Secondary literature sources for LEM
The following references were automatically generated.
- Sakaki M et al.
- Interaction between emerin and nuclear lamins.
- J Biochem (Tokyo). 2001; 129: 321-7
- Display abstract
Emerin is an inner nuclear membrane protein that is involved in X-linked recessive Emery-Dreifuss muscular dystrophy (X-EDMD). Although the function of this protein is still unknown, we revealed that C-terminus transmembrane domain-truncated emerin (amino acid 1-225) binds to lamin A with higher affinity than lamin C. Screening for the emerin binding protein and immunoprecipitation analysis showed that lamin A binds to emerin specifically. We also used the yeast two-hybrid system to clarify that this interaction requires the top half of the tail domain (amino acid 384-566) of lamin A. Lamin A and lamin C are alternative splicing products of the lamin A/C gene that is responsible for autosomal dominant Emery-Dreifuss muscular dystrophy (AD-EDMD). These results indicate that the emerin-lamin interaction requires the tail domains of lamin A and lamin C. The data also suggest that the lamin A-specific region (amino acids 567-664) plays some indirect role in the difference in emerin-binding capacity between lamin A and lamin C. This is the first report that refers the difference between lamin A and lamin C in the interaction with emerin. These data also suggest that lamin A is important for nuclear membrane integrity.
- Holt I, Clements L, Manilal S, Brown SC, Morris GE
- The R482Q lamin A/C mutation that causes lipodystrophy does not prevent nuclear targeting of lamin A in adipocytes or its interaction with emerin.
- Eur J Hum Genet. 2001; 9: 204-8
- Display abstract
Most pathogenic missense mutations in the lamin A/C gene identified so far cause autosomal-dominant dilated cardiomyopathy and/or Emery-Dreifuss muscular dystrophy. A few specific mutations, however, cause a disease with remarkably different clinical features: FPLD, or familial partial lipodystrophy (Dunnigan-type), which mainly affects adipose tissue. We have prepared lamin A with a known FPLD mutation (R482Q) by in vitro mutagenesis. Nuclear targeting of lamin A in transfected COS cells, human skeletal muscle cells or mouse adipocyte cell cultures (pre- and post-differentiation) was not detectably affected by the mutation. Quantitative in vitro measurements of lamin A interaction with emerin using a biosensor also showed no effect of the mutation. The results show that the loss of function of R482 in lamin A/C in FPLD does not involve loss of ability to form a nuclear lamina or to interact with the nuclear membrane protein, emerin.
- Lattanzi G et al.
- Emerin expression at the early stages of myogenic differentiation.
- Differentiation. 2000; 66: 208-17
- Display abstract
Emerin is an ubiquitous protein localized at the nuclear membrane of most cell types including muscle cells. The protein is absent in most patients affected by the X-linked form of Emery-Dreifuss muscular dystrophy, a disease characterized by slowly progressive muscle wasting and weakness, early contractures of the elbows, Achilles tendons, and post-cervical muscles, and cardiomyopathy. Besides the nuclear localization, emerin cytoplasmic distribution has been suggested in several cell types. We studied the expression and the subcellular distribution of emerin in mouse cultured C2C12 myoblasts and in primary cultures of human myoblasts induced to differentiate or spontaneously differentiating in the culture medium. In differentiating myoblasts transiently transfected with a cDNA encoding the complete emerin sequence, the protein localized at the nuclear rim of all transfected cells and also in the cytoplasm of some myoblasts and myotubes. Cytoplasmic emerin was also observed in detergent-treated myotubes, as determined by electron microscopy observation. Both immunofluorescence and biochemical analysis showed, that upon differentiation of C2C12 cells, emerin expression was decreased in the resting myoblasts but the protein was highly represented in the developing myotubes at the early stage of cell fusion. Labeling with specific markers of myogenesis such as troponin-T and myogenin permitted the correlation of increased emerin expression with the onset of muscle differentiation. These data suggest a role for emerin during proliferation of activated satellite cells and at the early stages of differentiation.
- Ellis JA, Brown CA, Tilley LD, Kendrick-Jones J, Spence JE, Yates JR
- Two distal mutations in the gene encoding emerin have profoundly different effects on emerin protein expression.
- Neuromuscul Disord. 2000; 10: 24-30
- Display abstract
Emerin, the product of the gene responsible for X-linked Emery-Dreifuss muscular dystrophy (EDMD), has a ubiquitous tissue distribution and is localised to the nuclear envelope. We present here the relationship between emerin protein expression, nuclear localization and clinical phenotype for two distal mutations identified in unrelated EDMD patients. The first mutation predicts the replacement of the last eight amino acids of emerin with the addition of 101 amino acids, but no emerin expression is detected. The second mutation, 35 bp upstream from the first mutation, deletes six amino acids from the transmembrane region, but in this case emerin expression is seen. Emerin from this second patient is expressed at reduced levels, mistargeted and has altered biochemical properties compared to wild type emerin. In both cases the clinical phenotype was similar to patients with typical null mutations. We discuss these data in comparison with previous reports of other C-terminal mutations in the emerin gene and suggest that the efficiency of emerin's nuclear membrane localization is affected by the hydrophobicity (and possibly length) of its transmembrane region, and a longer C-terminal tail prevents nuclear localization.
- Manilal S et al.
- Distribution of emerin and lamins in the heart and implications for Emery-Dreifuss muscular dystrophy.
- Hum Mol Genet. 1999; 8: 353-9
- Display abstract
Emerin is a nuclear membrane protein which is missing or defective in Emery-Dreifuss muscular dystrophy (EDMD). It is one member of a family of lamina-associated proteins which includes LAP1, LAP2 and lamin B receptor (LBR). A panel of 16 monoclonal antibodies (mAbs) has been mapped to six specific sites throughout the emerin molecule using phage-displayed peptide libraries and has been used to localize emerin in human and rabbit heart. Several mAbs against different emerin epitopes did not recognize intercalated discs in the heart, though they recognized cardiomyocyte nuclei strongly, both at the rim and in intranuclear spots or channels. A polyclonal rabbit antiserum against emerin did recognize both nuclear membrane and intercalated discs but, after affinity purification against a pure-emerin band on a western blot, it stained only the nuclear membrane. These results would not be expected if immunostaining at intercalated discs were due to a product of the emerin gene and, therefore, cast some doubt upon the hypothesis that cardiac defects in EDMD are caused by absence of emerin from intercalated discs. Although emerin was abundant in the membranes of cardiomyocyte nuclei, it was absent from many non-myocyte cells in the heart. This distribution of emerin was similar to that of lamin A, a candidate gene for an autosomal form of EDMD. In contrast, lamin B1 was absent from cardiomyocyte nuclei, showing that lamin B1 is not essential for localization of emerin to the nuclear lamina. Lamin B1 is also almost completely absent from skeletal muscle nuclei. In EDMD, the additional absence of lamin B1 from heart and skeletal muscle nuclei which already lack emerin may offer an alternative explanation of why these tissues are particularly affected.
- Morris GE, Manilal S
- Heart to heart: from nuclear proteins to Emery-Dreifuss muscular dystrophy.
- Hum Mol Genet. 1999; 8: 1847-51
- Display abstract
Emery-Dreifuss muscular dystrophy has some remarkably specific features, with only cardiac and skeletal tissues being affected. Equally remarkably, the disease is caused by mutations in widely expressed genes for the nuclear membrane/lamina proteins, emerin and lamin A/C. How do mutations in proteins at the heart of the cell lead to stiff joints and sudden heart failure? This and related questions are the subject of this review.
- Tews DS
- Emerin.
- Int J Biochem Cell Biol. 1999; 31: 891-4
- Display abstract
Emerin encoded by the STA gene is the first nuclear protein linked with a muscular dystrophy. Emerin is a 34 kDa, predominantly hydrophilic protein with a single hydrophobic region supposed to serve as a transmembrane domain. It was classified as a type II integral membrane protein localized at the inner nuclear membrane/nuclear lamina with an ubiquitous tissue distribution. It is speculated that emerin is required for the stability and normal function of rigorously moving nuclei in skeletal muscle and heart. During mitosis, emerin is cell-cycle-dependent phosphorylated and shows stage-dependent changes in distribution and localization suggesting that it plays a role in re-assembly of nuclear membranes. Mutations of the emerin gene have been associated with X-linked Emery-Dreifuss muscular dystrophy clinically defined by early joint contractures, progressive muscle weakness, and cardiomyopathy. Hopefully, identification of the protein defect may promote new therapeutic strategies concerning muscle fiber development and stability.
- Tsuchiya Y, Hase A, Ogawa M, Yorifuji H, Arahata K
- Distinct regions specify the nuclear membrane targeting of emerin, the responsible protein for Emery-Dreifuss muscular dystrophy.
- Eur J Biochem. 1999; 259: 859-65
- Display abstract
Emery-Dreifuss muscular dystrophy is a neuromuscular disorder that has three characteristics: (a) early contracture of the elbows, Achilles tendons and postcervical muscles; (b) slowly progressive wasting and weakness of skeletal muscle; and (c) cardiomyopathy with severe conduction block. The responsible gene for the X-linked recessive form of this disease encodes an inner nuclear membrane protein named emerin. Although emerin is absent in tissues from patients with this disorder, it remains obscure why the loss of this widely expressed protein affects selectively skeletal muscle, heart and joints. As the first step to address this question, we examined the molecular regions of emerin that are essential for nuclear membrane targeting and stability of the protein. We found that the C-terminal hydrophobic region was necessary, but not sufficient, for nuclear membrane anchoring and stability of the protein. In the absence of this transmembrane domain, the upstream nucleoplasmic domain showed no firm association with the nuclear rim, but showed the tendency to accumulate at the nucleolus-like structures. Furthermore, proper targeting of emerin to the nuclear membrane required the latter half of the nucleoplasmic domain. These characteristics are distinct from those of lamina-associated polypeptide 2. Our findings indicate that emerin has distinct interactions with the inner nuclear membrane components that may be required for the stability and function of rigorously moving nuclei in tissues such as skeletal muscle, heart and joints.
- Cartegni L et al.
- Heart-specific localization of emerin: new insights into Emery-Dreifuss muscular dystrophy.
- Hum Mol Genet. 1997; 6: 2257-64
- Display abstract
Emery-Dreifuss muscular dystrophy (EDMD) is an X-linked inherited disease characterized by early contracture of the elbows, Achilles tendons and post-cervical muscles, slow progressive muscle wasting and weakness and cardiomyopathy presenting with arrhythmia and atrial paralysis: heart block can eventually lead to sudden death. The EDMD geneencodes a novel ubiquitous protein, emerin, which decorates the nuclear rim of many cell types. Amino acid sequence homology and cellular localization suggested that emerin is a member of the nuclear lamina-associated protein family. These findings did not explain the role of emerin nor account for the skeletal muscle- and heart-specific clinical manifestations associated with the disorder. Now we report that emerin localizes to the inner nuclear membrane, via its hydrophobic C-terminal domain, but that in heart and cultured cardiomyocytes it is also associated with the intercalated discs. We propose a general role for emerin in membrane anchorage to the cytoskeleton. In the nuclear envelope emerin plays a ubiquitous and dispensable role in association of the nuclear membrane with the lamina. In heart its specific localization to desmosomes and fasciae adherentes could account for the characteristic conduction defects described in patients.
- Small K, Wagener M, Warren ST
- Isolation and characterization of the complete mouse emerin gene.
- Mamm Genome. 1997; 8: 337-41
- Display abstract
Emery-Dreifuss muscular dystrophy (EMD) is an X-linked recessive disorder associated with muscle wasting, contractures, and cardiomyopathy. The responsible emerin gene has recently been identified and found to encode a serine-rich protein similar to lamina-associated protein 2 (LAP2), although the disease mechanism remains obscure. In order to pursue the pathophysiology of this disorder, we report here the isolation and characterization of the complete mouse emerin gene. The emerin cDNA was isolated from murine strain BALB/c, and the emerin gene was isolated from strain 129. The 2.9-kb mouse emerin gene was completely sequenced and found to be composed of 6 exons and encode a protein 73% identical to that of the human protein. Key similarities with LAP2 were found to be conserved, including critical LAP2 phosphorylation sites. Examination of the murine promoter revealed three previously unrecognized cAMP response elements (CRE) conserved between human and mouse. While Northern analysis shows emerin to be widely expressed in the mouse, as it is in humans, these promoter elements may indicate cAMP responsiveness. These data provide the necessary elements to further investigate EMD in a murine system.
- Manilal S, Nguyen TM, Sewry CA, Morris GE
- The Emery-Dreifuss muscular dystrophy protein, emerin, is a nuclear membrane protein.
- Hum Mol Genet. 1996; 5: 801-8
- Display abstract
A large fragment of emerin cDNA was prepared by PCR and expressed as a recombinant protein in Escherichia coli. Using this as immunogen, we prepared a panel of 12 monoclonal antibodies which recognise at least four different epitopes on emerin in order to ensure that emerin can be distinguished from non-specific cross-reacting proteins. All the mAbs recognised a 34 kDa protein in all tissues tested, though minor emerin-related bands were also detected in some tissues. Immunofluorescence microscopy showed that emerin is located at the nuclear rim in all tissues examined. A muscle biopsy from an Emery-Dreifuss muscular dystrophy (EMDM) patient showed complete absence of emerin by both Western blotting and immunohistochemistry, suggesting a simple diagnostic antibody test for EDMD families. Biochemical fractionation of brain and liver tissues showed that emerin was present in nuclei purified by centrifugation through 65% sucrose and was absent from soluble fractions (post-100,000 g). From these results, together with sequence and structural homologies between emerin, thymopoietins and the nuclear lamina-associated protein, LAP2, we suggest that emerin will prove to be one member of a family of inner nuclear membrane proteins.
- Nagano A et al.
- Emerin deficiency at the nuclear membrane in patients with Emery-Dreifuss muscular dystrophy.
- Nat Genet. 1996; 12: 254-9
- Display abstract
Mutations in the STA gene at the Xq28 locus have been found in patients with X-linked Emery-Dreifuss muscular dystrophy (EDMD). This gene encodes a hitherto unknown protein named 'emerin'. To elucidate the subcellular localization of emerin, we raised two antisera against synthetic peptide fragments predicted from emerin cDNA. Using both antisera, we found positive nuclear membrane staining in skeletal, cardiac and smooth muscles in the normal controls and in patients with neuromuscular diseases other than EDMD. In contrast, a deficiency in immunofluorescent staining of skeletal and cardiac muscle from EDMD patients was observed. A 34 kD protein is immunoreactive with the antisera--the protein is equivalent to that predicted for emerin. Together, our findings suggest the specific deficiency of emerin in the nuclear membrane of muscle cells in patients with EDMD.