred high-affinity recognition of the tail-to-tail promoter site arrangement. Here, two new cocrystal structures are presented of NarL(C) complexed with additional 20mer oligonucleotides representative of other high-affinity tail-to-tail NarL binding sites found in upstream promoter regions. DNA structural recognition properties are described, such as backbone flexibility and groove width, that facilitate NarL(C) dimerization and high-affinity recognition. Lys 188 on the recognition helix accommodates DNA sequence variation between the three different cocomplexes by providing flexible specificity, recognizing the DNA major groove floor directly and/or via bridging waters. The highly conserved Val 189, which enforced significant DNA base distortion in the first cocrystal structure, enforces similar distortions in the two new cocrystal structures. Recognition also is conserved for Lys 192, which hydrogen bonds to guanines at regions of high DNA helical writhe. DNA affinity measurements for model NarL binding sites, including those that did not cocrystallize, suggest a framework for explaining the diversity of heptamer site arrangement and orientation.
- Baba D et al.
- Crystal structure of thymine DNA glycosylase conjugated to SUMO-1.
- Nature. 2005; 435: 979-82
- Display abstract
Members of the small ubiquitin-like modifier (SUMO) family can be covalently attached to the lysine residue of a target protein through an enzymatic pathway similar to that used in ubiquitin conjugation, and are involved in various cellular events that do not rely on degradative signalling via the proteasome or lysosome. However, little is known about the molecular mechanisms of SUMO-modification-induced protein functional transfer. During DNA mismatch repair, SUMO conjugation of the uracil/thymine DNA glycosylase TDG promotes the release of TDG from the abasic (AP) site created after base excision, and coordinates its transfer to AP endonuclease 1, which catalyses the next step in the repair pathway. Here we report the crystal structure of the central region of human TDG conjugated to SUMO-1 at 2.1 A resolution. The structure reveals a helix protruding from the protein surface, which presumably interferes with the product DNA and thus promotes the dissociation of TDG from the DNA molecule. This helix is formed by covalent and non-covalent contacts between TDG and SUMO-1. The non-covalent contacts are also essential for release from the product DNA, as verified by mutagenesis.
- Fujiwara K, Toma S, Okamura-Ikeda K, Motokawa Y, Nakagawa A, Taniguchi H
- Crystal structure of lipoate-protein ligase A from Escherichia coli. Determination of the lipoic acid-binding site.
- J Biol Chem. 2005; 280: 33645-51
- Display abstract
Lipoate-protein ligase A (LplA) catalyzes the formation of lipoyl-AMP from lipoate and ATP and then transfers the lipoyl moiety to a specific lysine residue on the acyltransferase subunit of alpha-ketoacid dehydrogenase complexes and on H-protein of the glycine cleavage system. The lypoyllysine arm plays a pivotal role in the complexes by shuttling the reaction intermediate and reducing equivalents between the active sites of the components of the complexes. We have determined the X-ray crystal structures of Escherichia coli LplA alone and in a complex with lipoic acid at 2.4 and 2.9 angstroms resolution, respectively. The structure of LplA consists of a large N-terminal domain and a small C-terminal domain. The structure identifies the substrate binding pocket at the interface between the two domains. Lipoic acid is bound in a hydrophobic cavity in the N-terminal domain through hydrophobic interactions and a weak hydrogen bond between carboxyl group of lipoic acid and the Ser-72 or Arg-140 residue of LplA. No large conformational change was observed in the main chain structure upon the binding of lipoic acid.
- Golan G et al.
- Structure of the uncomplexed DNA repair enzyme endonuclease VIII indicates significant interdomain flexibility.
- Nucleic Acids Res. 2005; 33: 5006-16
- Display abstract
Escherichia coli endonuclease VIII (Nei) excises oxidized pyrimidines from DNA. It shares significant sequence homology and similar mechanism with Fpg, a bacterial 8-oxoguanine glycosylase. The structure of a covalent Nei-DNA complex has been recently determined, revealing critical amino acid residues which are important for DNA binding and catalysis. Several Fpg structures have also been reported; however, analysis of structural dynamics of Fpg/Nei family proteins has been hindered by the lack of structures of uncomplexed and DNA-bound enzymes from the same source. We report a 2.8 A resolution structure of free wild-type Nei and two structures of its inactive mutants, Nei-E2A (2.3 A) and Nei-R252A (2.05 A). All three structures are virtually identical, demonstrating that the mutations did not affect the overall conformation of the protein in its free state. The structures show a significant conformational change compared with the Nei structure in its complex with DNA, reflecting a approximately 50 degrees rotation of the two main domains of the enzyme. Such interdomain flexibility has not been reported previously for any DNA glycosylase and may present the first evidence for a global DNA-induced conformational change in this class of enzymes. Several local but functionally relevant structural changes are also evident in other parts of the enzyme.
- Buchko GW, McAteer K, Wallace SS, Kennedy MA
- Solution-state NMR investigation of DNA binding interactions in Escherichia coli formamidopyrimidine-DNA glycosylase (Fpg): a dynamic description of the DNA/protein interface.
- DNA Repair (Amst). 2005; 4: 327-39
- Display abstract
Formamidopyrimidine-DNA glycosylase (Fpg) is a base excision repair (BER) protein that removes oxidative DNA lesions. Recent crystal structures of Fpg bound to DNA revealed residues involved in damage recognition and enzyme catalysis, but failed to shed light on the dynamic nature of the processes. To examine the structural and dynamic changes that occur in solution when Fpg binds DNA, NMR spectroscopy was used to study Escherichia coli Fpg free in solution and bound to a double-stranded DNA oligomer containing 1,3-propanediol (13-PD), a non-hydrolyzable abasic-site analogue. Only 209 out of a possible 251 (83%) free-precession 15N/1H HSQC cross peaks were observed and 180 of these were assignable, indicating that approximately 30% of the residues undergo intermediate motion on the NMR timescale, broadening the resonances beyond detection or making them intractable in backbone assignment experiments. The majority of these affected residues were in the polypeptide linker region and the interface between the N- and C-terminal domains. DNA titration experiments revealed line broadening and chemical shift perturbations for backbone amides nearby and distant from the DNA binding surface, but failed to quench the intermediate timescale motion observed for free Fpg, including those residues directly involved in DNA binding, notwithstanding a nanomolar dissociation constant for 13-PD binding. Indeed, after binding to 13-PD, at least approximately 40% of the Fpg residues undergo intermediate timescale motion even though all other residues exhibit tight DNA binding characteristic of slow exchange. CPMG-HSQC experiments revealed millisecond to microsecond motion for the backbone amides of D91 and H92 that were quenched upon binding 13-PD. In free Fpg, heteronuclear 1H-15N NOE experiments detected picosecond timescale backbone motion in the alphaF-beta9 loop, the region primarily responsible for chemically discriminating 8-oxoguanine (8-oxoG) over normal guanine, that was quenched after binding 13-PD. Collectively, these observations reveal that, in solution, Fpg is a very dynamic molecule even after binding damaged DNA. Such motion, especially at the DNA binding surface, may be key to its processive search for DNA damage and its catalytic functions once it recognizes damaged DNA.
- Okamura-Ikeda K et al.
- Crystal structure of human T-protein of glycine cleavage system at 2.0 A resolution and its implication for understanding non-ketotic hyperglycinemia.
- J Mol Biol. 2005; 351: 1146-59
- Display abstract
T-protein, a component of the glycine cleavage system, catalyzes the formation of ammonia and 5,10-methylenetetrahydrofolate from the aminomethyl moiety of glycine attached to the lipoate cofactor of H-protein. Several mutations in the human T-protein gene cause non-ketotic hyperglycinemia. To gain insights into the effect of disease-causing mutations and the catalytic mechanism at the molecular level, crystal structures of human T-protein in free form and that bound to 5-methyltetrahydrofolate (5-CH3-H4folate) have been determined at 2.0 A and 2.6 A resolution, respectively. The overall structure consists of three domains arranged in a cloverleaf-like structure with the central cavity, where 5-CH3-H4folate is bound in a kinked shape with the pteridine group deeply buried into the hydrophobic pocket and the glutamyl group pointed to the C-terminal side surface. Most of the disease-related residues cluster around the cavity, forming extensive hydrogen bonding networks. These hydrogen bonding networks are employed in holding not only the folate-binding space but also the positions and the orientations of alpha-helix G and the following loop in the middle region, which seems to play a pivotal role in the T-protein catalysis. Structural and mutational analyses demonstrated that Arg292 interacts through water molecules with the folate polyglutamate tail, and that the invariant Asp101, located close to the N10 group of 5-CH3-H4folate, might play a key role in the initiation of the catalysis by increasing the nucleophilic character of the N10 atom of the folate substrate for the nucleophilic attack on the aminomethyl lipoate intermediate. A clever mechanism of recruiting the aminomethyl lipoate arm to the reaction site seems to function as a way of avoiding the release of toxic formaldehyde.
- Radlinska M, Kondrzycka-Dada A, Piekarowicz A, Bujnicki JM
- Identification of amino acids important for target recognition by the DNA:m5C methyltransferase M.NgoPII by alanine-scanning mutagenesis of residues at the protein-DNA interface.
- Proteins. 2005; 58: 263-70
- Display abstract
DNA:m(5)C MTases comprise a catalytic domain with conserved residues of the active site and a strongly diverged TRD with variable residues involved in DNA recognition and binding. To date, crystal structures of 2 DNA:m(5)C MTases complexed with the substrate DNA have been obtained; however, for none of these enzymes has the importance of the whole set of DNA-binding residues been comprehensively studied. We built a comparative model of M.NgoPII, a close homologue and isomethylomer of M.HaeIII, and systematically analyzed the effect of alanine substitutions for the complete set of amino acid residues from its TRD predicted to be important for DNA binding and target recognition. Our data demonstrate that only 1 Arg residue is indispensable for the MTase activity in vivo and in vitro, and that mutations of only a few other residues cause significant reduction of the activity in vitro, with little effect on the activity in vivo. The identification of dispensable protein-DNA contacts in the wild-type MTase will serve as a platform for exhaustive combinatorial mutagenesis aimed at the design of new contacts, and thus construction of enzyme variants that retain the activity but exhibit potentially new substrate preferences.
- Lingaraju GM, Sartori AA, Kostrewa D, Prota AE, Jiricny J, Winkler FK
- A DNA glycosylase from Pyrobaculum aerophilum with an 8-oxoguanine binding mode and a noncanonical helix-hairpin-helix structure.
- Structure. 2005; 13: 87-98
- Display abstract
Studies of DNA base excision repair (BER) pathways in the hyperthermophilic crenarchaeon Pyrobaculum aerophilum identified an 8-oxoguanine-DNA glycosylase, Pa-AGOG (archaeal GO glycosylase), with distinct functional characteristics. Here, we describe its crystal structure and that of its complex with 8-oxoguanosine at 1.0 and 1.7 A resolution, respectively. Characteristic structural features are identified that confirm Pa-AGOG to be the founding member of a functional class within the helix-hairpin-helix (HhH) superfamily of DNA repair enzymes. Its hairpin structure differs substantially from that of other proteins containing an HhH motif, and we predict that it interacts with the DNA backbone in a distinct manner. Furthermore, the mode of 8-oxoguanine recognition, which involves several hydrogen-bonding and pi-stacking interactions, is unlike that observed in human OGG1, the prototypic 8-oxoguanine HhH-type DNA glycosylase. Despite these differences, the predicted kinked conformation of bound DNA and the catalytic mechanism are likely to resemble those of human OGG1.
- Speina E, Ciesla JM, Graziewicz MA, Laval J, Kazimierczuk Z, Tudek B
- Inhibition of DNA repair glycosylases by base analogs and tryptophan pyrolysate, Trp-P-1.
- Acta Biochim Pol. 2005; 52: 167-78
- Display abstract
DNA base analogs, 2,4,5,6-substituted pyrimidines and 2,6-substituted purines were tested as potential inhibitors of E. coli Fpg protein (formamidopyrimidine -DNA glycosylase). Three of the seventeen compounds tested revealed inhibitory properties. 2-Thioxanthine was the most efficient, inhibiting 50% of 2,6-diamino-4-hydroxy-5N-methyl-formamidopyrimidine (Fapy-7MeG) excision activity at 17.1 microM concentration. The measured K(i) was 4.44 +/- 0.15 microM. Inhibition was observed only when the Fpg protein was first challenged to its substrate followed by the addition of the base analog, suggesting uncompetitive (catalytic) inhibition. For two other compounds, 2-thio- or 2-oxo-4,5,6-substituted pyrimidines, IC(50) was only 343.3 +/- 58.6 and 350 +/- 24.4 microM, respectively. No change of the Fpg glycosylase activity was detected in the presence of Fapy-7MeG, up to 5 microM. We also investigated the effect of DNA structure modified by tryptophan pyrolysate (Trp-P-1) on the activity of base excision repair enzymes: Escherichia coli and human DNA glycosylases of oxidized (Fpg, Nth) and alkylated bases (TagA, AlkA, and ANPG), and for bacterial AP endonuclease (Xth protein). Trp-P-1, which changes the secondary DNA structure into non-B, non-Z most efficiently inhibited excision of alkylated bases by the AlkA glycosylase (IC(50) = 1 microM). The ANPG, TagA, and Fpg proteins were also inhibited although to a lesser extent (IC(50) = 76.5 microM, 96 microM, and 187.5 microM, respectively). Trp-P-1 also inhibited incision of DNA at abasic sites by the beta-lyase activity of the Fpg and Nth proteins, and to a lesser extent by the Xth AP endonuclease. Thus, DNA conformation is critical for excision of damaged bases and incision of abasic sites by DNA repair enzymes.
- Zhu H, Shuman S
- Structure-guided mutational analysis of the nucleotidyltransferase domain of Escherichia coli NAD+-dependent DNA ligase (LigA).
- J Biol Chem. 2005; 280: 12137-44
- Display abstract
NAD+-dependent DNA ligase (LigA) is essential for bacterial growth and a potential target for antimicrobial drug discovery. Here we queried the role of 14 conserved amino acids of Escherichia coli LigA by alanine scanning and thereby identified five new residues within the nucleotidyltransferase domain as being essential for LigA function in vitro and in vivo. Structure activity relationships were determined by conservative mutagenesis for the Glu-173, Arg-200, Arg-208, and Arg-277 side chains, as well as four other essential side chains that had been identified previously (Lys-115, Asp-117, Asp-285, and Lys-314). In addition, we identified Lys-290 as important for LigA activity. Reference to the structure of Enterococcus faecalis LigA allowed us to discriminate three classes of essential/important side chains that: (i) contact NAD+ directly (Lys-115, Glu-173, Lys-290, and Lys-314); (ii) comprise the interface between the NMN-binding domain (domain Ia) and the nucleotidyltransferase domain or comprise part of a nick-binding site on the surface of the nucleotidyltransferase domain (Arg-200 and Arg-208); or (iii) stabilize the active site fold of the nucleotidyltransferase domain (Arg-277). Analysis of mutational effects on the isolated ligase adenylylation and phosphodiester formation reactions revealed different functions for essential side chains at different steps of the DNA ligase pathway, consistent with the proposal that the active site is serially remodeled as the reaction proceeds.
- Sgraja T, Kemp LE, Ramsden N, Hunter WN
- A double mutation of Escherichia coli2C-methyl-D-erythritol-2,4-cyclodiphosphate synthase disrupts six hydrogen bonds with, yet fails to prevent binding of, an isoprenoid diphosphate.
- Acta Crystallogr Sect F Struct Biol Cryst Commun. 2005; 61: 625-9
- Display abstract
The essential enzyme 2C-methyl-D-erythritol-2,4-cyclodiphosphate (MECP) synthase, found in most eubacteria and the apicomplexan parasites, participates in isoprenoid-precursor biosynthesis and is a validated target for the development of broad-spectrum antimicrobial drugs. The structure and mechanism of the enzyme have been elucidated and the recent exciting finding that the enzyme actually binds diphosphate-containing isoprenoids at the interface formed by the three subunits that constitute the active protein suggests the possibility of feedback regulation of MECP synthase. To investigate such a possibility, a form of the enzyme was sought that did not bind these ligands but which would retain the quaternary structure necessary to create the active site. Two amino acids, Arg142 and Glu144, in Escherichia coli MECP synthase were identified as contributing to ligand binding. Glu144 interacts directly with Arg142 and positions the basic residue to form two hydrogen bonds with the terminal phosphate group of the isoprenoid diphosphate ligand. This association occurs at the trimer interface and three of these arginines interact with the ligand phosphate group. A dual mutation was designed (Arg142 to methionine and Glu144 to leucine) to disrupt the electrostatic attractions between the enzyme and the phosphate group to investigate whether an enzyme without isoprenoid diphosphate could be obtained. A low-resolution crystal structure of the mutated MECP synthase Met142/Leu144 revealed that geranyl diphosphate was retained despite the removal of six hydrogen bonds normally formed with the enzyme. This indicates that these two hydrophilic residues on the surface of the enzyme are not major determinants of isoprenoid binding at the trimer interface but rather that hydrophobic interactions between the hydrocarbon tail and the core of the enzyme trimer dominate ligand binding.
- Reh S, Korn C, Gimadutdinow O, Meiss G
- Structural basis for stable DNA complex formation by the caspase-activated DNase.
- J Biol Chem. 2005; 280: 41707-15
- Display abstract
We describe a structural model for DNA binding by the caspase-activated DNase (CAD). Results of a mutational analysis and computational modeling suggest that DNA is bound via a positively charged surface with two functionally distinct regions, one being the active site facing the DNA minor groove and the other comprising distal residues close to or directly from helix alpha4, which binds DNA in the major groove. This bipartite protein-DNA interaction is present once in the CAD/inhibitor of CAD heterodimer and repeated twice in the active CAD dimer.
- Ghosh M, Meiss G, Pingoud A, London RE, Pedersen LC
- Structural insights into the mechanism of nuclease A, a betabeta alpha metal nuclease from Anabaena.
- J Biol Chem. 2005; 280: 27990-7
- Display abstract
Nuclease A (NucA) is a nonspecific endonuclease from Anabaena sp. capable of degrading single- and double-stranded DNA and RNA in the presence of divalent metal ions. We have determined the structure of the delta(2-24),D121A mutant of NucA in the presence of Zn2+ and Mn2+ (PDB code 1ZM8). The mutations were introduced to remove the N-terminal signal peptide and to reduce the activity of the nonspecific nuclease, thereby reducing its toxicity to the Escherichia coli expression system. NucA contains a betabeta alpha metal finger motif and a hydrated Mn2+ ion at the active site. Unexpectedly, NucA was found to contain additional metal binding sites approximately 26 A apart from the catalytic metal binding site. A structural comparison between NucA and the closest analog for which structural data exist, the Serratia nuclease, indicates several interesting differences. First, NucA is a monomer rather than a dimer. Second, there is an unexpected structural homology between the N-terminal segments despite a poorly conserved sequence, which in Serratia includes a cysteine bridge thought to play a regulatory role. In addition, although a sequence alignment had suggested that NucA lacks a proposed catalytic residue corresponding to Arg57 in Serratia, the structure determined here indicates that Arg93 in NucA is positioned to fulfill this role. Based on comparison with DNA-bound nuclease structures of the betabeta alpha metal finger nuclease family and available mutational data on NucA, we propose that His124 acts as a catalytic base, and Arg93 participates in the catalysis possibly through stabilization of the transition state.
- Coste F, Ober M, Carell T, Boiteux S, Zelwer C, Castaing B
- Structural basis for the recognition of the FapydG lesion (2,6-diamino-4-hydroxy-5-formamidopyrimidine) by formamidopyrimidine-DNA glycosylase.
- J Biol Chem. 2004; 279: 44074-83
- Display abstract
Formamidopyrimidine-DNA glycosylase (Fpg) is a DNA repair enzyme that excises oxidized purines such as 7,8-dihydro-8-oxoguanine (8-oxoG) and 2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyG) from damaged DNA. Here, we report the crystal structure of the Fpg protein from Lactococcus lactis (LlFpg) bound to a carbocyclic FapydG (cFapydG)-containing DNA. The structure reveals that Fpg stabilizes the cFapydG nucleoside into an extrahelical conformation inside its substrate binding pocket. In contrast to the recognition of the 8-oxodG lesion, which is bound with the glycosidic bond in a syn conformation, the cFapydG lesion displays in the complex an anti conformation. Furthermore, Fpg establishes interactions with all the functional groups of the FapyG base lesion, which can be classified in two categories: (i) those specifying a purine-derived lesion (here a guanine) involved in the Watson-Crick face recognition of the lesion and probably contributing to an optimal orientation of the pyrimidine ring moiety in the binding pocket and (ii) those specifying the imidazole ring-opened moiety of FapyG and probably participating also in the rotameric selection of the FapydG nucleobase. These interactions involve strictly conserved Fpg residues and structural water molecules mediated interactions. The significant differences between the Fpg recognition modes of 8-oxodG and FapydG provide new insights into the Fpg substrate specificity.
- Pucci B, De Felice M, Rossi M, Onesti S, Pisani FM
- Amino acids of the Sulfolobus solfataricus mini-chromosome maintenance-like DNA helicase involved in DNA binding/remodeling.
- J Biol Chem. 2004; 279: 49222-8
- Display abstract
Herein we report the identification of amino acids of the Sulfolobus solfataricus mini-chromosome maintenance (MCM)-like DNA helicase (SsoMCM), which are critical for DNA binding/remodeling. The crystallographic structure of the N-terminal portion (residues 2-286) of the Methanothermobacter thermoautotrophicum MCM protein revealed a dodecameric assembly with two hexameric rings in a head-to-head configuration and a positively charged central channel proposed to encircle DNA molecules. A structure-guided alignment of the M. thermoautotrophicum and S. solfataricus MCM sequences identified positively charged amino acids in SsoMCM that could point to the center of the channel. These residues (Lys-129, Lys-134, His-146, and Lys-194) were changed to alanine. The purified mutant proteins were all found to form homo-hexamers in solution and to retain full ATPase activity. K129A, H146A, and K194A SsoMCMs are unable to bind DNA either in single- or double-stranded form in band shift assays and do not display helicase activity. In contrast, the substitution of lysine 134 to alanine affects only binding to duplex DNA molecules, whereas it has no effect on binding to single-stranded DNA and on the DNA unwinding activity. These results have important implications for the understanding of the molecular mechanism of the MCM DNA helicase action.
- Bhakat KK, Hazra TK, Mitra S
- Acetylation of the human DNA glycosylase NEIL2 and inhibition of its activity.
- Nucleic Acids Res. 2004; 32: 3033-9
- Display abstract
Post-translational modifications of proteins, including acetylation, modulate their cellular functions. Several human DNA replication and repair enzymes have recently been shown to be acetylated, leading to their inactivation in some cases. Here we show that the transcriptional coactivator p300 stably interacts with, and acetylates, the recently discovered human DNA glycosylase NEIL2, involved in the repair of oxidized bases both in vivo and in vitro. Lys49 and Lys153 were identified as the major acetylation sites in NEIL2. Acetylation of Lys49, conserved among Nei orthologs, or its mutation to Arg inactivates both base excision and AP lyase activities, while acetylation of Lys153 has no effect. Reversible acetylation of Lys49 could thus regulate the repair activity of NEIL2 in vivo.
- Doublie S, Bandaru V, Bond JP, Wallace SS
- The crystal structure of human endonuclease VIII-like 1 (NEIL1) reveals a zincless finger motif required for glycosylase activity.
- Proc Natl Acad Sci U S A. 2004; 101: 10284-9
- Display abstract
In prokaryotes, two DNA glycosylases recognize and excise oxidized pyrimidines: endonuclease III (Nth) and endonuclease VIII (Nei). The oxidized purine 8-oxoguanine, on the other hand, is recognized by Fpg (also known as MutM), a glycosylase that belongs to the same family as Nei. The recent availability of the human genome sequence allowed the identification of three human homologs of Escherichia coli Nei. We report here the crystal structure of a human Nei-like (NEIL) enzyme, NEIL1. The structure of NEIL1 exhibits the same overall fold as E. coli Nei, albeit with an unexpected twist. Sequence alignments had predicted that NEIL1 would lack a zinc finger, and it was therefore expected to use a different DNA-binding motif instead. Our structure revealed that, to the contrary, NEIL1 contains a structural motif composed of two antiparallel beta-strands that mimics the antiparallel beta-hairpin zinc finger found in other Fpg/Nei family members but lacks the loops that harbor the zinc-binding residues and, therefore, does not coordinate zinc. This "zincless finger" appears to be required for NEIL1 activity, because mutating a very highly conserved arginine within this motif greatly reduces the glycosylase activity of the enzyme.
- Zaika EI et al.
- Substrate discrimination by formamidopyrimidine-DNA glycosylase: a mutational analysis.
- J Biol Chem. 2004; 279: 4849-61
- Display abstract
Formamidopyrimidine-DNA glycosylase (Fpg) is a primary participant in the repair of 8-oxoguanine, an abundant oxidative DNA lesion. Although the structure of Fpg has been established, amino acid residues that define damage recognition have not been identified. We have combined molecular dynamics and bioinformatics approaches to address this issue. Site-specific mutagenesis coupled with enzyme kinetics was used to test our predictions. On the basis of molecular dynamics simulations, Lys-217 was predicted to interact with the O8 of extrahelical 8-oxoguanine accommodated in the binding pocket. Consistent with our computational studies, mutation of Lys-217 selectively reduced the ability of Fpg to excise 8-oxoguanine from DNA. Dihydrouracil, also a substrate for Fpg, served as a nonspecific control. Other residues involved in damage recognition (His-89, Arg-108, and Arg-109) were identified by combined conservation/structure analysis. Arg-108, which forms two hydrogen bonds with cytosine in Fpg-DNA, is a major determinant of opposite-base specificity. Mutation of this residue reduced excision of 8-oxoguanine from thermally unstable mispairs with guanine or thymine, while excision from the stable cytosine and adenine base pairs was less affected. Mutation of His-89 selectively diminished the rate of excision of 8-oxoguanine, whereas mutation of Arg-109 nearly abolished binding of Fpg to damaged DNA. Taken together, these results suggest that His-89 and Arg-109 form part of a reading head, a structural feature used by the enzyme to scan DNA for damage. His-89 and Lys-217 help determine the specificity of Fpg in recognizing the oxidatively damaged base, while Arg-108 provides specificity for bases positioned opposite the lesion.
- Im YJ et al.
- The active site of a lon protease from Methanococcus jannaschii distinctly differs from the canonical catalytic Dyad of Lon proteases.
- J Biol Chem. 2004; 279: 53451-7
- Display abstract
ATP-dependent Lon proteases catalyze the degradation of various regulatory proteins and abnormal proteins within cells. Methanococcus jannaschii Lon (Mj-Lon) is a homologue of Escherichia coli Lon (Ec-Lon) but has two transmembrane helices within its N-terminal ATPase domain. We solved the crystal structure of the proteolytic domain of Mj-Lon using multiwavelength anomalous dispersion, refining it to 1.9-angstroms resolution. The structure displays an overall fold conserved in the proteolytic domain of Ec-Lon; however, the active site shows uniquely configured catalytic Ser-Lys-Asp residues that are not seen in Ec-Lon, which contains a catalytic dyad. In Mj-Lon, the C-terminal half of the beta4-alpha2 segment is an alpha-helix, whereas it is a beta-strand in Ec-Lon. Consequently, the configurations of the active sites differ due to the formation of a salt bridge between Asp-547 and Lys-593 in Mj-Lon. Moreover, unlike Ec-Lon, Mj-Lon has a buried cavity in the region of the active site containing three water molecules, one of which is hydrogen-bonded to catalytic Ser-550. The geometry and environment of the active site residues in Mj-Lon suggest that the charged Lys-593 assists in lowering the pK(a) of the Ser-550 hydroxyl group via its electrostatic potential, and the water in the cavity acts as a proton acceptor during catalysis. Extensive sequence alignment and comparison of the structures of the proteolytic domains clearly indicate that Lon proteases can be classified into two groups depending on active site configuration and the presence of DGPSA or (D/E)GDSA consensus sequences, as represented by Ec-Lon and Mj-Lon.
- Mate MJ, Kleanthous C
- Structure-based analysis of the metal-dependent mechanism of H-N-H endonucleases.
- J Biol Chem. 2004; 279: 34763-9
- Display abstract
Controversy surrounds the metal-dependent mechanism of H-N-H endonucleases, enzymes involved in a variety of biological functions, including intron homing and DNA repair. To address this issue we determined the crystal structures for complexes of the H-N-H motif containing bacterial toxin colicin E9 with Zn(2+), Zn(2+).DNA, and Mg(2+).DNA. The structures show that the rigid V-shaped architecture of the active site does not undergo any major conformational changes on binding to the minor groove of DNA and that the same interactions are made to the nucleic acid regardless of which metal ion is bound to the enzyme. The scissile phosphate contacts the single metal ion of the motif through distortion of the DNA brought about by the insertion of the Arg-96-Glu-100 salt bridge into the minor groove and a network of contacts to the DNA phosphate backbone that straddle the metal site. The Mg(2+)-bound structure reveals an unusual coordination scheme involving two H-N-H histidine residues, His-102 and His-127. The mechanism of DNA cleavage is likely related to that of other single metal ion-dependent endonucleases, such as I-PpoI and Vvn, although in these enzymes the single alkaline earth metal ion is coordinated by oxygen-bearing amino acids. The structures also provide a rationale as to why H-N-H endonucleases are inactive in the presence of Zn(2+) but active with other transition metal ions such as Ni(2+). This is because of coordination of the Zn(2+) ion through a third histidine, His-131. "Active" transition metal ions are those that bind more weakly to the H-N-H motif because of the disengagement of His-131, which we suggest allows a water molecule to complete the catalytic cycle.
- Manuel RC et al.
- Reaction intermediates in the catalytic mechanism of Escherichia coli MutY DNA glycosylase.
- J Biol Chem. 2004; 279: 46930-9
- Display abstract
The Escherichia coli adenine DNA glycosylase, MutY, plays an important role in the maintenance of genomic stability by catalyzing the removal of adenine opposite 8-oxo-7,8-dihydroguanine or guanine in duplex DNA. Although the x-ray crystal structure of the catalytic domain of MutY revealed a mechanism for catalysis of the glycosyl bond, it appeared that several opportunistically positioned lysine side chains could participate in a secondary beta-elimination reaction. In this investigation, it is established via site-directed mutagenesis and the determination of a 1.35-A structure of MutY in complex with adenine that the abasic site (apurinic/apyrimidinic) lyase activity is alternatively regulated by two lysines, Lys142 and Lys20. Analyses of the crystallographic structure also suggest a role for Glu161 in the apurinic/apyrimidinic lyase chemistry. The beta-elimination reaction is structurally and chemically uncoupled from the initial glycosyl bond scission, indicating that this reaction occurs as a consequence of active site plasticity and slow dissociation of the product complex. MutY with either the K142A or K20A mutation still catalyzes beta and beta-delta elimination reactions, and both mutants can be trapped as covalent enzyme-DNA intermediates by chemical reduction. The trapping was observed to occur both pre- and post-phosphodiester bond scission, establishing that both of these intermediates have significant half-lives. Thus, the final spectrum of DNA products generated reflects the outcome of a delicate balance of closely related equilibrium constants.
- Das A, Rajagopalan L, Mathura VS, Rigby SJ, Mitra S, Hazra TK
- Identification of a zinc finger domain in the human NEIL2 (Nei-like-2) protein.
- J Biol Chem. 2004; 279: 47132-8
- Display abstract
The recently identified human NEIL2 (Nei-like-2) protein, a DNA glycosylase/AP lyase specific for oxidatively damaged bases, shares structural features and reaction mechanism with the Escherichia coli DNA glycosylases, Nei and Fpg. Amino acid sequence analysis of NEIL2 suggested it to have a zinc finger-like Nei/Fpg. However, the Cys-X2-His-X16-Cys-X2-Cys (CHCC) motif present near the C terminus of NEIL2 is distinct from the zinc finger motifs of Nei/Fpg, which are of the C4 type. Here we show the presence of an equimolar amount of zinc in NEIL2 by inductively coupled plasma mass spectrometry. Individual mutations of Cys-291, His-295, Cys-315, and Cys-318, candidate residues for coordinating zinc, inactivated the enzyme by abolishing its DNA binding activity. H295A and C318S mutants were also shown to lack bound zinc, and a significant change in their secondary structure was revealed by CD spectra analysis. Molecular modeling revealed Arg-310 of NEIL2 to be a critical residue in its zinc binding pocket, which is highly conserved throughout the Fpg/Nei family. A R310Q mutation significantly reduced the activity of NEIL2. We thereby conclude that the zinc finger motif in NEIL2 is essential for its structural integrity and enzyme activity.
- Amara P, Serre L, Castaing B, Thomas A
- Insights into the DNA repair process by the formamidopyrimidine-DNA glycosylase investigated by molecular dynamics.
- Protein Sci. 2004; 13: 2009-21
- Display abstract
Formamidopyrimidine-DNA glycosylase (Fpg) identifies and removes 8-oxoguanine from DNA. All of the X-ray structures of Fpg complexed to an abasic site containing DNA exhibit a common disordered region present in the C-terminal domain of the enzyme. However, this region is believed to be involved in the damaged base binding site when the initial protein/DNA complex is formed. The dynamic behavior of the disordered polypeptide (named Loop) in relation to the supposed scenario for the DNA repair mechanism was investigated by molecular dynamics on different models, derived from the X-ray structure of Lactococcus lactis Fpg bound to an abasic site analog-containing DNA and of Bacillus stearothermophilus Fpg bound to 8-oxoG. This study shows that the presence of the damaged base influences the dynamics of the whole enzyme and that the Loop location is dependent on the presence and on the conformation of the 8-oxoG in its binding site. In addition, from our results, the conformation of the 8-oxoG seems to be favored in syn in the L. lactis models, in agreement with the available X-ray structure from B. stearothermophilus Fpg and with a possible catalytic role of the flexibility of the Loop region.
- Morais MC, Zhang G, Zhang W, Olsen DB, Dunaway-Mariano D, Allen KN
- X-ray crystallographic and site-directed mutagenesis analysis of the mechanism of Schiff-base formation in phosphonoacetaldehyde hydrolase catalysis.
- J Biol Chem. 2004; 279: 9353-61
- Display abstract
Phosphonoacetaldehyde hydrolase (phosphonatase) catalyzes the hydrolytic P-C bond cleavage of phosphonoacetaldehyde (Pald) to form orthophosphate and acetaldehyde. The reaction proceeds via a Schiff-base intermediate formed between Lys-53 and the Pald carbonyl. The x-ray crystal structures of the wild-type phosphonatase complexed with Mg(II) alone or with Mg(II) plus vinylsulfonate (a phosphonoethylenamine analog) were determined to 2.8 and 2.4 A, respectively. These structures were used to determine the identity and positions of active site residues surrounding the Lys-53 ammonium group and the Pald carbonyl. These include Cys-22, His-56, Tyr-128, and Met-49. Site-directed mutagenesis was then employed to determine whether or not these groups participate in catalysis. Based on rate contributions, Tyr-128 and Cys-22 were eliminated as potential catalytic groups. The Lys-53 epsilon-amino group, positioned for reaction with the Pald carbonyl, forms a hydrogen bond with water 120. Water 120 is also within hydrogen bond distance of an imidazole nitrogen of His-56 and the sulfur atom of Met-49. Kinetic constants for mutants indicated that His-56 (1000-fold reduction in k(cat)/K(m) upon Ala substitution) and Met-49 (17,000-fold reduction in k(cat)/K(m) upon Leu substitution) function in catalysis of Schiff-base formation. Based on these results, it is proposed that a network of hydrogen bonds among Lys-53, water 120, His-56, and Met-49 facilitate proton transfer from Lys-53 to the carbinolamine intermediate. Comparison of the vinylsulfonate complex versus unliganded structures indicated that association of the cap and core domains is essential for the positioning of the Lys-53 for attack at the Pald carbonyl and that substrate binding at the core domain stabilizes cap domain binding.
- Kwon K, Cao C, Stivers JT
- A novel zinc snap motif conveys structural stability to 3-methyladenine DNA glycosylase I.
- J Biol Chem. 2003; 278: 19442-6
- Display abstract
The Escherichia coli 3-methyladenine DNA glycosylase I (TAG) is a DNA repair enzyme that excises 3-methyladenine in DNA and is the smallest member of the helix-hairpin-helix (HhH) superfamily of DNA glycosylases. Despite many studies over the last 25 years, there has been no suggestion that TAG was a metalloprotein. However, here we establish by heteronuclear NMR and other spectroscopic methods that TAG binds 1 eq of Zn2+ extremely tightly. A family of refined NMR structures shows that 4 conserved residues contributed from the amino- and carboxyl-terminal regions of TAG (Cys4, His17, His175, and Cys179) form a Zn2+ binding site. The Zn2+ ion serves to tether the otherwise unstructured amino- and carboxyl-terminal regions of TAG. We propose that this unexpected "zinc snap" motif in the TAG family (CX(12-17)HX(approximately 150)HX(3)C) serves to stabilize the HhH domain thereby mimicking the functional role of protein-protein interactions in larger HhH superfamily members.
- Zharkov DO, Ishchenko AA, Douglas KT, Nevinsky GA
- Recognition of damaged DNA by Escherichia coli Fpg protein: insights from structural and kinetic data.
- Mutat Res. 2003; 531: 141-56
- Display abstract
Formamidopyrimidine-DNA glycosylase (Fpg) excises oxidized purines from damaged DNA. The recent determination of the three-dimensional structure of the covalent complex of DNA with Escherichia coli Fpg, obtained by reducing the Schiff base intermediate formed during the reaction [Gilboa et al., J. Biol. Chem. 277 (2002) 19811] has revealed a number of potential specific and non-specific interactions between Fpg and DNA. We analyze the structural data for Fpg in the light of the kinetic and thermodynamic data obtained by the method of stepwise increase in ligand complexity to estimate relative contributions of individual nucleotide units of lesion-containing DNA to its total affinity for this enzyme [Ishchenko et al., Biochemistry 41 (2002) 7540]. Stopped-flow kinetic analysis that has allowed the dissection of Fpg catalysis in time [Fedorova et al., Biochemistry 41 (2002) 1520] is also correlated with the structural data.
- Minetti CA et al.
- Energetics of lesion recognition by a DNA repair protein: thermodynamic characterization of formamidopyrimidine-glycosylase (Fpg) interactions with damaged DNA duplexes.
- J Mol Biol. 2003; 328: 1047-60
- Display abstract
As part of an overall effort to map the energetic landscape of the base excision repair pathway, we report the first thermodynamic characterization of repair enzyme binding to lesion-containing duplexes. Isothermal titration calorimetry (ITC) in conjunction with spectroscopic measurements and protease protection assays have been employed to characterize the binding of Escherichia coli formamidopyrimidine-glycosylase (Fpg), a bifunctional repair enzyme, to a series of 13-mer DNA duplexes. To resolve energetically the binding and the catalytic events, several of these duplexes are constructed with non-hydrolyzable lesion analogs that mimic the natural 8-oxo-dG substrate and the abasic-like intermediates. Specifically, one of the duplexes contains a central, non-hydrolyzable, tetrahydrofuran (THF) abasic site analog, while another duplex contains a central, carbocyclic substrate analog (carba-8-oxo-dG). ITC-binding studies conducted between 5.0 degrees C and 15.0 degrees C reveal that Fpg association with the THF-containing duplex is characterized by binding free energies that are relatively invariant to temperature (deltaG approximately -9.5 kcalmol(-1)), in contrast to both the reaction enthalpy and entropy that are strongly temperature-dependent. Complex formation between Fpg and the THF-containing duplex at 15 degrees C exhibits an unfavorable association enthalpy (deltaH=+7.5 kcalmol(-1)) that is compensated by a favorable association entropy (TdeltaS=+17.0 kcalmol(-1)). The entropic nature of the binding interaction, coupled with the large negative heat capacity (deltaC(p)=-0.67 kcaldeg(-1)mol(-1)), is consistent with Fpg complexation to the THF-containing duplex involving significant burial of non-polar surface areas. By contrast, under the high ionic strength buffer conditions employed herein (200 mM NaCl), no appreciable Fpg affinity for the carba-8-oxo-dG substrate analog is detected. Our results suggest that initial Fpg recognition of a damaged DNA site is predominantly electrostatic in nature, and does not involve large contact interfaces. Subsequent base excision presumably facilitates accommodation of the resulting lesion site into the binding pocket, as the enzyme interaction with the THF-containing duplex is characterized by high affinity and a large negative heat capacity change. Our data are consistent with a pathway in which Fpg glycosylase activity renders the base excision product a preferred ligand relative to the natural substrate, thereby ensuring the fidelity of removing highly reactive and potentially mutagenic abasic-like intermediates through catalytic elimination reactions.
- Corbett KD, Berger JM
- Structure of the topoisomerase VI-B subunit: implications for type II topoisomerase mechanism and evolution.
- EMBO J. 2003; 22: 151-63
- Display abstract
Type IIA and type IIB topoisomerases each possess the ability to pass one DNA duplex through another in an ATP-dependent manner. The role of ATP in the strand passage reaction is poorly understood, particularly for the type IIB (topoisomerase VI) family. We have solved the structure of the ATP-binding subunit of topoisomerase VI (topoVI-B) in two states: an unliganded monomer and a nucleotide-bound dimer. We find that topoVI-B is highly structurally homologous to the entire 40-43 kDa ATPase region of type IIA topoisomerases and MutL proteins. Nucleotide binding to topoVI-B leads to dimerization of the protein and causes dramatic conformational changes within each protomer. Our data demonstrate that type IIA and type IIB topoisomerases have descended from a common ancestor and reveal how ATP turnover generates structural signals in the reactions of both type II topoisomerase families. When combined with the structure of the A subunit to create a picture of the intact topoisomerase VI holoenzyme, the ATP-driven motions of topoVI-B reveal a simple mechanism for strand passage by the type IIB topoisomerases.
- Norman DP, Chung SJ, Verdine GL
- Structural and biochemical exploration of a critical amino acid in human 8-oxoguanine glycosylase.
- Biochemistry. 2003; 42: 1564-72
- Display abstract
Members of the HhH-GPD superfamily of DNA glycosylases are responsible for the recognition and removal of damaged nucleobases from DNA. The hallmark of these proteins is a motif comprising a helix-hairpin-helix followed by a Gly/Pro-rich loop and terminating in an invariant, catalytically essential aspartic acid residue. In this study, we have probed the role of this Asp in human 8-oxoguanine DNA glycosylase (hOgg1) by mutating it to Asn (D268N), Glu (D268E), and Gln (D268Q). We show that this aspartate plays a dual role, acting both as an N-terminal alpha-helix cap and as a critical residue for catalysis of both base excision and DNA strand cleavage by hOgg1. Mutation of this residue to asparagine, another helix-capping residue, preserves stability of the protein while drastically reducing enzymatic activity. A crystal structure of this mutant is the first to reveal the active site nucleophile Lys249 in the presence of lesion-containing DNA; this structure offers a tantalizing suggestion that base excision may occur by cleavage of the glycosidic bond and then attachment of Lys249. Mutation of the aspartic acid to glutamine and glutamic acid destabilizes the protein fold to a significant extent but, surprisingly, preserves catalytic activity. Crystal structures of these mutants complexed with an unreactive abasic site in DNA reveal these residues to adopt a sterically disfavored helix-capping conformation.
- Ding Y et al.
- Crystal structure of a mini-intein reveals a conserved catalytic module involved in side chain cyclization of asparagine during protein splicing.
- J Biol Chem. 2003; 278: 39133-42
- Display abstract
We have determined the crystal structure of a 154-residue intein derived from the dnaB gene of Synechocystis sp. strain PCC6803 and refined it to a 2.0-A resolution. The x-ray structure suggests that this intein possesses two catalytic sites that appear to be separately responsible for splicing and cleavage of the N- and C-terminal scissile bonds. The conserved intein block F residues are the important components of a catalytic site for side chain cyclization of the last intein residue, Asn-154. The data suggest that the imidazole ring of His-143 is involved in the activation of the side chain Ndelta atom of Asn-154, leading to a nucleophilic attack on the carbonyl carbon of Asn-154. Substitution of His-143 with Ala or Gln resulted in the inhibition of C-terminal cleavage. His-153, Asp-136, and a water molecule appear to constitute an oxyanion binding site by contacting the carbonyl oxygen of Asn-154 to stabilize the transition state. The structure and mutagenesis data also support that the close contact between the hydroxyl groups of Thr-138 and Ser-155, whose side chain participates in an S --> O acyl shift, plays an important role in the nucleophile orientation. Our structural modeling suggests that this catalytic module is conserved in the C-terminal subdomains of inteins from diverse organisms.
- Kamitori S, Ohtaki A, Ino H, Takeuchi M
- Crystal structures of Aspergillus oryzae aspartic proteinase and its complex with an inhibitor pepstatin at 1.9A resolution.
- J Mol Biol. 2003; 326: 1503-11
- Display abstract
The X-ray structures of Aspergillus oryzae aspartic proteinase (AOAP) and its complex with inhibitor pepstatin have been determined at 1.9A resolution. AOAP was crystallized in an orthorhombic system with the space group P2(1)2(1)2(1) and cell dimensions of a=49.4A, b=79.4A, and c=93.6A. By the soaking of pepstatin, crystals are transformed into a monoclinic system with the space group C2 and cell dimensions of a=106.8A, b=38.6A, c=78.7A, and beta=120.3 degrees. The structures of AOAP and AOAP/pepstatin complex were refined to an R-factor of 0.177 (R(free)=0.213) and of 0.185 (0.221), respectively. AOAP has a crescent-shaped structure with two lobes (N-lobe and C-lobe) and the deep active site cleft is constructed between them. At the center of the active site cleft, two Asp residues (Asp33 and Asp214) form the active dyad with a hydrogen bonding solvent molecule between them. Pepstatin binds to the active site cleft via hydrogen bonds and hydrophobic interactions with the enzyme. The structures of AOAP and AOAP/pepstatin complex including interactions between the enzyme and pepstatin are very similar to those of other structure-solved aspartic proteinases and their complexes with pepstatin. Generally, aspartic proteinases cleave a peptide bond between hydrophobic amino acid residues, but AOAP can also recognize the Lys/Arg residue as well as hydrophobic amino acid residues, leading to the activation of trypsinogen and chymotrypsinogen. The X-ray structure of AOAP/pepstatin complex and preliminary modeling show two possible sites of recognition for the positively charged groups of Lys/Arg residues around the active site of AOAP.
- Leiros I, Moe E, Lanes O, Smalas AO, Willassen NP
- The structure of uracil-DNA glycosylase from Atlantic cod (Gadus morhua) reveals cold-adaptation features.
- Acta Crystallogr D Biol Crystallogr. 2003; 59: 1357-65
- Display abstract
Uracil-DNA glycosylase (UDG; EC 3.2.2.3) is a DNA-repair protein that catalyses the hydrolysis of promutagenic uracil residues from single- or double-stranded DNA, generating free uracil and abasic DNA. The crystal structure of the catalytic domain of cod uracil-DNA glycosylase (cUDG) has been determined to 1.9 A resolution, with final R factors of 18.61 and 20.57% for the working and test sets of reflections, respectively. This is the first crystal structure of a uracil-DNA glycosylase from a cold-adapted species and a detailed comparison with the human enzyme is performed in order to rationalize the cold-adapted behaviour of the cod enzyme at the structural level. The catalytic domain of cUDG comprises 223 residues, with a sequence identity to the human UDG of 75%. The tertiary structures of the two enzymes are also similar, with an overall displacement in main-chain atomic positions of 0.63 A. The amino-acid substitutions and the differences in intramolecular hydrogen bonds, hydrophobic interactions, ion-pair interactions and electrostatic potentials are compared and discussed in order to gain insight into the factors that cause the increased activity and reduced thermostability of the cod enzyme. In particular, the reduced number of strong ion-pair interactions in the C-terminal half of cUDG is believed to greatly affect the flexibility and/or stability. Increased positive electrostatic surface potential on the DNA-facing side of cUDG seems to be responsible for increasing the affinity for the negatively charged DNA compared with that of hUDG.
- Perry K, Mondragon A
- Structure of a complex between E. coli DNA topoisomerase I and single-stranded DNA.
- Structure. 2003; 11: 1349-58
- Display abstract
In order to gain insights into the mechaism of ssDNA binding and recognition by Escherichia coli DNA topoisomerase I, the structure of the 67 kDa N-terminal fragment of topoisomerase I was solved in complex with ssDNA. The structure reveals a new conformational stage in the multistep catalytic cycle of type IA topoisomerases. In the structure, the ssDNA binding groove leading to the active site is occupied, but the active site is not fully formed. Large conformational changes are not seen; instead, a single helix parallel to the ssDNA binding groove shifts to clamp the ssDNA. The structure helps clarify the temporal sequence of conformational events, starting from an initial empty enzyme and proceeding to a ssDNA-occupied and catalytically competent active site.
- Fromme JC, Verdine GL
- Structure of a trapped endonuclease III-DNA covalent intermediate.
- EMBO J. 2003; 22: 3461-71
- Display abstract
Nearly all cells express proteins that confer resistance to the mutagenic effects of oxidative DNA damage. The primary defense against the toxicity of oxidative nucleobase lesions in DNA is the base-excision repair (BER) pathway. Endonuclease III (EndoIII) is a [4Fe-4S] cluster-containing DNA glycosylase with repair activity specific for oxidized pyrimidine lesions in duplex DNA. We have determined the crystal structure of a trapped intermediate that represents EndoIII frozen in the act of repairing DNA. The structure of the protein-DNA complex provides insight into the ability of EndoIII to recognize and repair a diverse array of oxidatively damaged bases. This structure also suggests a rationale for the frequent occurrence in certain human cancers of a specific mutation in the related DNA repair protein MYH.
- Natrajan G, Lamers MH, Enzlin JH, Winterwerp HH, Perrakis A, Sixma TK
- Structures of Escherichia coli DNA mismatch repair enzyme MutS in complex with different mismatches: a common recognition mode for diverse substrates.
- Nucleic Acids Res. 2003; 31: 4814-21
- Display abstract
We have refined a series of isomorphous crystal structures of the Escherichia coli DNA mismatch repair enzyme MutS in complex with G:T, A:A, C:A and G:G mismatches and also with a single unpaired thymidine. In all these structures, the DNA is kinked by approximately 60 degrees upon protein binding. Two residues widely conserved in the MutS family are involved in mismatch recognition. The phenylalanine, Phe 36, is seen stacking on one of the mismatched bases. The same base is also seen forming a hydrogen bond to the glutamate Glu 38. This hydrogen bond involves the N7 if the base stacking on Phe 36 is a purine and the N3 if it is a pyrimidine (thymine). Thus, MutS uses a common binding mode to recognize a wide range of mismatches.
- Marco E, Garcia-Nieto R, Mendieta J, Manzanares I, Cuevas C, Gago F
- A 3.(ET743)-DNA complex that both resembles an RNA-DNA hybrid and mimicks zinc finger-induced DNA structural distortions.
- J Med Chem. 2002; 45: 871-80
- Display abstract
The antitumor ecteinascidin ET743 has been shown to inhibit the transcriptional activation of a number of genes at nanomolar concentrations. Cell sensitivity to subnanomolar concentrations of the drug has also been shown to specifically depend on the transcription-coupled nucleotide excision repair system. ET743 is known to bind covalently to the minor groove of a DNA double helix in regions comprising selected sets of three consecutive base pairs. Following alkylation of a central guanine, the minor groove is widened and the DNA is bent toward the major groove. We have previously shown that in the resulting adduct the DNA triplet containing the covalently modified guanine bears a strong resemblance to a DNA triplet recognized by a C(2)H(2) zinc finger. We now expand this earlier finding and use simulation methods to show that head-to-tail binding of three ET743 molecules to three adjacent optimal binding sites stabilizes a DNA structure whose conformation is intermediate between A- and B-form DNA. Furthermore, despite the increase in roll at the sites of covalent attachment, no net curvature is apparent in this complex due to cancellation of the localized bends over virtually one turn of the helix. Both observations are in good analogy to findings in zinc finger-DNA complexes. Triplets are virtually superimposable both directly and upon shifting the register one base pair. In this latter case, the central guanine in a triplet alkylated by ET743 corresponds to the third nucleic base in the triplet recognized by a zinc finger of transcription factors such as EGR1 or Sp-1. The DNA conformation found in the ET743-DNA complex is also strongly reminiscent of an RNA-DNA hybrid, as found in the RNA polymerase II elongation complex. The possible biological implications of these findings in relation to the antitumor action of ET743 are discussed.
- Serre L, Pereira de Jesus K, Boiteux S, Zelwer C, Castaing B
- Crystal structure of the Lactococcus lactis formamidopyrimidine-DNA glycosylase bound to an abasic site analogue-containing DNA.
- EMBO J. 2002; 21: 2854-65
- Display abstract
The formamidopyrimidine-DNA glycosylase (Fpg, MutM) is a bifunctional base excision repair enzyme (DNA glycosylase/AP lyase) that removes a wide range of oxidized purines, such as 8-oxoguanine and imidazole ring-opened purines, from oxidatively damaged DNA. The structure of a non-covalent complex between the Lactoccocus lactis Fpg and a 1,3-propanediol (Pr) abasic site analogue-containing DNA has been solved. Through an asymmetric interaction along the damaged strand and the intercalation of the triad (M75/R109/F111), Fpg pushes out the Pr site from the DNA double helix, recognizing the cytosine opposite the lesion and inducing a 60 degrees bend of the DNA. The specific recognition of this cytosine provides some structural basis for understanding the divergence between Fpg and its structural homologue endo nuclease VIII towards their substrate specificities. In addition, the modelling of the 8-oxoguanine residue allows us to define an enzyme pocket that may accommodate the extrahelical oxidized base.
- Buchko GW, Wallace SS, Kennedy MA
- Base excision repair: NMR backbone assignments of Escherichia coli formamidopyrimidine-DNA glycosylase.
- J Biomol NMR. 2002; 22: 301-2
- Ishchenko AA et al.
- Thermodynamic, kinetic, and structural basis for recognition and repair of 8-oxoguanine in DNA by Fpg protein from Escherichia coli.
- Biochemistry. 2002; 41: 7540-8
- Display abstract
X-ray analysis does not provide quantitative estimates of the relative importance of the molecular contacts it reveals or of the relative contributions of specific and nonspecific interactions to the total affinity of specific DNA to enzymes. Stepwise increase of DNA ligand complexity has been used to estimate the relative contributions of virtually every nucleotide unit of 8-oxoguanine-containing DNA to its total affinity for Escherichia coli 8-oxoguanine DNA glycosylase (Fpg protein). Fpg protein can interact with up to 13 nucleotide units or base pairs of single- and double-stranded ribo- and deoxyribo-oligonucleotides of different lengths and sequences through weak additive contacts with their internucleotide phosphate groups. Bindings of both single-stranded and double-stranded oligonucleotides follow similar algorithms, with additive contributions to the free energy of binding of the structural components (phosphate, sugar, and base). Thermodynamic models are provided for both specific and nonspecific DNA sequences with Fpg protein. Fpg protein interacts nonspecifically with virtually all of the base-pair units within its DNA-binding cleft: this provides approximately 7 orders of magnitude of affinity (Delta G degrees approximately equal to -9.8 kcal/mol) for DNA. In contrast, the relative contribution of the 8-oxoguanine unit of the substrate (Delta G degrees approximately equal to -0.90 kcal/mol) together with other specific interactions is <2 orders of magnitude (Delta G degrees approximately equal to -2.8 kcal/mol). Michaelis complex formation of Fpg protein with DNA containing 8-oxoguanine cannot of itself provide the major part of the enzyme specificity, which lies in the k(cat) term; the rate is increased by 6-8 orders of magnitude on going from nonspecific to specific oligodeoxynucleotides.
- Griffith KL, Wolf RE Jr
- A comprehensive alanine scanning mutagenesis of the Escherichia coli transcriptional activator SoxS: identifying amino acids important for DNA binding and transcription activation.
- J Mol Biol. 2002; 322: 237-57
- Display abstract
SoxS is the direct transcriptional activator of the superoxide regulon. SoxS recognizes a highly degenerate "soxbox" DNA sequence, and activates transcription from class I and class II promoters. SoxS is the smallest member of the AraC/XylS family of transcription regulators whose hallmark is dual helix-turn-helix (HTH) DNA-binding motifs. Evidence suggests that the N-terminal HTH motif of SoxS interacts with a highly conserved region of the soxbox termed recognition element 1 (RE1), while the C-terminal HTH motif interacts with the less conserved recognition element 2 (RE2). In the work described here, we prepared a complete library of 101 SoxS mutants containing single alanine substitutions of SoxS, and we characterized the mutant proteins in vivo and in vitro. With SoxS being closely related to MarA, we analyzed the effects of the SoxS mutations in the context of the MarA-mar crystal structure and with respect to the NMR study of MarA-DNA complexes in solution. From the properties of the alanine substitutions, we conclude the following. (1) Surface-exposed residues of helix 3 and helix 6, the recognition helices of the dual HTH motifs, are important to DNA binding and transcription activation; however, substitutions of residues predicted from the MarA-mar crystal structure to make contact with the sugar-phosphate backbone are more detrimental to DNA binding than mutations predicted to make base-specific contacts. (2) Substitution of several residues within the recognition helix predicted to make base-specific contacts with RE2 have relatively little effect on DNA-binding, suggesting the possibility of alternative protein-DNA interactions than those inferred from the MarA-mar crystal structure. (3) DNA binding and transcription activation were reduced by substitution of conserved amino acid residues comprising the hydrophobic core, presumably because they disrupt the structural integrity of SoxS. (4) Mutant K30A appears to be a positive control mutant defective in a protein-protein interaction with RNA polymerase that is required for transcription activation at all SoxS-dependent promoters because it binds and bends DNA normally but fails to activate transcription from both classes of promoters. Alanine substitutions of surface-exposed residues H3, K5, D9, S31, and V45 confer a similar phenotype. Since these residues are near K30 on the surface of the protein, the surface formed by the six residues may be used to make protein-protein interactions with RNA polymerase that are required for transcription activation at both class I and class II SoxS-dependent promoters. (5) Mutants F74A, D75A, M78A, D79A and Q85A appear to define a surface required for protein-protein interaction with RNA polymerase specifically at class II promoters because these positive control mutants bind and bend DNA normally but are defective in activation of class II promoters but not class I promoters. These SoxS mutants that bind and bend DNA normally but are defective in transcription activation represent the first positive control mutants with putative defects in protein-protein interactions with RNA polymerase among the SoxS/MarA/Rob subset of the AraC/XylS family of transcription regulators.
- Milligan JR, Aguilera JA, Paglinawan RA, Ward JF
- One-electron oxidation of plasmid DNA by selenium(V) species.
- Int J Radiat Biol. 2002; 78: 359-74
- Display abstract
PURPOSE: To employ the gamma-radiation-generated selenium(V) one-electron-oxidizing agent SeO3*- for the preparation of guanyl radicals in plasmid DNA, and to compare the behaviour of this reagent with that of other similarly reactive oxidant species. MATERIALS AND METHODS: Plasmid DNA in aerobic aqueous solution was irradiated with 137Cs gamma-rays (662 keV). The solutions also contained up to 4x10(-2) mol x dm(-3) sodium selenate (Na2SeO4) and/or up to 10(-1) mol x dm(-3) sodium biselenite (NaHSeO3), as well as auxiliary scavengers such as DMSO or glycerol. In some cases, reducing agents such as ferrocyanide were also present. After irradiation, the plasmid was incubated with the Escherichia coli base excision-repair endonuclease formamidopyrimidine-DNA N-glycosylase (FPG). These treatments produced strand breaks in the plasmid. The yields of these strand breaks were quantified by agarose gel electrophoresis. RESULTS: In general, gamma-irradiation produced single-strand breaks (SSB) in plasmid DNA. Subsequent incubation with the endonuclease FPG increased the SSB yield by a factor of 2-100-fold. The smallest effects of FPG were observed when only DMSO or glycerol were present during irradiation. FPG incubation produced significantly larger increases in the SSB yield after gamma-irradiation in the additional presence of selenate and/or biselenite. The largest effect of FPG was observed after gamma-irradiation in the presence of 10(-2) mol x dm(-3) sodium selenate and 10(-1) mol x dm(-3) glycerol. This was indicative of extensive oxidative damage to the plasmid under these conditions and provided evidence for guanine oxidation mediated by SeO3*-. The large effect of FPG was strongly attenuated by the addition of reducing agents such as ferrocyanide. The observations suggest that these reducing agents exert their effects through the reduction of an intermediate guanyl radical. CONCLUSION: By comparing the yields of breaks produced after gamma-irradiation under a range of conditions, it is possible to formulate a reaction scheme that describes the chemical reactions responsible for the formation of strand breaks and FPG-sensitive sites. By applying this scheme to the data, we can quantify rate constants for the reduction of DNA guanyl radicals by reducing agents. This reaction is of particular interest to radiation biology because it is the equivalent of the repair of DNA damage by the direct effect of ionizing radiation.
- Gellon L, Werner M, Boiteux S
- Ntg2p, a Saccharomyces cerevisiae DNA N-glycosylase/apurinic or apyrimidinic lyase involved in base excision repair of oxidative DNA damage, interacts with the DNA mismatch repair protein Mlh1p. Identification of a Mlh1p binding motif.
- J Biol Chem. 2002; 277: 29963-72
- Display abstract
Ntg2p is a DNA N-glycosylase/apurinic or apyrimidinic lyase involved in base excision repair of oxidatively damaged DNA in Saccharomyces cerevisiae. Using a yeast two-hybrid screen and a GST in vitro transcription and translation assay, the mismatch repair (MMR) protein Mlh1p was demonstrated to interact physically with Ntg2p. The Mlh1p binding site maps to amino acids residues 15-40 of Ntg2p. The Ntg2p binding site is localized in the C-terminal end (483-769) of Mlh1p. Overproduction of Ntg2p results in a mutator phenotype with enhanced frameshift reversion frequency, suggesting partial inhibition of the MMR pathway. In contrast, inactivation of NTG2 does not enhance mutagenesis, indicating that Ntg2p is not required for MMR. Site-directed mutagenesis of the Mlh1p binding domain of Ntg2p revealed three amino acids (Ser(24), Tyr(26), Phe(27)) that are absolutely required for Ntg2p-Mlh1p interaction. These residues are part of a motif found in Ntg2p (Arg(23)-Ser(24)-Lys(25)-Tyr(26)-Phe(27)), Exo1p (Arg(444)-Ser(445)-Lys(446)-Phe(447)-Phe(448)), and Sgs1p (Lys(1383)-Ser(1384)-Lys(1385)-Phe(1386)-Phe(1387)). In these three proteins, the motif is part of the domain that interacts with the C-terminal end of Mlh1p. Furthermore, S445A, F447A, and F448A mutants of Exo1p do not bind Mlh1p, but the wild type Exo1p does. Therefore, we propose that the R/K-S-R/K-Y/F-Y/F sequence could define a Mhl1 binding motif. The results also suggest that base excision repair and MMR can cooperate to prevent deleterious effects of oxidative DNA damage.
- Slabas AR et al.
- Squash glycerol-3-phosphate (1)-acyltransferase. Alteration of substrate selectivity and identification of arginine and lysine residues important in catalytic activity.
- J Biol Chem. 2002; 277: 43918-23
- Display abstract
Glycerol-3-phosphate 1-acyltransferase is a soluble chloroplast enzyme involved in glycerol-lipid biosynthesis associated with chilling resistance in plants (). Resistance is associated with higher selectivity for unsaturated acyl substrates over saturated ones. In vitro substrate selectivity assays performed under physiologically relevant conditions have been established that discriminate between selective and non-selective forms of the enzyme. A mutation, L261F, in the squash protein converts it from a non-selective enzyme into a selective one. The mutation lies within 10 A of the predicted acyl binding site and results in a higher K(m) for 16:0 acyl carrier protein (ACP). Site-directed mutagenesis was used to determine the importance of four residues, Arg(235), Arg(237), Lys(193), and His(194), implicated to be involved in binding of the phosphate group of glycerol 3-phosphate to the enzyme. All the proteins were highly homologous in structure to the wild type enzyme. Mutations in Arg(235), Arg(237), and Lys(193) resulted in inactive enzyme, while His(194) had reduced catalytic activity. The mutant proteins retained the ability to bind stoichiometric quantities of acyl-ACPs supporting the potential role of these residues in glycerol 3-phosphate binding.
- Fedorova OS, Nevinsky GA, Koval VV, Ishchenko AA, Vasilenko NL, Douglas KT
- Stopped-flow kinetic studies of the interaction between Escherichia coli Fpg protein and DNA substrates.
- Biochemistry. 2002; 41: 1520-8
- Display abstract
Formamidopyrimidine-DNA-glycosylase of Escherichia coli (Fpg protein) repairs oxidative DNA damage by removing formamidopyrimidine lesions and 8-oxoguanine residues from DNA. This enzyme possesses three types of activities resulting in the excision of oxidized residue from DNA: hydrolysis of the N-glycosidic bond (DNA glycosylase), beta-elimination (AP-lyase), and delta-elimination. In our work, the kinetic mechanism for 8-oxoguanine excision from DNA substrate with Fpg protein has been determined from stopped-flow measurements of changes in the tryptophan fluorescence. The 12-nucleotide duplex d(CTCTC(oxo)GCCTTCC)*d(GGAAGGCGAGAG) containing the 8-oxoG nucleotide in the sixth position of one strand was used as the specific substrate. Four distinct phases in the time traces were detected. These four-phase transition changes in the Fpg protein fluorescence curves were analyzed by global fitting to determine the intrinsic rate constants. We propose that the first two phases represent the equilibrium steps. The first of them describes the bimolecular binding step and the second, formation of the apurinic site. The third, irreversible step is believed to describe the beta-elimination process. The fourth step reflects the delta-elimination and decomposition of complex between enzyme and the product of 8-oxoG nucleotide excision. The results obtained provide direct evidence of conformational transitions of the Fpg protein during the catalytic process. The significance of these results for the functioning of Fpg protein is discussed.
- Saparbaev M, Sidorkina OM, Jurado J, Privezentzev CV, Greenberg MM, Laval J
- Repair of oxidized purines and damaged pyrimidines by E. coli Fpg protein: different roles of proline 2 and lysine 57 residues.
- Environ Mol Mutagen. 2002; 39: 10-7
- Display abstract
The Escherichia coli Fpg protein is involved in the repair of oxidized purines, including the highly mutagenic 7,8-dihydro-8-oxoguanine (8-oxoG). The Fpg protein also excises various oxidized pyrimidines with high efficiency. We examined, by targeted mutagenesis, the role of two highly conserved amino acid residues, proline 2 (P2) and lysine 57 (K57), on the catalytic activities of the Fpg protein toward a ring-fragmentation product of thymine (alpha RT) and 5,6-dihydrothymine (dHT). The following E. coli mutant Fpg proteins were investigated: lysine 57 --> glycine (FpgK57G), proline 2 --> glycine (FpgP2G), and proline 2 --> glutamic acid (FpgP2E). The FpgK57G protein had barely detectable alpha RT and dHT-DNA glycosylase activities and produced minute amounts of a Schiff-base complex upon reaction with alpha RT containing DNA. In contrast, the activity of an FpgP2G mutant toward alpha RT was comparable to the wild type activity and produced a Schiff-base complex with this substrate. FpgP2E was completely inactive in all the assays, in contrast, to the other mutants. The crystal structure of a homologous Fpg protein from an extreme thermophile, Thermus thermophilus HB8, reveals that it is composed of two distinct domains connected by a flexible hinge (Sugahara et al. [2000]: EMBO J 19:3857-3869). The N-terminal proline, one primary residue for enzymatic catalysis, is positioned at the bottom of a cleft in close proximity to lysine 52 (analogous to K57 of the E. coli Fpg). Based on the biochemical assays, together with the crystal structure of T. thermophilus HB8 Fpg protein, we propose a two-nucleophile model for the enzymatic catalysis.
- Zharkov DO et al.
- Structural analysis of an Escherichia coli endonuclease VIII covalent reaction intermediate.
- EMBO J. 2002; 21: 789-800
- Display abstract
Endonuclease VIII (Nei) of Escherichia coli is a DNA repair enzyme that excises oxidized pyrimidines from DNA. Nei shares with formamidopyrimidine-DNA glycosylase (Fpg) sequence homology and a similar mechanism of action: the latter involves removal of the damaged base followed by two sequential beta-elimination steps. However, Nei differs significantly from Fpg in substrate specificity. We determined the structure of Nei covalently crosslinked to a 13mer oligodeoxynucleotide duplex at 1.25 A resolution. The crosslink is derived from a Schiff base intermediate that precedes beta-elimination and is stabilized by reduction with NaBH(4). Nei consists of two domains connected by a hinge region, creating a DNA binding cleft between domains. DNA in the complex is sharply kinked, the deoxyribitol moiety is bound covalently to Pro1 and everted from the duplex into the active site. Amino acids involved in substrate binding and catalysis are identified. Molecular modeling and analysis of amino acid conservation suggest a site for recognition of the damaged base. Based on structural features of the complex and site-directed mutagenesis studies, we propose a catalytic mechanism for Nei.
- Bandaru V, Sunkara S, Wallace SS, Bond JP
- A novel human DNA glycosylase that removes oxidative DNA damage and is homologous to Escherichia coli endonuclease VIII.
- DNA Repair (Amst). 2002; 1: 517-29
- Display abstract
Prokaryotes and lower eukaryotes possess redundant activities that remove the plethora of oxidative DNA base damages produced during normal oxidative metabolism and which have been associated with cancer and aging. Thus far, only one oxidized pyrimidine-specific DNA glycosylase has been identified in humans, hNthl. Here, we report the identification of three new putative human DNA glycosylases that are phylogenetically members of the Fpg/Nei family primarily found in the bacterial kingdom. We have characterized one of these, hNEI1, and show it to be functionally homologous to bacterial Nei, that is, its principal substrates are oxidized pyrimidines, it undergoes a lyase reaction by, beta,delta-elimination and traps a Schiff base with a substrate containing thymine glycol (Tg). Furthermore, inactivation of active site residues shown to be important in Escherichia coli Nei inactivate the human enzyme. The hNEI1 gene is located on the long arm of chromosome 15 that is frequently deleted in human cancers.
- Morland I, Rolseth V, Luna L, Rognes T, Bjoras M, Seeberg E
- Human DNA glycosylases of the bacterial Fpg/MutM superfamily: an alternative pathway for the repair of 8-oxoguanine and other oxidation products in DNA.
- Nucleic Acids Res. 2002; 30: 4926-36
- Display abstract
The mild phenotype associated with targeted disruption of the mouse OGG1 and NTH1 genes has been attributed to the existence of back-up activities and/or alternative pathways for the removal of oxidised DNA bases. We have characterised two new genes in human cells that encode DNA glycosylases, homologous to the bacterial Fpg (MutM)/Nei class of enzymes, capable of removing lesions that are substrates for both hOGG1 and hNTH1. One gene, designated HFPG1, showed ubiquitous expression in all tissues examined whereas the second gene, HFPG2, was only expressed at detectable levels in the thymus and testis. Transient transfections of HeLa cells with fusions of the cDNAs to EGFP revealed intracellular sorting to the nucleus with accumulation in the nucleoli for hFPG1, while hFPG2 co-localised with the 30 kDa subunit of RPA. hFPG1 was purified and shown to act on DNA substrates containing 8-oxoguanine, 5-hydroxycytosine and abasic sites. Removal of 8-oxoguanine, but not cleavage at abasic sites, was opposite base-dependent, with 8-oxoG:C being the preferred substrate and negligible activity towards 8-oxoG:A. It thus appears that hFPG1 has properties similar to mammalian OGG1 in preventing mutations arising from misincorporation of A across 8-oxoG and could function as a back-up repair activity for OGG1 in ogg1(-/-) mice.
- Burgdorf LT, Carell T
- Synthesis, stability, and conformation of the formamidopyrimidine G DNA lesion.
- Chemistry. 2002; 8: 293-301
- Display abstract
The formamidopyrimidine (FapydGua) lesion, derived from the nucleobase guanine, is a major DNA lesion involved in mutagenesis and carcinogenesis. To date, the chemical information available about this main lesion is very limited. Herein, we describe a synthesis and a detailed characterization of the acetyl-protected monomer of the FapydGua lesion. Stability studies in DMSO and in water/acetonitrile show that the N-glycosidic bond, previously thought to be highly labile, is much more stable than anticipated. Decomposition of the FapydGua lesion proceeds with half-life times of 37.8 h for the beta-anomer and 65.2 h for the alpha-anomer in water/acetonitrile. The relaxation time for the anomerization reaction was determined to tau = 6.5 h at room temperature. Most important, it was found that the formamido group, which is critical for the lesion recognition process by repair enzymes, is fixed in the cis-conformation in apolar solvents such as chloroform. This conformation enables the formation of a hydrogen bond between the carbonyl oxygen of the formamide and the NH of the N-glycosidic bond within the framework of a seven-membered ring system. This has consequences for the recognition of the lesion by repair enzymes (hOGG1 and Fpg protein). These enzymes were so far believed to recognize the carbonyl group of the FapydGua lesion. Our investigations show that this carbonyl group is not readily accessible because it is almost buried in the dominating cis-conformation. In agreement with the recent X-ray structure of hOGG1 in complex with 8-oxo-7,8-dihydroguanine-containing DNA, we can conclude that repair enzymes can contact both lesions only via the N(7)-H group, which is a hydrogen-bond acceptor in guanine.
- Acharya N, Roy S, Varshney U
- Mutational analysis of the uracil DNA glycosylase inhibitor protein and its interaction with Escherichia coli uracil DNA glycosylase.
- J Mol Biol. 2002; 321: 579-90
- Display abstract
Uracil DNA glycosylase inhibitor (Ugi), a protein of 9.4 kDa consists of a five-stranded antiparallel beta sheet flanked on either side by single alpha helices, forms an exclusive complex with uracil DNA glycosylases (UDGs) that is stable in 8M urea. We report on the mutational analysis of various structural elements in Ugi, two of which (hydrophobic pocket and the beta1 edge) establish key interactions with Escherichia coli UDG. The point mutations in helix alpha1 (amino acid residues 3-14) do not affect the stability of the UDG-Ugi complexes in urea. And, while the complex of the deltaN13 mutant with UDG is stable in only approximately 4M urea, its overall structure and thermostability are maintained. The identity of P37, stacked between P26 and W68, was not important for the maintenance of the hydrophobic pocket or for the stability of the complex. However, the M24K mutation at the rim of the hydrophobic pocket lowered the stability of the complex in 6M urea. On the other hand, non-conservative mutations E49G, D61G (cancels the only ionic interaction with UDG) and N76K, in three of the loops connecting the beta strands, conferred no such phenotype. The L23R and S21P mutations (beta1 edge) at the UDG-Ugi interface, and the N35D mutation far from the interface resulted in poor stability of the complex. However, the stability of the complexes was restored in the L23A, S21T and N35A mutations. These analyses and the studies on the exchange of Ugi mutants in preformed complexes with the substrate or the native Ugi have provided insights into the two-step mechanism of UDG-Ugi complex formation. Finally, we discuss the application of the Ugi isolates in overproduction of UDG mutants, toxic to cells.
- Wiederholt CJ, Delaney MO, Greenberg MM
- Interaction of DNA containing Fapy.dA or its C-nucleoside analogues with base excision repair enzymes. Implications for mutagenesis and enzyme inhibition.
- Biochemistry. 2002; 41: 15838-44
- Display abstract
Fapy.dA is produced in DNA as a result of oxidative stress. Recently, this lesion and its C-nucleoside analogues were incorporated in chemically synthesized oligonucleotides at defined sites. The interaction of DNA containing Fapy.dA or nonhydrolyzable analogues with Fpg and MutY is described. Fpg efficiently excises Fapy.dA (K(m) = 1.2 nM, k(cat) = 0.12 min(-1)) opposite T. The lesion is removed as efficiently from duplexes containing Fapy.dA:dA or Fapy.dA:dG base pairs. Multiple turnovers are observed for the repair of Fapy.dA mispairs in a short period of time, indicating that the enzyme does not remain bound to the product duplex. MutY does not incise dA from a duplex containing this nucleotide opposite Fapy.dA, nor does it exhibit an increased level of binding compared to DNA composed solely of native base pairs. MutY also does not incise Fapy.dA when the lesion is opposite dG. These data suggest that Fapy.dA could be deleterious to the genome. Fpg strongly binds duplexes containing the beta-C-nucleoside analogue of Fapy.dA (beta-C-Fapy.dA) opposite all native nucleotides (K(D) < 27 nM), as well as the alpha-C-nucleoside (alpha-C-Fapy.dA) opposite dC (K(D) = 7.1 +/- 1.5 nM). A duplex containing a beta-C-Fapy.dA:T base pair is an effective inhibitor (K(I) = 3.5 +/- 0.3 nM) of repair of Fapy.dA by Fpg, suggesting the C-nucleoside may have useful therapeutic properties.
- Wong I, Lundquist AJ, Bernards AS, Mosbaugh DW
- Presteady-state analysis of a single catalytic turnover by Escherichia coli uracil-DNA glycosylase reveals a "pinch-pull-push" mechanism.
- J Biol Chem. 2002; 277: 19424-32
- Display abstract
Uracil-DNA glycosylase catalyzes the excision of uracils from DNA via a mechanism where the uracil is extrahelically flipped out of the DNA helix into the enzyme active site. A conserved leucine is inserted into the DNA duplex space vacated by the uracil leading to the paradigmatic "push-pull" mechanism of nucleotide flipping. However, the order of these two steps during catalysis has not been conclusively established. We report a complete kinetic analysis of a single catalytic turnover using a hydrolyzable duplex oligodeoxyribonucleotide substrate containing a uracil:2-aminopurine base pair. Rapid chemical-quenched-flow methods defined the kinetics of excision at the active site during catalysis. Stopped-flow fluorometry monitoring the 2-aminopurine fluorescence defined the kinetics of uracil flipping. Parallel experiments detecting the protein fluorescence showed a slower Leu(191) insertion step occurring after nucleotide flipping but before excision. The inserted Leu(191) acts as a doorstop to prevent the return of the flipped-out uracil residue, thereby facilitating the capture of the uracil in the active site and does not play a direct role in "pushing" the uracil out of the DNA helix. The results define for the first time the proper sequence of events during a catalytic cycle and establish a "pull-push", as opposed to a "push-pull", mechanism for nucleotide flipping.
- Pereira de Jesus K, Serre L, Hervouet N, Bouckson-Castaing V, Zelwer C, Castaing B
- Crystallization and preliminary X-ray crystallographic studies of a complex between the Lactococcus lactis Fpg DNA-repair enzyme and an abasic site containing DNA.
- Acta Crystallogr D Biol Crystallogr. 2002; 58: 679-82
- Display abstract
For protein-DNA complex crystallization, the choice of the DNA fragment is crucial. With the aim of crystallizing the 31 kDa Fpg DNA-repair enzyme bound to DNA, oligonucleotide duplexes varying in length, sequence, end type and nature of the specific DNA target site were used. Crystals of several protein-DNA combinations grew from solutions containing both polyethylene glycol and salt. This systematic crystallization screening followed by optimization of the crystallization conditions by microseeding led to crystals of Fpg bound to a 13 base-pair duplex DNA carrying the 1,3-propanediol abasic site analogue which are suitable for crystallographic analysis. Complete native data sets have been collected to 2.1 A resolution.
- Gao MJ, Murphy TM
- Alternative forms of formamidopyrimidine-DNA glycosylase from Arabidopsis thaliana.
- Photochem Photobiol. 2001; 73: 128-34
- Display abstract
Formamidopyrimidine-DNA glycosylase (FPG) catalyzes the initial steps in the repair of DNA containing oxidized purines. Two complementary DNA clones encoding homologs of bacterial FPG, designated Atfpg-1 and Atfpg-2, have been isolated from Arabidopsis thaliana. They are products of alternative splicing of the transcript of a single gene. Proteins encoded by both clones, AtFPG-1 and AtFPG-2, engineered to contain oligohistidine sequences on their C-terminal ends, were expressed in Escherichia coli and purified, and their activities were assayed. Both proteins cleaved DNA that contained apurinic sites, indicating that they have abasic lyase activity. AtFPG-1, but not AtFPG-2, showed significant cleavage of a double-stranded oligonucleotide that contained 8-oxo-guanine, indicating that the structural differences between the two proteins influence their enzymatic activities. However, both proteins were able to cleave the same sites in DNA that was treated with visible light in the presence of methylene blue.
- Kuznetsov SV, Sidorkina OM, Laval J, Ansari A
- Characterization of thermal stability of the Escherichia coli Fapy-DNA glycosylase.
- Biochem Biophys Res Commun. 2001; 288: 121-8
- Display abstract
Thermal stability of Escherichia coli Fpg protein was studied using far-UV circular dichroism and intrinsic fluorescence. Experimental data indicate that Fpg irreversibly aggregates under heating above 35 degrees C. Heat aggregation is preceded by tertiary conformational changes of Fpg. However, the secondary structure of the fraction that does not aggregate remains unchanged up to approximately 60 degrees C. The kinetics of heat aggregation occurs with an activation enthalpy of approximately 21 kcal/mol. The fraction of monomers forming aggregates decreases with increasing urea concentration, with essentially no aggregation observed above approximately 3 M urea, suggesting that heat aggregation results from hydrophobic association of partially unfolded proteins. With increasing urea concentration, Fpg unfolds in a two-state reversible transition, with a stability of approximately 3.6 kcal/mol at 25 degrees C. An excellent correlation is observed between the unfolded fraction and loss of activity of Fpg. A simple kinetic scheme that describes both the rates and the extent of aggregation at each temperature is presented.
- Juers DH et al.
- A structural view of the action of Escherichia coli (lacZ) beta-galactosidase.
- Biochemistry. 2001; 40: 14781-94
- Display abstract
The structures of a series of complexes designed to mimic intermediates along the reaction coordinate for beta-galactosidase are presented. These complexes clarify and enhance previous proposals regarding the catalytic mechanism. The nucleophile, Glu537, is seen to covalently bind to the galactosyl moiety. Of the two potential acids, Mg(2+) and Glu461, the latter is in better position to directly assist in leaving group departure, suggesting that the metal ion acts in a secondary role. A sodium ion plays a part in substrate binding by directly ligating the galactosyl 6-hydroxyl. The proposed reaction coordinate involves the movement of the galactosyl moiety deep into the active site pocket. For those ligands that do bind deeply there is an associated conformational change in which residues within loop 794-804 move up to 10 A closer to the site of binding. In some cases this can be inhibited by the binding of additional ligands. The resulting restricted access to the intermediate helps to explain why allolactose, the natural inducer for the lac operon, is the preferred product of transglycosylation.
- Masui R, Nakagawa N, Kuramitsu S
- [Repair mechanism of oxidative DNA damages].
- Tanpakushitsu Kakusan Koso. 2001; 46: 1618-24
- Murphy TM, Gao MJ
- Multiple forms of formamidopyrimidine-DNA glycosylase produced by alternative splicing in Arabidopsis thaliana.
- J Photochem Photobiol B. 2001; 61: 87-93
- Display abstract
Formamidopyrimidine-DNA glycosylase (FPG) catalyzes the initial steps in the repair of DNA containing oxidized purines. Two cDNA clones from Arabidopsis thaliana encoding homologs of bacterial FPG have previously been described. We now report that there are at least five additional variants of FPG mRNA in Arabidopsis, each apparently produced from the same gene (AtMMH) by alternative splicing. Thus, AtMMH, like at least four other genes in the base excision repair pathway of human cells, produces multiple forms of protein product through alternative splicing. The variant forms of Arabidopsis FPG may be localized in different locations in the cells, may have different preferences for oxidized substrates, and/or may recruit different proteins that guide the subsequent steps of base excision repair.
- Krogh BO, Shuman S
- Vaccinia topoisomerase mutants illuminate conformational changes during closure of the protein clamp and assembly of a functional active site.
- J Biol Chem. 2001; 276: 36091-9
- Display abstract
We present a mutational analysis of vaccinia topoisomerase that highlights the contributions of five residues in the catalytic domain (Phe-88 and Phe-101 in helix alpha1, Ser-204 in alpha5, and Lys-220 and Asn-228 in alpha6) to the DNA binding and transesterification steps. When augmented by structural information from exemplary type IB topoisomerases and tyrosine recombinases in different functional states, the results suggest how closure of the protein clamp around duplex DNA and assembly of a functional active site might be orchestrated by internal conformational changes in the catalytic domain. Lys-220 is a constituent of the active site, and a positive charge at this position is required for optimal DNA cleavage. Ser-204 and Asn-228 appear not to be directly involved in reaction chemistry at the scissile phosphodiester. We propose that (i) Asn-228 recruits the Tyr-274 nucleophile to the active site by forming a hydrogen bond to the main chain of the tyrosine-containing alpha8 helix and that (ii) contacts between Ser-204 and the DNA backbone upstream of the cleavage site trigger a separate conformational change required for active site assembly. Mutations of Phe-88 and Phe-101 affect DNA binding, most likely at the clamp closure step, which we posit to entail a distortion of helix alpha1.
- Liu X, Roy R
- Mutation at active site lysine 212 to arginine uncouples the glycosylase activity from the lyase activity of human endonuclease III.
- Biochemistry. 2001; 40: 13617-22
- Display abstract
The human endonuclease III (hNTH1) is an important DNA glycosylase with associated abasic lyase activity. We previously demonstrated that the K212Q mutant was totally inactive, while the K212R mutant had reduced DNA glycosylase/lyase activity and could form a covalent complex with the substrate DNA upon reduction. We further characterized the biochemical properties of this K212R mutant protein. NH2- (N-) terminal sequencing in combination with mass spectrometry of the peptide-DNA adduct suggested that "opportunistic" lysine(s) in the lysine-rich N-terminal tail formed a Schiff base which might result in beta-elimination. However, simultaneous substitution of Lys-75 with Gln and deletion of first 72 residues in the N-terminal tail could not cause further alteration in the glycosylase reaction or beta-elimination event. Nonetheless, the time kinetics of K212R and its subsequent mutants showed glycosylase activity without any detectable AP-lyase activity during the first 10 min of the reaction. These results suggest that a single point mutation at the active site (K212R) uncoupled the glycosylase activity from the lyase activity. We propose that the uncoupled reaction carried out by K212R is a result of direct attack either by the nonionized form of the guanidino group of arginine which forms an unstable Schiff base that hydrolyzes prior to the beta-elimination event or by hydroxide ion to cleave the glycosylic bond. In either case this reaction is followed by a secondary beta-elimination event performed by random lysine residues primarily from the N-terminal tail region.
- Rabow L, Venkataraman R, Kow YW
- Mechanism of action of Escherichia coli formamidopyrimidine N-glycosylase: role of K155 in substrate binding and product release.
- Prog Nucleic Acid Res Mol Biol. 2001; 68: 223-34
- Display abstract
Escherichia coli formamidopyrimidine N-glycosylase (fpg) is a DNA glycosylase with an associated beta,delta-lyase activity. We have recently shown that the highly conserved lysine residue K155 is important for base recognition. Incubation of a double-stranded DNA containing an abasic site with the wild-type fpg protein generated only beta,delta-product. However, incubation of a double-stranded DNA containing an abasic site opposite a small gap with fpg protein generated predominantly beta-product. These data suggested that the induction of a double-strand break by fpg led to the destabilization of the protein-DNA covalent intermediate, causing the fpg protein to prematurely dissociate from the DNA substrate. Furthermore, when a double-stranded DNA containing an abasic site opposite an A was used as a substrate, K155A mutant fpg protein yielded a mixture of beta- and beta,delta-products. These data suggested that K155 is essential for maintaining the stability of the intermediary protein-DNA covalent complex. Pre-steady-state burst kinetics showed that mutation in K155 led to the apparent disappearance of the initial burst, suggesting that the rate of product release from K155A is much greater than the rate of chemical reaction catalyzed by the mutant enzyme. This is consistent with the idea that K155A dissociates prematurely from the covalent complex, leading to a higher turnover number observed for K155A for DNA substrate containing an AP site.
- Hollis T, Lau A, Ellenberger T
- Crystallizing thoughts about DNA base excision repair.
- Prog Nucleic Acid Res Mol Biol. 2001; 68: 305-14
- Display abstract
Chemically damaged bases are removed from DNA by glycosylases that locate the damage and cleave the bond between the modified base and the deoxyribose sugar of the DNA backbone. The detection of damaged bases in DNA poses two problems: (1) The aberrant bases are mostly buried within the double helix, and (2) a wide variety of chemically different modifications must be efficiently recognized and removed. The human alkyladenine glycosylase (AAG) and Escherichia coli Alka DNA glycosylases excise many different types of alkylated bases from DNA. Crystal structures of these enzymes show how substrate bases are exposed to the enzyme active site and they suggest mechanisms of catalytic specificity. Both enzymes bend DNA and flip substrate bases out of the double helix and into the enzyme active site for cleavage. Although AAG and AlkA have very different overall folds, some common features of their substrate-binding sites suggest related strategies for the selective recognition of a chemically diverse group of alkylated substrates.
- Sidorkina O, Dizdaroglu M, Laval J
- Effect of single mutations on the specificity of Escherichia coli FPG protein for excision of purine lesions from DNA damaged by free radicals.
- Free Radic Biol Med. 2001; 31: 816-23
- Display abstract
The formamidopyrimidine N-DNA glycosylase (Fpg protein) of Escherichia coli is a DNA repair enzyme that is specific for the removal of purine-derived lesions from DNA damaged by free radicals and other oxidative processes. We investigated the effect of single mutations on the specificity of this enzyme for three purine-derived lesions in DNA damaged by free radicals. These damaging agents generate a multiplicity of base products in DNA, with the yields depending on the damaging agent. Wild type Fpg protein (wt-Fpg) removes 8-hydroxyguanine (8-OH-Gua), 4,6-diamino-5-formamidopyrimidine (FapyAde), and 2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyGua) from damaged DNA with similar specificities. We generated five mutant forms of this enzyme with mutations involving Lys-57-->Gly (FpgK57G), Lys-57-->Arg (FpgK57R), Lys-155-->Ala (FpgK155A), Pro-2-->Gly (FpgP2G), and Pro-2-->Glu (FpgP2E), and purified them to homogeneity. FpgK57G and FpgK57R were functional for removal of FapyAde and FapyGua with a reduced activity when compared with wt-Fpg. The removal of 8-OH-Gua was different in that the specificity of FpgK57G was significantly lower for its removal from irradiated DNA, whereas wt-Fpg, FpgK57G, and FpgK57R excised 8-OH-Gua from H2O2/Fe(III)-EDTA/ascorbic acid-treated DNA with almost the same specificity. FpgK155A and FpgP2G had very low activity and FpgP2E exhibited no activity at all. Michaelis-Menten kinetics of excision was measured and kinetic constants were obtained. The results indicate an important role of Lys-57 residue in the activity of Fpg protein for 8-OH-Gua, but a lesser significant role for formamidopyrimidines. Mutations involving Lys-155 and Pro-2 had a dramatic effect with Pro-2-->Glu leading to complete loss of activity, indicating a significant role of these residues. The results show that point mutations significantly change the specificity of Fpg protein and suggest that point mutations are also expected to change specificities of other DNA repair enzymes.
- van der Woerd MJ, Pelletier JJ, Xu S, Friedman AM
- Restriction enzyme BsoBI-DNA complex: a tunnel for recognition of degenerate DNA sequences and potential histidine catalysis.
- Structure. 2001; 9: 133-44
- Display abstract
BACKGROUND: Restriction endonucleases form a diverse family of proteins with substantial variation in sequence, structure, and interaction with recognition site DNA. BsoBI is a thermophilic restriction endonuclease that exhibits both base-specific and degenerate recognition within the sequence CPyCGPuG. RESULTS: The structure of BsoBI complexed to cognate DNA has been determined to 1.7 A resolution, revealing several unprecedented features. Each BsoBI monomer is formed by inserting a helical domain into an expanded EcoRI-type catalytic domain. DNA is completely encircled by a BsoBI dimer. Recognition sequence DNA lies within a 20 A long tunnel of protein that excludes bulk solvent. Interactions with the specific bases are made in both grooves through direct and water-mediated hydrogen bonding. Interaction with the degenerate position is mediated by a purine-specific hydrogen bond to N7, ensuring specificity, and water-mediated H bonding to the purine N6/O6 and pyrimidine N4/O4, allowing degeneracy. In addition to the conserved active site residues of the DX(n)(E/D)ZK restriction enzyme motif, His253 is positioned to act as a general base. CONCLUSIONS: A catalytic mechanism employing His253 and two metal ions is proposed. If confirmed, this would be the first example of histidine-mediated catalysis in a restriction endonuclease. The structure also provides two novel examples of the role of water in protein-DNA interaction. Degenerate recognition may be mediated by employing water as a hydrogen bond donor or acceptor. The structure of DNA in the tunnel may also be influenced by the absence of bulk solvent.
- Hollis T, Lau A, Ellenberger T
- Structural studies of human alkyladenine glycosylase and E. coli 3-methyladenine glycosylase.
- Mutat Res. 2000; 460: 201-10
- Display abstract
Human alkyladenine glycosylase (AAG) and Escherichia coli 3-methyladenine glycosylase (AlkA) are base excision repair glycosylases that recognize and excise a variety of alkylated bases from DNA. The crystal structures of these enzymes have provided insight into their substrate specificity and mechanisms of catalysis. Both enzymes utilize DNA bending and base-flipping mechanisms to expose and bind substrate bases. Crystal structures of AAG complexed to DNA suggest that the enzyme selects substrate bases through a combination of hydrogen bonding and the steric constraints of the active site, and that the enzyme activates a water molecule for an in-line backside attack of the N-glycosylic bond. In contrast to AAG, the structure of the AlkA-DNA complex suggests that AlkA substrate recognition and catalytic specificity are intimately integrated in a S(N)1 type mechanism in which the catalytic Asp238 directly promotes the release of modified bases.
- Guibourt N, Castaing B, Van Der Kemp PA, Boiteux S
- Catalytic and DNA binding properties of the ogg1 protein of Saccharomyces cerevisiae: comparison between the wild type and the K241R and K241Q active-site mutant proteins.
- Biochemistry. 2000; 39: 1716-24
- Display abstract
The Ogg1 protein of Saccharomyces cerevisiae belongs to a family of DNA glycosylases and apurinic/apyrimidinic site (AP) lyases, the signature of which is the alpha-helix-hairpin-alpha-helix-Gly/Pro-Asp (HhH-GPD) active site motif together with a conserved catalytic lysine residue, to which we refer as the HhH-GPD/K family. In the yeast Ogg1 protein, yOgg1, the HhH-GPD/K motif spans residues 225-260 and the conserved lysine is K241. In this study, we have purified the K241R and K241Q mutant proteins and compared their catalytic and DNA binding properties to that of the wild-type yOgg1. The results show that the K241R mutation greatly impairs both the DNA glycosylase and the AP lyase activities of yOgg1. Specificity constants for cleavage of a 34mer oligodeoxyribonucleotide containing a 7,8-dihydro-8-oxoguanine (8-OxoG) paired with a cytosine, [8-OxoG.C], are 56 x 10(-)(3) and 5 x 10(-)(3) min(-)(1) nM(-)(1) for the wild-type and the K241R protein, respectively. On the other hand, the K241Q mutation abolishes the DNA glycosylase and AP lyase activities of yOgg1. In contrast, the K241R and K241Q proteins have conserved wild-type DNA binding properties. K(dapp) values for binding of [8-OxoG.C] are 6.9, 7.4, and 4.8 nM for the wild-type, K241R, and K241Q proteins, respectively. The results also show that AP site analogues such as 1, 3-propanediol (Pr), tetrahydrofuran (F), or cyclopentanol (Cy) are not substrates but constitute good inhibitors of the wild-type yOgg1. Therefore, we have used a 59mer [Pr.C] duplex to further analyze the DNA binding properties of the wild-type, K241R, and K241Q proteins. Hydroxyl radical footprints of the wild-type yOgg1 show strong protection of six nucleotides centered around the Pr lesion in the damaged strand. On the complementary strand, only the cytosine placed opposite Pr was strongly protected. The same footprints were observed with the K241R and K241Q proteins, confirming their wild-type DNA binding properties. These results indicate that the K241Q mutant protein can be used to study interactions between yOgg1 and DNA containing metabolizable substrates such as 8-OxoG or an AP site.
- Daniels DS, Tainer JA
- Conserved structural motifs governing the stoichiometric repair of alkylated DNA by O(6)-alkylguanine-DNA alkyltransferase.
- Mutat Res. 2000; 460: 151-63
- Display abstract
O(6)-alkylguanine-DNA alkyltransferase (AGT) directly repairs alkylation damage at the O(6)-position of guanine in a unique, stoichiometric reaction. Crystal structures of AGT homologs from the three kingdoms of life reveal that despite their extremely low primary sequence homology, the topology and overall structure of AGT has been remarkably conserved. The C-terminal domain of the two-domain, alpha/beta fold bears a helix-turn-helix (HTH) motif that has been implicated in DNA-binding by structural and mutagenic studies. In the second helix of the HTH, the recognition helix, lies a conserved RAV[A/G] motif, whose "arginine finger" promotes flipping of the target nucleotide from the base stack. Recognition of the extrahelical guanine is likely predominantly through interactions with the protein backbone, while hydrophobic sidechains line the alkyl-binding pocket, as defined by product complexes of human AGT. The irreversible dealkylation reaction is accomplished by an active-site cysteine that participates in a hydrogen bond network with invariant histidine and glutamic acid residues, reminiscent of the serine protease catalytic triad. Structural and biochemical results suggest that cysteine alkylation opens the domain-interfacing "Asn-hinge", which couples the active-site to the recognition helix, providing both a mechanism for release of repaired DNA and a signal for the observed degradation of alkylated AGT.
- Hollis T, Ichikawa Y, Ellenberger T
- DNA bending and a flip-out mechanism for base excision by the helix-hairpin-helix DNA glycosylase, Escherichia coli AlkA.
- EMBO J. 2000; 19: 758-66
- Display abstract
The Escherichia coli AlkA protein is a base excision repair glycosylase that removes a variety of alkylated bases from DNA. The 2.5 A crystal structure of AlkA complexed to DNA shows a large distortion in the bound DNA. The enzyme flips a 1-azaribose abasic nucleotide out of DNA and induces a 66 degrees bend in the DNA with a marked widening of the minor groove. The position of the 1-azaribose in the enzyme active site suggests an S(N)1-type mechanism for the glycosylase reaction, in which the essential catalytic Asp238 provides direct assistance for base removal. Catalytic selectivity might result from the enhanced stacking of positively charged, alkylated bases against the aromatic side chain of Trp272 in conjunction with the relative ease of cleaving the weakened glycosylic bond of these modified nucleotides. The structure of the AlkA-DNA complex offers the first glimpse of a helix-hairpin-helix (HhH) glycosylase complexed to DNA. Modeling studies suggest that other HhH glycosylases can bind to DNA in a similar manner.
- Buchko GW, Hess NJ, Bandaru V, Wallace SS, Kennedy MA
- Spectroscopic studies of zinc(II)- and cobalt(II)-associated Escherichia coli formamidopyrimidine-DNA glycosylase: extended X-ray absorption fine structure evidence for a metal-binding domain.
- Biochemistry. 2000; 39: 12441-9
- Display abstract
Formamidopyrimidine-DNA glycosylase (Fpg) is a 30.2 kDa protein that plays an important role in the base excision repair of oxidatively damaged DNA in Escherichia coli. Sequence analysis and genetic evidence suggest that zinc is associated with a C4-type motif, C(244)-X(2)-C(247)-X(16)-C(264)-X(2)-C(267), located at the C-terminus of the protein. The zinc-associated motif has been shown to be essential for damaged DNA recognition. Extended X-ray absorption fine structure (EXAFS) spectra collected on the zinc-associated protein (ZnFpg) in the lyophilized state and in 10% frozen aqueous glycerol solution show directly that the metal is coordinated to the sulfur atom of four cysteine residues. The average Zn-S bond length is 2.33 +/- 0.01 and 2.34 +/- 0.01 A, respectively, in the lyophilized state and in 10% frozen aqueous glycerol solution. Fpg was also expressed in minimal medium supplemented with cobalt nitrate to yield a blue-colored protein that was primarily cobalt-associated (CoFpg). The profiles of the circular dichroism spectra for CoFpg and ZnFpg are identical, suggesting that the substitution of Co(2+) for Zn(2+) does not alter the structure of Fpg. A similar conclusion is reached upon the analysis of two-dimensional (15)N/(1)H HSQC spectra of uniformly (15)N-labeled samples of ZnFpg and CoFpg; the spectra are similar and display features characteristic of a structured protein. Biochemical assays with a 54 nt DNA oligomer containing 7, 8-dihydro-8-oxoguanine at a specific location show that CoFpg and ZnFpg are equally active at cleaving the DNA at the site of the oxidized guanine. EXAFS spectra of CoFpg indicate that the cobalt is coordinated to the sulfur atom of four cysteine residues with an average Co-S bond length of 2.28 +/- 0.01 and 2.29 +/- 0.01 A, respectively, in the lyophilized state and in 10% frozen aqueous glycerol solution. The structural similarity between CoFpg and ZnFpg suggests that it is biologically relevant to use the paramagnetic properties of Co(2+) as a structural probe.
- Muhlenhoff U
- The FAPY-DNA glycosylase (Fpg) is required for survival of the cyanobacterium Synechococcus elongatus under high light irradiance.
- FEMS Microbiol Lett. 2000; 187: 127-32
- Display abstract
The gene for the DNA repair enzyme Fpg from Synechococcus elongatus was detected immediately downstream of the photosystem I gene psaE. fpg is likely expressed together with psaE by transcriptional readover while psaE is mostly expressed independently. Segregated psaE and fpg deletion strains were obtained upon insertional inactivation of both genes in S. elongatus. These mutants are viable under photoautotrophic conditions, but fail to grow under high light regimes that likely cause oxidative stress. These high light sensitive phenotypes suggest that the Fpg protein, which has been shown to repair DNA lesions caused by reactive oxygen species in Escherichia coli, may be involved in the photoprotection of cyanobacteria against oxidative damage caused under high irradiance.
- Milligan JR, Aguilera JA, Paglinawan RA, Ward JF
- Mechanism of DNA damage by thiocyanate radicals.
- Int J Radiat Biol. 2000; 76: 1305-14
- Display abstract
PURPOSE: It was previously shown that gamma-irradiation of aqueous solutions of plasmid DNA in the presence of millimolar concentrations of thiocyanate ions leads to the formation in very high yields of sites recognized by the base excision repair endonuclease formamido-pyrimidine-DNA N-glycosylase (FPG). The authors wished to characterize the mechanism responsible for the production of these FPG-sensitive sites. MATERIALS AND METHODS: An aqueous solution of plasmid DNA containing thiocyanate ions was irradiated with 137Cs gamma-rays. After irradiation, aliquots were treated with FPG. Break yields were determined using neutral agarose gel electrophoresis. RESULTS: The yield of FPG-sensitive sites decreased with decreasing enzyme activity, increasing thiocyanate concentration, increasing dose-rate, increasing ionic strength, increasing nitrite or iodide concentration, and decreasing oxygen concentration. CONCLUSION: The observations suggest that the monomeric thiocyanate radical SCN* is an intermediate in the reaction, and that the yields of FPG-sensitive sites are determined by competition between the disproportionation of the dimeric radical anion (SCN)*2- and the fate of a one-electron oxidized guanine species in DNA. The latter can react with oxygen to produce an FPG-sensitive site or can be reduced without producing an FPG-sensitive site. The results help to clarify the mechanisms responsible for DNA damage by the direct effect of ionizing radiation.
- Bruner SD, Norman DP, Verdine GL
- Structural basis for recognition and repair of the endogenous mutagen 8-oxoguanine in DNA.
- Nature. 2000; 403: 859-66
- Display abstract
Spontaneous oxidation of guanine residues in DNA generates 8-oxoguanine (oxoG). By mispairing with adenine during replication, oxoG gives rise to a G x C --> T x A transversion, a frequent somatic mutation in human cancers. The dedicated repair pathway for oxoG centres on 8-oxoguanine DNA glycosylase (hOGG1), an enzyme that recognizes oxoG x C base pairs, catalysing expulsion of the oxoG and cleavage of the DNA backbone. Here we report the X-ray structure of the catalytic core of hOGG1 bound to oxoG x C-containing DNA at 2.1 A resolution. The structure reveals the mechanistic basis for the recognition and catalytic excision of DNA damage by hOGG1 and by other members of the enzyme superfamily to which it belongs. The structure also provides a rationale for the biochemical effects of inactivating mutations and polymorphisms in hOGG1. One known mutation, R154H, converts hOGG1 to a promutator by relaxing the specificity of the enzyme for the base opposite oxoG.
- Diederichsen U, Biro CM
- Phe and Asn side chains in DNA double strands.
- Bioorg Med Chem Lett. 2000; 10: 1417-20
- Display abstract
The contribution of amino acid side chains to the recognition of DNA by peptides or proteins is evaluated by substituting single nucleobases of a DNA double strand by amino acid side chains. C-nucleosides with the side chains of phenylalanine and asparagine were synthesized and incorporated in DNA. This modification should allow to keep the double strand conformation. Hydrogen bonds, pi-pi-interactions and solvation have an influence on the double strand stability.
- Robertson SA, Harada K, Frankel AD, Wemmer DE
- Structure determination and binding kinetics of a DNA aptamer-argininamide complex.
- Biochemistry. 2000; 39: 946-54
- Display abstract
The structure of a DNA aptamer, which was selected for specific binding to arginine, was determined using NMR spectroscopy. The sequence forms a hairpin loop, with residues important for binding occurring in the loop region. Binding of argininamide induces formation of one Watson-Crick and two non-Watson-Crick base pairs, which facilitate generation of a binding pocket. The specificity for arginine seems to arise from contacts between the guanidino end of the arginine and phosphates, with atoms positioned by the shape of the pocket. Complex binding kinetics are observed suggesting that there is a slow interconversion of two forms of the DNA, which have different binding affinities. These data provide information on the process of adaptive recognition of a ligand by an aptamer.
- Sidorkina OM, Laval J
- Role of the N-terminal proline residue in the catalytic activities of the Escherichia coli Fpg protein.
- J Biol Chem. 2000; 275: 9924-9
- Display abstract
The Escherichia coli Fpg protein is a DNA glycosylase/AP lyase. It removes, in DNA, oxidized purine residues, including the highly mutagenic C8-oxo-guanine (8-oxoG). The catalytic mechanism is believed to involve the formation of a transient Schiff base intermediate formed between DNA containing an oxidized residue and the N-terminal proline of the Fpg protein. The importance and the role of this proline upon the various catalytic activities of the Fpg protein was examined by targeted mutagenesis, resulting in the construction of three mutant Fpg proteins: Pro-2 --> Gly (FpgP2G), Pro-2 --> Thr (FpgP2T), and Pro-2 --> Glu (FpgP2E). The formamidopyrimidine DNA glycosylase activities of FpgP2G and FpgP2T were comparable and accounted for 10% of the wild-type activity. FpgP2G and FpgP2T had barely detectable 8-oxoG-DNA glycosylase activity and produced minute Schiff base complex with 8-oxoG/C DNA. FpgP2G and FpgP2T mutants did not cleave a DNA containing preformed AP site but readily produced Schiff base complex with this substrate. FpgP2E was completely inactive in all the assays. The binding constants of the different mutants when challenged with a duplex DNA containing a tetrahydrofuran residue were comparable. The mutant Fpg proteins barely or did not complement in vivo the spontaneous transitions G/C --> T/A in E. coli BH990 (fpg mutY) cells. These results show the mandatory role of N-terminal proline in the 8-oxoG-DNA glycosylase activity of the Fpg protein in vitro and in vivo as well as in its AP lyase activity upon preformed AP site but less in the 2,6-diamino-4-hydroxy-5-N-methylformamidopyrimidine-DNA glycosylase activity.
- Zharkov DO et al.
- Role for lysine 142 in the excision of adenine from A:G mispairs by MutY DNA glycosylase of Escherichia coli.
- Biochemistry. 2000; 39: 14768-78
- Display abstract
MutY participates in the repair of oxidatively damaged DNA by excising adenine from dA:dG and dA:8-oxodG mispairs; this DNA glycosylase can be cross-linked to DNA through Lys-142. We have investigated the properties of a mutant protein in which Lys-142 is replaced by glutamine. Using the rifampicin resistance assay, MutY K142Q was shown to complement the mutY mutator phenotype to the same extent as wild-type MutY. Although MutY K142Q does not form a Schiff base with DNA, it retains in part the catalytic properties of wild-type enzyme. The K142Q mutation selectively impairs processing of DNA containing dA:dG mispairs but not that of substrates containing dA:8-oxodG. Decreased substrate processing is mediated primarily via an increase in K(D) (21.8 nM for MutY vs 298 nM for MutY K142Q). The catalytic constant, measured in single turnover experiments, was not significantly affected. At pH < 6.0, the activity of MutY K142Q on the dA:dG mispair was approximately the same as for wild-type protein, suggesting that a dG(anti) to dG(syn) transition is effected at low pH. The three-dimensional structure of the catalytic domain of MutY K142Q, determined at 1.35 A resolution, shows no significant differences between wild-type and mutant protein, indicating that Lys-142 is not critical for maintaining the conformation of MutY. We conclude that Lys-142 recognizes guanine in the dA:dG mispair, helping position this residue in the syn conformation and facilitating binding of substrate DNA. Lys-142 is not involved in the catalytic steps of base excision.
- Sidorkina OM, Kuznetsov SV, Blais JC, Bazin M, Laval J, Santus R
- Ultraviolet-B-induced damage to Escherichia coli Fpg protein.
- Photochem Photobiol. 1999; 69: 658-63
- Display abstract
We investigated the effect of UVB light (290 < or = lambda < or = 320 nm) on the structure and enzymatic activities of Escherichia coli Fpg protein (2,6-diamino-4-hydroxy-5N-methylformamidopyrimidine-DNA glycosylase), a DNA repair enzyme containing a zinc finger motif and five chromophoric Trp residues. Irradiation with UVB light of air-saturated pH 7.4 buffered aqueous solutions of Fpg induces the formation of polymers as shown by sodium dodecyl sulfate polyacrylamide gel electrophoretic analysis. In argon-saturated solutions, polymer formation produces a precipitate. The polymerization quantum yield is 0.07 +/- 0.01 and 0.15 +/- 0.02 in air- and argon-saturated solutions, respectively. In the polymerized Fpg protein, second-derivative absorption spectroscopy indicates that three and one Trp residues are destroyed in air- and argon-saturated solutions, respectively. Polymers are devoid of all three activities of the Fpg protein, whereas the unpolymerized protein retains full activities. Matrix-assisted laser desorption/ionization experiments demonstrate that polymer formation is accompanied by the formation of short polypeptides containing the first 32 or 33 residues of the N-terminal domain. Theses polypeptides are most probably formed by the photolytic cleavage of Fpg protein induced by light absorption by the adjacent Trp-34 residue.
- Li HG et al.
- Role of Arg163 in the N-glycosidase activity of neo-trichosanthin.
- Protein Eng. 1999; 12: 999-1004
- Display abstract
Three mutant crystals of neo-trichosanthin (n-TCS), R163K, R163H and R163Q, were obtained by the hanging drop vapor diffusion method. Structure determination indicated that there are no significant differences between the mutants and n-TCS except in the active pocket. All of them were also soaked in sodium citrate buffer (pH 4. 5) containing 20% KCl and 10 mg/ml AMP. Structure determination suggests that in the active pocket of the crystals of R163K and R163H, parallel to the aromatic ring of Tyr70, each mutant possesses an adenine. The relationship between structure and function is discussed. Biochemical analysis reveals that the mutants R163K and R163H have N-glycosidase activity, while R163Q does not. This suggests that R163 is a crucial residue for the enzyme activity of n-TCS, and its role is providing proton.
- Putnam CD et al.
- Protein mimicry of DNA from crystal structures of the uracil-DNA glycosylase inhibitor protein and its complex with Escherichia coli uracil-DNA glycosylase.
- J Mol Biol. 1999; 287: 331-46
- Display abstract
Uracil-DNA glycosylase (UDG), which is a critical enzyme in DNA base-excision repair that recognizes and removes uracil from DNA, is specifically and irreversably inhibited by the thermostable uracil-DNA glycosylase inhibitor protein (Ugi). A paradox for the highly specific Ugi inhibition of UDG is how Ugi can successfully mimic DNA backbone interactions for UDG without resulting in significant cross-reactivity with numerous other enzymes that possess DNA backbone binding affinity. High-resolution X-ray crystal structures of Ugi both free and in complex with wild-type and the functionally defective His187Asp mutant Escherichia coli UDGs reveal the detailed molecular basis for duplex DNA backbone mimicry by Ugi. The overall shape and charge distribution of Ugi most closely resembles a midpoint in a trajectory between B-form DNA and the kinked DNA observed in UDG:DNA product complexes. Thus, Ugi targets the mechanism of uracil flipping by UDG and appears to be a transition-state mimic for UDG-flipping of uracil nucleotides from DNA. Essentially all the exquisite shape, electrostatic and hydrophobic complementarity for the high-affinity UDG-Ugi interaction is pre-existing, except for a key flip of the Ugi Gln19 carbonyl group and Glu20 side-chain, which is triggered by the formation of the complex. Conformational changes between unbound Ugi and Ugi complexed with UDG involve the beta-zipper structural motif, which we have named for the reversible pairing observed between intramolecular beta-strands. A similar beta-zipper is observed in the conversion between the open and closed forms of UDG. The combination of extremely high levels of pre-existing structural complementarity to DNA binding features specific to UDG with key local conformational changes in Ugi resolves the UDG-Ugi paradox and suggests a potentially general structural solution to the formation of very high affinity DNA enzyme-inhibitor complexes that avoid cross- reactivity.
- Kuznetsov SV et al.
- Effect of single mutations on the structural dynamics of a DNA repair enzyme, the Escherichia coli formamidopyrimidine-DNA glycosylase--a fluorescence study using tryptophan residues as reporter groups.
- Eur J Biochem. 1998; 253: 413-20
- Display abstract
The effects on the structure dynamics of the Escherichia coli wild-type formamidopyrimidine-DNA glycosylase (Fpg) protein of the single mutations Lys57-->Gly (FpgK57G), Pro2-->Gly (FpgP2G) and Pro2-->Glu (FpgP2E) were studied by fluorescence techniques, namely: lifetime measurements and acrylamide quenching of the fluorescence of Trp residues. The fluorescence decays of Fpg and its mutant forms were analysed by the maximum-entropy method and lifetime distributions in the range 200 ps to 9 ns were obtained. The lifetime distribution profiles of FpgK57G, FpgP2G and FpgP2E are different from that of wild-type Fpg. Both dynamic and static quenching by acrylamide were observed for all the proteins. At 20 degrees C, the bimolecular collisional quenching rate constant of the FpgP2E fluorescence by acrylamide was only 0.8 M(-1) s(-1) as compared to about 1.4 M(-1) s(-1) for the three other proteins. At 6 degrees C, all the spectroscopic properties of these four proteins are about the same. The analysis of experimental data demonstrates that all three mutations induce a structural reorganization of the Fpg protein. However, only the P2E mutation lead to a reduced accessibility of some Trp residues to acrylamide quenching. It is concluded that the single P2E replacement induces a conformational change leading to a more rigid globular structure as opposed to the wild type and K57G and P2G mutations. The influence of the single mutations on the enzyme activities of the Fpg protein is discussed.
- Ishchenko AA, Bulychev NV, Maksakova GA, Johnson F, Nevinskii GA
- [Interaction of Escherichia coli 8-oxoguanine DNA glycosylase with single-stranded oligodeoxyribonucleotides and their complexes].
- Mol Biol (Mosk). 1998; 32: 549-58
- Ravishankar R et al.
- X-ray analysis of a complex of Escherichia coli uracil DNA glycosylase (EcUDG) with a proteinaceous inhibitor. The structure elucidation of a prokaryotic UDG.
- Nucleic Acids Res. 1998; 26: 4880-7
- Display abstract
Uracil-DNA glycosylase (UDG), a key highly conserved DNA repair enzyme involved in uracil excision repair, was discovered in Escherichia coli . The Bacillus subtilis bacteriophage, PBS-1 and PBS-2, which contain dUMP residues in their DNA, express a UDG inhibitor protein, Ugi which binds to UDG very tightly to form a physiologically irreversible complex. The X-ray analysis of the E. coli UDG ( Ec UDG)-Ugi complex at 3.2 A resolution, leads to the first structure elucidation of a bacterial UDG molecule. This structure is similar to the enzymes from human and viral sources. A comparison of the available structures involving UDG permits the delineation of the constant and the variable regions of the molecule. Structural comparison and mutational analysis also indicate that the mode of action of the enzyme from these sources are the same. The crystal structure shows a remarkable spatial conservation of the active site residues involved in DNA binding in spite of significant differences in the structure of the enzyme-inhibitor complex, in comparison with those from the mammalian and viral sources. Ec UDG could serve as a prototype for UDGs from pathogenic prokaryotes, and provide a framework for possible drug development against such pathogens with emphasis on features of the molecule that differ from those in the human enzyme.
- Sidorkina OM, Laval J
- Role of lysine-57 in the catalytic activities of Escherichia coli formamidopyrimidine-DNA glycosylase (Fpg protein).
- Nucleic Acids Res. 1998; 26: 5351-7
- Display abstract
The Escherichia coli Fpg protein is involved in the repair of oxidized residues. We examined, by targeted mutagenesis, the effect of the conserved lysine residue at position 57 upon the various catalytic activities of the Fpg protein. Mutant Fpg protein with Lys-57-->Gly (K57G) had dramatically reduced DNA glycosylase activity for the excision of 7,8-dihydro-8-oxo-guanine (8-oxoG). While wild type Fpg protein cleaved 8-oxoG/C DNA with a specificity constant ( k cat/ K M) of 0.11/(nM@min), K57G cleaved the same DNA 55-fold less efficiently. FpgK57G was poorly effective in the formation of Schiff base complex with 8-oxoG/C DNA. The efficiency in the binding of 8-oxoG/C DNA duplex for K57G mutant was decreased 16-fold. The substitution of Lys-57 for another basic amino acid Arg (K57R) had a slight effect on the 8-oxoG-DNA glycosylase activity and Schiff base formation. The DNA glycosylase activities of FpgK57G and FpgK57R using 2,6-diamino-4-hydroxy-5N-methylformamidopyrimidine residues as substrate were comparable to that of wild type Fpg. In vivo, the mutant K57G, in contrast to the mutant K57R and wild type Fpg, only partially restored the ability to prevent spontaneously induced transitions G/C-->T/A in E.coli BH990 ( fpg mutY ) cells. These results suggest an important role for Lys-57 in the 8-oxoG-DNA glycosylase activity of the Fpg protein in vitro and in vivo.
- Lau AY, Scharer OD, Samson L, Verdine GL, Ellenberger T
- Crystal structure of a human alkylbase-DNA repair enzyme complexed to DNA: mechanisms for nucleotide flipping and base excision.
- Cell. 1998; 95: 249-58
- Display abstract
DNA N-glycosylases are base excision-repair proteins that locate and cleave damaged bases from DNA as the first step in restoring the genetic blueprint. The human enzyme 3-methyladenine DNA glycosylase removes a diverse group of damaged bases from DNA, including cytotoxic and mutagenic alkylation adducts of purines. We report the crystal structure of human 3-methyladenine DNA glycosylase complexed to a mechanism-based pyrrolidine inhibitor. The enzyme has intercalated into the minor groove of DNA, causing the abasic pyrrolidine nucleotide to flip into the enzyme active site, where a bound water is poised for nucleophilic attack. The structure shows an elegant means of exposing a nucleotide for base excision as well as a network of residues that could catalyze the in-line displacement of a damaged base from the phosphodeoxyribose backbone.
- Ishchenko AA, Bulychev NV, Zharkov DO, Maksakova GA, Johnson F, Nevinskii GA
- [Isolation of 8-oxoguanine-DNA-glycosylase from Escherichia coli and substrate specificity of of the enzyme].
- Mol Biol (Mosk). 1997; 31: 332-7
- Tucker-Kellogg L, Rould MA, Chambers KA, Ades SE, Sauer RT, Pabo CO
- Engrailed (Gln50-->Lys) homeodomain-DNA complex at 1.9 A resolution: structural basis for enhanced affinity and altered specificity.
- Structure. 1997; 5: 1047-54
- Display abstract
BACKGROUND: The homeodomain is one of the key DNA-binding motifs used in eukaryotic gene regulation, and homeodomain proteins play critical roles in development. The residue at position 50 of many homeodomains appears to determine the differential DNA-binding specificity, helping to distinguish among binding sites of the form TAATNN. However, the precise role(s) of residue 50 in the differential recognition of alternative sites has not been clear. None of the previously determined structures of homeodomain-DNA complexes has shown evidence for a stable hydrogen bond between residue 50 and a base, and there has been much discussion, based in part on NMR studies, about the potential importance of water-mediated contacts. This study was initiated to help clarify some of these issues. RESULTS: The crystal structure of a complex containing the engrailed Gln50-->Lys variant (QK50) with its optimal binding site TAATCC (versus TAATTA for the wild-type protein) has been determined at 1.9 A resolution. The overall structure of the QK50 variant is very similar to that of the wild-type complex, but the sidechain of Lys50 projects directly into the major groove and makes several hydrogen bonds to the O6 and N7 atoms of the guanines at base pairs 5 and 6. Lys50 also makes an additional water-mediated contact with the guanine at base pair 5 and has an alternative conformation that allows a hydrogen bond with the O4 of the thymine at base pair 4. CONCLUSIONS: The structural context provided by the folding and docking of the engrailed homeodomain allows Lys50 to make remarkably favorable contacts with the guanines at base pairs 5 and 6 of the binding site. Although many different residues occur at position 50 in different homeodomains, and although numerous position 50 variants have been constructed, the most striking examples of altered specificity usually involve introducing or removing a lysine sidechain from position 50. This high-resolution structure also confirms the critical role of Asn51 in homeodomain-DNA recognition and further clarifies the roles of water molecules near residues 50 and 51.
- Zharkov DO, Rieger RA, Iden CR, Grollman AP
- NH2-terminal proline acts as a nucleophile in the glycosylase/AP-lyase reaction catalyzed by Escherichia coli formamidopyrimidine-DNA glycosylase (Fpg) protein.
- J Biol Chem. 1997; 272: 5335-41
- Display abstract
Formamidopyrimidine-DNA glycosylase (Fpg) protein plays a prominent role in the repair of oxidatively damaged DNA in Escherichia coli. The protein possesses three enzymatic activities, hydrolysis of the N-glycosidic bond (DNA glycosylase), beta-elimination (AP lyase), and delta-elimination; these functions act in a concerted manner to excise oxidized deoxynucleosides from duplex DNA. Schiff base formation between the enzyme and substrate has been demonstrated (Tchou, J., and Grollman, A. P. (1995) J. Biol. Chem. 270, 11671-11677); this protein-DNA complex can be trapped by reduction with sodium borohydride. By digesting the stable, covalently linked intermediate with proteases and determining the accurate mass of the products by negative electrospray ionization-mass spectrometry, we show that the N-terminal proline of Fpg protein is linked to DNA and, therefore, is identified as the nucleophile that initiates the catalytic excision of oxidized bases from DNA. This experimental approach may be applicable to the analysis of other protein-DNA complexes.
- Jia J, Schorken U, Lindqvist Y, Sprenger GA, Schneider G
- Crystal structure of the reduced Schiff-base intermediate complex of transaldolase B from Escherichia coli: mechanistic implications for class I aldolases.
- Protein Sci. 1997; 6: 119-24
- Display abstract
Transaldolase catalyzes transfer of a dihydroxyacetone moiety from a ketose donor to an aldose acceptor. During catalysis, a Schiff-base intermediate between dihydroxyacetone and the epsilon-amino group of a lysine residue at the active site of the enzyme is formed. This Schiff-base intermediate has been trapped by reduction with potassium borohydride, and the crystal structure of this complex has been determined at 2.2 A resolution. The overall structures of the complex and the native enzyme are very similar; formation of the intermediate induces no large conformational changes. The dihydroxyacetone moiety is covalently linked to the side chain of Lys 132 at the active site of the enzyme. The Cl hydroxyl group of the dihydroxyacetone moiety forms hydrogen bonds to the side chains of residues Asn 154 and Ser 176. The C3 hydroxyl group interacts with the side chain of Asp 17 and Asn 35. Based on the crystal structure of this complex a reaction mechanism for transaldolase is proposed.
- Mol CD et al.
- Crystal structure and mutational analysis of human uracil-DNA glycosylase: structural basis for specificity and catalysis.
- Cell. 1995; 80: 869-78
- Display abstract
Crystal structures of the DNA repair enzyme human uracil-DNA glycosylase (UDG), combined with mutational analysis, reveal the structural basis for the specificity of the enzyme. Within the classic alpha/beta fold of UDG, sequence-conserved residues form a positively charged, active-site groove the width of duplex DNA, at the C-terminal edge of the central four-stranded parallel beta sheet. In the UDG-6-aminouracil complex, uracil binds at the base of the groove within a rigid preformed pocket that confers selectivity for uracil over other bases by shape complementary and by main chain and Asn-204 side chain hydrogen bonds. Main chain nitrogen atoms are positioned to stabilize the oxyanion intermediate generated by His-268 acting via nucleophilic attack or general base mechanisms. Specific binding of uracil flipped out from a DNA duplex provides a structural mechanism for damaged base recognition.
- Evans MD, Podmore ID, Daly GJ, Perrett D, Lunec J, Herbert KE
- Detection of purine lesions in cellular DNA using single cell gel electrophoresis with Fpg protein.
- Biochem Soc Trans. 1995; 23: 434-434
- Castaing B, Boiteux S, Zelwer C
- DNA containing a chemically reduced apurinic site is a high affinity ligand for the E. coli formamidopyrimidine-DNA glycosylase.
- Nucleic Acids Res. 1992; 20: 389-94
- Display abstract
The E. coli Formamidopyrimidine-DNA Glycosylase (FPG protein), a monomeric DNA repair enzyme of 30.2 kDa, was purified to homogeneity in large quantities. The FPG protein excises imidazole ring-opened purines and 8-hydroxyguanine residues from DNA. Besides DNA glycosylase activity, the FPG protein is endowed with an EDTA-resistant activity which nicks DNA at apurinic/apyrimidic sites (AP sites). In contrast, DNAs containing chemically reduced AP sites are not incised by the FPG protein. However, the DNA glycosylase activity of the FPG protein is strongly inhibited in the presence of a purified synthetic 24 base-pair double-stranded oligonucleotide which contains a single apurinic site transformed chemically through borohydride reduction into a ring-opened deoxyribose derivative. The ability of the FPG protein to form a complex with this synthetically modified DNA was studied by electrophoresis in non-denaturing polyacrylamide gels. The FPG protein specifically binds the double-stranded oligonucleotide containing an apurinic site previously reduced in the presence of sodium borohydride. The complex was identified as a single retardation band on non-denaturing polyacrylamide gel electrophoresis. Complex formation is reversible and an apparent dissociation constant, KDapp, of 2.6 x 10(-10) M was determined. In contrast, no such retardation band was obtained between the FPG protein and double-stranded DNA containing an intact apurinic site or single-stranded DNA containing either an intact or a reduced apurinic site.
- Chetsanga CJ, Lozon M, Makaroff C, Savage L
- Purification and characterization of Escherichia coli formamidopyrimidine-DNA glycosylase that excises damaged 7-methylguanine from deoxyribonucleic acid.
- Biochemistry. 1981; 20: 5201-7
- Display abstract
A DNA glycosylase that excises 7-methylguanines with alkali-opened imidazole rings (formamidopyrimidines) from DNA has been purified more than 8000-fold from Escherichia coli cell extracts. The enzyme does not cleave 3-methyladenine, uracil, and intact 7-methylguanine from DNA. In assays containing pyrimidine analogues like oxauracil, 2,4,6-triaminopyrimidine, 2,5,6-triamino-2-hydroxypyrimidine sulfate, formamidopyrimidine, and 5-nitroso-2,4,6-triaminopyrimidine, only the two compounds showed end product inhibition of the enzyme. The enzyme has been named formamidopyrimidine-DNA glycosylase. It has a molecular weight of 30 000 and a Stokes radius of 26.4 A. The enzyme prefers double-stranded to single-stranded DNA and is stimulated by the presence of 0.1 M KCl in the reaction mixture.
- Rein R, Garduno R, Egan JT, Columbano S
- Elements of a DNA-polypeptide recognition code: electrostatic potential around the double helix, and a stereospecific model for purine recognition.
- Biosystems. 1977; 9: 131-7
- Display abstract
A model for stereospecific complex between a polynucleotide double helix and a twisted beta-ribbon type polypeptide is described. The beta ribbon lies in the major groove with alternate side chains pointing toward the interior of the groove. The base-amino acid complementarities are: Arg, G and Asn or Gln, A. It is shown that this complex can: (a) distinguish between G and A in homopolar sequences; (b) the complex is stabilized by approx. 6 Kcal/mole per hydrogen bond per base pair; (c) the required backbone conformation is in the permitted range of Ramachandran plots.
- Marzilli LG, Kistenmacher TJ, Chang CH
- Intramolecular hydrogen bonding in metal--purine systems. Synthesis and structure of a cobalt(III)--Theophylline complex.
- J Am Chem Soc. 1973; 95: 7507-8