Secondary literature sources for RTC4
The following references were automatically generated.
- Du J, Cao C, Jiang L
- Genome-scale genetic screen of lead ion-sensitive gene deletion mutations in Saccharomyces cerevisiae.
- Gene. 2015; 563: 155-9
- Display abstract
Pb (lead) is one of the most widespread and toxic heavy metal contaminants and imposes potential harm to human health. Pb ions cause cellular damage and induce loss of cell viability. However, mechanisms regulating Pb toxicity remain poorly understood. Through a genome-scale screen, we have identified 30 yeast single-gene deletion mutants that are sensitive to lead ions. These genes are involved in the metabolism, transcription, protein synthesis, cell cycle and DNA processing, protein folding, modification, destination, as well as cellular transport process. Comparative analyses to cadmium-sensitive mutations identified from previous studies indicate that overlapping genes of lead- and cadmium-sensitive mutations are involved in both the metabolism and the cellular transport process. Furthermore, eleven lead-sensitive mutants show elevated levels of lead contents in response to lead stress. Our findings provide a basis to understand molecular mechanisms underlying the detoxification of lead ions by yeast cells.
- Sasabe M, Shintani S, Kintaka R, Kaizu K, Makanae K, Moriya H
- Evaluation of the lower protein limit in the budding yeast Saccharomyces cerevisiae using TIPI-gTOW.
- BMC Syst Biol. 2014; 8: 2-2
- Display abstract
BACKGROUND: Identifying permissible limits of intracellular parameters such as protein expression provides important information for examining robustness. In this study, we used the TEV protease-mediated induction of protein instability (TIPI) in combination with the genetic Tug-of-War (gTOW) to develop a method to measure the lower limit of protein level. We first tested the feasibility of this method using ADE2 as a marker and then analyzed some cell cycle regulators to reveal genetic interactions. RESULTS: Using TIPI-gTOW, we successfully constructed a strain in which GFP-(TDegF)Ade2 was expressed at the lower limit, just sufficient to support cellular growth under the -Ade condition by accelerating degradation by TEV protease. We also succeeded in constructing a strain in which the minimal level of GFP-(TDegF)Cdc20 was expressed by TIPI-gTOW. Using this strain, we studied genetic interactions between cell cycle regulators and CDC20, and the result was highly consistent with the previously identified interactions. Comparison of the experimental data with predictions of a mathematical model revealed some interactions that were not implemented into the current model. CONCLUSIONS: TIPI-gTOW is useful for estimating changes in the lower limit of a protein under different conditions, such as different genetic backgrounds and environments. TIPI-gTOW is also useful for analyzing genetic interactions of essential genes whose deletion mutants cannot be obtained.
- Winter G, Cordente AG, Curtin C
- Formation of hydrogen sulfide from cysteine in Saccharomyces cerevisiae BY4742: genome wide screen reveals a central role of the vacuole.
- PLoS One. 2014; 9: 113869-113869
- Display abstract
Discoveries on the toxic effects of cysteine accumulation and, particularly, recent findings on the many physiological roles of one of the products of cysteine catabolism, hydrogen sulfide (H2S), are highlighting the importance of this amino acid and sulfur metabolism in a range of cellular activities. It is also highlighting how little we know about this critical part of cellular metabolism. In the work described here, a genome-wide screen using a deletion collection of Saccharomyces cerevisiae revealed a surprising set of genes associated with this process. In addition, the yeast vacuole, not previously associated with cysteine catabolism, emerged as an important compartment for cysteine degradation. Most prominent among the vacuole-related mutants were those involved in vacuole acidification; we identified each of the eight subunits of a vacuole acidification sub-complex (V1 of the yeast V-ATPase) as essential for cysteine degradation. Other functions identified included translation, RNA processing, folate-derived one-carbon metabolism, and mitochondrial iron-sulfur homeostasis. This work identified for the first time cellular factors affecting the fundamental process of cysteine catabolism. Results obtained significantly contribute to the understanding of this process and may provide insight into the underlying cause of cysteine accumulation and H2S generation in eukaryotes.
- Ye J, Renault VM, Jamet K, Gilson E
- Transcriptional outcome of telomere signalling.
- Nat Rev Genet. 2014; 15: 491-503
- Display abstract
Telomeres protect chromosome ends from degradation and inappropriate DNA damage response activation through their association with specific factors. Interestingly, these telomeric factors are able to localize outside telomeric regions, where they can regulate the transcription of genes involved in metabolism, immunity and differentiation. These findings delineate a signalling pathway by which telomeric changes control the ability of their associated factors to regulate transcription. This mechanism is expected to enable a greater diversity of cellular responses that are adapted to specific cell types and telomeric changes, and may therefore represent a pivotal aspect of development, ageing and telomere-mediated diseases.
- Liu CC, Gopalakrishnan V, Poon LF, Yan T, Li S
- Cdk1 regulates the temporal recruitment of telomerase and Cdc13-Stn1-Ten1 complex for telomere replication.
- Mol Cell Biol. 2014; 34: 57-70
- Display abstract
In budding yeast (Saccharomyces cerevisiae), the cell cycle-dependent telomere elongation by telomerase is controlled by the cyclin-dependent kinase 1 (Cdk1). The telomere length homeostasis is balanced between telomerase-unextendable and telomerase-extendable states that both require Cdc13. The recruitment of telomerase complex by Cdc13 promotes telomere elongation, while the formation of Cdc13-Stn1-Ten1 (CST) complex at the telomere blocks telomere elongation by telomerase. However, the cellular signaling that regulates the timing of the telomerase-extendable and telomerase-unextendable states is largely unknown. Phosphorylation of Cdc13 by Cdk1 promotes the interaction between Cdc13 and Est1 and hence telomere elongation. Here, we show that Cdk1 also phosphorylates Stn1 at threonine 223 and serine 250 both in vitro and in vivo, and these phosphorylation events are essential for the stability of the CST complexes at the telomeres. By controlling the timing of Cdc13 and Stn1 phosphorylations during cell cycle progression, Cdk1 regulates the temporal recruitment of telomerase complexes and CST complexes to the telomeres to facilitate telomere maintenance.
- Rubinstein L et al.
- Telomere length kinetics assay (TELKA) sorts the telomere length maintenance (tlm) mutants into functional groups.
- Nucleic Acids Res. 2014; 42: 6314-25
- Display abstract
Genome-wide systematic screens in yeast have uncovered a large gene network (the telomere length maintenance network or TLM), encompassing more than 400 genes, which acts coordinatively to maintain telomere length. Identifying the genes was an important first stage; the next challenge is to decipher their mechanism of action and to organize then into functional groups or pathways. Here we present a new telomere-length measuring program, TelQuant, and a novel assay, telomere length kinetics assay, and use them to organize tlm mutants into functional classes. Our results show that a mutant defective for the relatively unknown MET7 gene has the same telomeric kinetics as mutants defective for the ribonucleotide reductase subunit Rnr1, in charge of the limiting step in dNTP synthesis, or for the Ku heterodimer, a well-established telomere complex. We confirm the epistatic relationship between the mutants and show that physical interactions exist between Rnr1 and Met7. We also show that Met7 and the Ku heterodimer affect dNTP formation, and play a role in non-homologous end joining. Thus, our telomere kinetics assay uncovers new functional groups, as well as complex genetic interactions between tlm mutants.
- Grandin N, Charbonneau M
- RPA provides checkpoint-independent cell cycle arrest and prevents recombination at uncapped telomeres of Saccharomyces cerevisiae.
- DNA Repair (Amst). 2013; 12: 212-26
- Display abstract
Replication Protein A (RPA) is an evolutionary conserved essential complex with single-stranded DNA binding properties that has been implicated in numerous DNA transactions. At damaged telomeres, Saccharomyces cerevisiae RPA recruits the Mec1-Ddc2 module of the DNA damage checkpoint network, its only known function in DNA damage signaling. Here, we describe rfa1 mutants (rfa1-1, rfa1-9, rfa1-10, rfa1-11 and rfa1-12) that are proficient in this checkpoint but nevertheless exhibit deregulation of cell cycle control upon telomere uncapping induced by the cdc13-1 mutation. Overriding of this damage-induced checkpoint-independent cell cycle block in the rfa1 mutants was suppressed following genetic inactivation of either TEL1 or EST2/telomerase. Altogether, our results suggest that a previously non-suspected function of RPA is to block cell cycle progression upon telomere uncapping using a yet unidentified pathway that functions in a Mec1-Ddc2-independent manner. We propose that in the rfa1 mutants, ill-masking of uncapped telomeres provokes inappropriate access of Tel1 and inappropriate functioning of telomerase, which, by yet unknown mechanisms, allows cell division to take place in spite of the block established by the DNA damage checkpoint. In the present study, we also observed that upon telomere uncapping, rfa1-12, but not the other studied rfa1 mutants, triggered telomeric recombination in the presence of functional telomerase. In conclusion, the present study identifies a novel pathway of telomere end protection that utilizes a previously unsuspected function of RPA at the telomeres.
- Wong LH, Unciti-Broceta A, Spitzer M, White R, Tyers M, Harrington L
- A yeast chemical genetic screen identifies inhibitors of human telomerase.
- Chem Biol. 2013; 20: 333-40
- Display abstract
Telomerase comprises a reverse transcriptase and an internal RNA template that maintains telomeres in many eukaryotes, and it is a well-validated cancer target. However, there is a dearth of small molecules with efficacy against human telomerase in vivo. We developed a surrogate yeast high-throughput assay to identify human telomerase inhibitors. The reversibility of growth arrest induced by active human telomerase was assessed against a library of 678 compounds preselected for bioactivity in S. cerevisiae. Four of eight compounds identified reproducibly restored growth to strains expressing active human telomerase, and three of these four compounds also specifically inhibited purified human telomerase in vitro. These compounds represent probes for human telomerase function, and potential entry points for development of lead compounds against telomerase-positive cancers.
- Jarolim S et al.
- Saccharomyces cerevisiae genes involved in survival of heat shock.
- G3 (Bethesda). 2013; 3: 2321-33
- Display abstract
The heat-shock response in cells, involving increased transcription of a specific set of genes in response to a sudden increase in temperature, is a highly conserved biological response occurring in all organisms. Despite considerable attention to the processes activated during heat shock, less is known about the role of genes in survival of a sudden temperature increase. Saccharomyces cerevisiae genes involved in the maintenance of heat-shock resistance in exponential and stationary phase were identified by screening the homozygous diploid deletants in nonessential genes and the heterozygous diploid mutants in essential genes for survival after a sudden shift in temperature from 30 to 50 degrees . More than a thousand genes were identified that led to altered sensitivity to heat shock, with little overlap between them and those previously identified to affect thermotolerance. There was also little overlap with genes that are activated or repressed during heat-shock, with only 5% of them regulated by the heat-shock transcription factor. The target of rapamycin and protein kinase A pathways, lipid metabolism, vacuolar H(+)-ATPase, vacuolar protein sorting, and mitochondrial genome maintenance/translation were critical to maintenance of resistance. Mutants affected in l-tryptophan metabolism were heat-shock resistant in both growth phases; those affected in cytoplasmic ribosome biogenesis and DNA double-strand break repair were resistant in stationary phase, and in mRNA catabolic processes in exponential phase. Mutations affecting mitochondrial genome maintenance were highly represented in sensitive mutants. The cell division transcription factor Swi6p and Hac1p involved in the unfolded protein response also play roles in maintenance of heat-shock resistance.
- Page B, Drouin G
- Stronger purifying selection against gene conversions in a pathogenic Saccharomyces cerevisiae strain.
- Genome. 2012; 55: 835-43
- Display abstract
Gene conversions most often have no selective impact, but some are selectively disadvantageous whereas others are selectively advantageous. Although gene conversions have been extensively studied in yeasts, very little is known about their selective impact in pathological yeasts. Here, we used the GENECONV software to compare the characteristics of candidate gene conversions found in a pathogenic strain (YJM789) and a nonpathogenic strain (S288c) of Saccharomyces cerevisiae. Interestingly, the pathogenic strain has fewer gene conversions when compared with the nonpathogenic strain. Of the 123 conversions we identified, 27 were identical or similar between the two strains, 62 were specific to the S288c strain, and 34 were specific to the YJM789 strain. Identical and similar conversions likely represent conversions that are under similar levels of purifying selection in both strains. The lower number of gene conversions in most gene families of the pathogenic strain is likely the result of higher purifying selection in this strain. In contrast, the higher number of conversions found in the YRF1 helicase gene family of the pathogenic strain could represent an example of adaptive gene conversions involved in maintaining its telomeres.
- Serviene E, Luksa J, Orentaite I, Lafontaine DL, Urbonavicius J
- Screening the budding yeast genome reveals unique factors affecting K2 toxin susceptibility.
- PLoS One. 2012; 7: 50779-50779
- Display abstract
BACKGROUND: Understanding how biotoxins kill cells is of prime importance in biomedicine and the food industry. The budding yeast (S. cerevisiae) killers serve as a convenient model to study the activity of biotoxins consistently supplying with significant insights into the basic mechanisms of virus-host cell interactions and toxin entry into eukaryotic target cells. K1 and K2 toxins are active at the cell wall, leading to the disruption of the plasma membrane and subsequent cell death by ion leakage. K28 toxin is active in the cell nucleus, blocking DNA synthesis and cell cycle progression, thereby triggering apoptosis. Genome-wide screens in the budding yeast S. cerevisiae identified several hundred effectors of K1 and K28 toxins. Surprisingly, no such screen had been performed for K2 toxin, the most frequent killer toxin among industrial budding yeasts. PRINCIPAL FINDINGS: We conducted several concurrent genome-wide screens in S. cerevisiae and identified 332 novel K2 toxin effectors. The effectors involved in K2 resistance and hypersensitivity largely map in distinct cellular pathways, including cell wall and plasma membrane structure/biogenesis and mitochondrial function for K2 resistance, and cell wall stress signaling and ion/pH homeostasis for K2 hypersensitivity. 70% of K2 effectors are different from those involved in K1 or K28 susceptibility. SIGNIFICANCE: Our work demonstrates that despite the fact that K1 and K2 toxins share some aspects of their killing strategies, they largely rely on different sets of effectors. Since the vast majority of the host factors identified here is exclusively active towards K2, we conclude that cells have acquired a specific K2 toxin effectors set. Our work thus indicates that K1 and K2 have elaborated different biological pathways and provides a first step towards the detailed characterization of K2 mode of action.
- Kaplan T, Friedman N
- Gene expression: Running to stand still.
- Nature. 2012; 484: 171-2
- Davey HM et al.
- Genome-wide analysis of longevity in nutrient-deprived Saccharomyces cerevisiae reveals importance of recycling in maintaining cell viability.
- Environ Microbiol. 2012; 14: 1249-60
- Display abstract
Although typically cosseted in the laboratory with constant temperatures and plentiful nutrients, microbes are frequently exposed to much more stressful conditions in their natural environments where survival and competitive fitness depend upon both growth rate when conditions are favourable and on persistence in a viable and recoverable state when they are not. In order to determine the role of genetic heterogeneity in environmental fitness we present a novel approach that combines the power of fluorescence-activated cell sorting with barcode microarray analysis and apply this to determining the importance of every gene in the Saccharomyces cerevisiae genome in a high-throughput, genome-wide fitness screen. We have grown > 6000 heterozygous mutants together and exposed them to a starvation stress before using fluorescence-activated cell sorting to identify and isolate those individual cells that have not survived the stress applied. Barcode array analysis of the sorted and total populations reveals the importance of cellular recycling mechanisms (autophagy, pexophagy and ribosome breakdown) in maintaining cell viability during starvation and provides compelling evidence for an important role for fatty acid degradation in maintaining viability. In addition, we have developed a semi-batch fermentor system that is a more realistic model of environmental fitness than either batch or chemostat culture. Barcode array analysis revealed that arginine biosynthesis was important for fitness in semi-batch culture and modelling of this regime showed that rapid emergence from lag phase led to greatly increased fitness. One hundred and twenty-five strains with deletions in unclassified proteins were identified as being over-represented in the sorted fraction, while 27 unclassified proteins caused a haploinsufficient phenotype in semi-batch culture. These methods thus provide a screen to identifying other genes and pathways that have a role in maintaining cell viability.
- Chang HY et al.
- Genome-wide analysis to identify pathways affecting telomere-initiated senescence in budding yeast.
- G3 (Bethesda). 2011; 1: 197-208
- Display abstract
In telomerase-deficient yeast cells, like equivalent mammalian cells, telomeres shorten over many generations until a period of senescence/crisis is reached. After this, a small fraction of cells can escape senescence, principally using recombination-dependent mechanisms. To investigate the pathways that affect entry into and recovery from telomere-driven senescence, we combined a gene deletion disrupting telomerase (est1Delta) with the systematic yeast deletion collection and measured senescence characteristics in high-throughput assays. As expected, the vast majority of gene deletions showed no strong effects on entry into/exit from senescence. However, around 200 gene deletions behaving similarly to a rad52Deltaest1Delta archetype (rad52Delta affects homologous recombination) accelerated entry into senescence, and such cells often could not recover growth. A smaller number of strains similar to a rif1Deltaest1Delta archetype (rif1Delta affects proteins that bind telomeres) accelerated entry into senescence but also accelerated recovery from senescence. Our genome-wide analysis identifies genes that affect entry into and/or exit from telomere-initiated senescence and will be of interest to those studying telomere biology, replicative senescence, cancer, and ageing. Our dataset is complementary to other high-throughput studies relevant to telomere biology, genetic stability, and DNA damage responses.
- Kobayashi T
- How does genome instability affect lifespan?: roles of rDNA and telomeres.
- Genes Cells. 2011; 16: 617-24
- Display abstract
The genome is composed not only of genes but also of several noncoding functional elements (NOCs/ncFE, here I use NOCs), such as transcriptional promoters, enhancers, replication origins, centromeres and telomeres. rDNA has both gene and NOC characteristics. Thus, the rDNA encodes ribosomal RNAs, components of the ribosomes, that account for approximately 80% of the total RNA in a cell. However, rDNA may also act as a NOC with respect to cellular senescence by limiting the number of times a cell can divide. Here, I discuss how rDNA might function as a NOC to influence life span in a manner analogous to telomeres.
- Wu Y, Zakian VA
- The telomeric Cdc13 protein interacts directly with the telomerase subunit Est1 to bring it to telomeric DNA ends in vitro.
- Proc Natl Acad Sci U S A. 2011; 108: 20362-9
- Display abstract
In Saccharomyces cerevisiae, a Cdc13-Est1 interaction is proposed to mediate recruitment of telomerase to DNA ends. Here we provide unique in vitro evidence for this model by demonstrating a direct interaction between purified Cdc13 and Est1. The Cdc13-Est1 interaction is specific and requires the in vivo defined Cdc13 recruitment domain. Moreover, in the absence of this interaction, Est1 is excluded from telomeric single-stranded (ss)DNA. The apparent association constand (K(d)) between Est1 and a Cdc13-telomeric ssDNA complex was approximately 250 nM. In G2 phase cells, where telomerase is active, Cdc13 and Est1 were sufficiently abundant ( approximately 420 and approximately 110 copies per cell, respectively) to support complex formation. Interaction between Cdc13 and Est1 was unchanged by three telomerase-deficient mutations, Cdc13(E252K) (cdc13-2), Est1(K444E) (est1-60), and Cdc13(S249,255D), indicating that their telomerase null phenotypes are not due to loss of the Cdc13-Est1 interaction. These data recapitulate in vitro the first step in telomerase recruitment to telomeric ssDNA and suggest that this step is necessary to recruit telomerase to DNA ends.
- Burch LH et al.
- Damage-induced localized hypermutability.
- Cell Cycle. 2011; 10: 1073-85
- Display abstract
Genome instability continuously presents perils of cancer, genetic disease and death of a cell or an organism. At the same time, it provides for genome plasticity that is essential for development and evolution. We address here the genome instability confined to a small fraction of DNA adjacent to free DNA ends at uncapped telomeres and double-strand breaks. We found that budding yeast cells can tolerate nearly 20 kilobase regions of subtelomeric single-strand DNA that contain multiple UV-damaged nucleotides. During restoration to the double-strand state, multiple mutations are generated by error-prone translesion synthesis. Genome-wide sequencing demonstrated that multiple regions of damage-induced localized hypermutability can be tolerated, which leads to the simultaneous appearance of multiple mutation clusters in the genomes of UV- irradiated cells. High multiplicity and density of mutations suggest that this novel form of genome instability may play significant roles in generating new alleles for evolutionary selection as well as in the incidence of cancer and genetic disease.
- Pinto AR, Li H, Nicholls C, Liu JP
- Telomere protein complexes and interactions with telomerase in telomere maintenance.
- Front Biosci (Landmark Ed). 2011; 16: 187-207
- Display abstract
Telomeres are the termini of linear chromosomes. They are composed of DNA and DNA-binding proteins critical for maintaining chromosome integrity and cellular function. Telomere binding proteins regulate the structure and function of telomeres through the formation of different complexes with telomeric DNA. Double- and single-stranded telomeric DNA binding protein complexes have shared and unique functions that regulate telomere homeostasis. Recent studies have shown that telomerase interacts with several telomere-binding protein complexes including shelterin, CST, DNA-dependent protein kinase (DNA-PK) and MRN. The present review describes the recognised telomere-binding protein complexes, sub-complex exchanges and inter-complex molecular interactions. It also discusses the evidence suggesting that telomerase reverse transcriptase (TERT) switches between different complexes. Studies of the telomere protein inter-complex interactions and the switching of components between complexes provide insight into their fundamental roles of programming telomere length and configuration, and thus cell proliferative potential.
- Kato Y et al.
- Cell polarity in Saccharomyces cerevisiae depends on proper localization of the Bud9 landmark protein by the EKC/KEOPS complex.
- Genetics. 2011; 188: 871-82
- Display abstract
In diploid Saccharomyces cerevisiae cells, bud-site selection is determined by two cortical landmarks, Bud8p and Bud9p, at the distal and proximal poles, respectively. Their localizations depend on the multigenerational proteins Rax1p/Rax2p. Many genes involved in bud-site selection were identified previously by genome-wide screening of deletion mutants, which identified BUD32 that causes a random budding in diploid cells. Bud32p is an atypical kinase involved in a signaling cascade of Sch9p kinase, the yeast homolog of Akt/PKB, and a component of the EKC/KEOPS (endopeptidase-like, kinase, chromatin-associated/kinase, putative endopeptidase, and other proteins of small size) complex that functions in telomere maintenance and transcriptional regulation. However, its role in bipolar budding has remained unclear. In this report, we show that the Sch9p kinase cascade does not affect bipolar budding but that the EKC/KEOPS complex regulates the localization of Bud9p. The kinase activity of Bud32p, which is essential for the functions of the EKC/KEOPS complex but is not necessary for the Sch9p signaling cascade, is required for bipolar bud-site selection. BUD9 is necessary for random budding in each deletion mutant of EKC/KEOPS components, and RAX2 is genetically upstream of EKC/KEOPS genes for the regulation of bipolar budding. The asymmetric localization of Bud9p was dependent on the complex, but Bud8p and Rax2p were not. We concluded that the EKC/KEOPS complex is specifically involved in the regulation of Bud9p localization downstream of Rax1p/Rax2p.
- Enserink JM, Kolodner RD
- An overview of Cdk1-controlled targets and processes.
- Cell Div. 2010; 5: 11-11
- Display abstract
The cyclin dependent kinase Cdk1 controls the cell cycle, which is best understood in the model organism S. cerevisiae. Research performed during the past decade has significantly improved our understanding of the molecular machinery of the cell cycle. Approximately 75 targets of Cdk1 have been identified that control critical cell cycle events, such as DNA replication and segregation, transcriptional programs and cell morphogenesis. In this review we discuss currently known targets of Cdk1 in the budding yeast S. cerevisiae and highlight the role of Cdk1 in several crucial processes including maintenance of genome stability.
- Paschini M, Mandell EK, Lundblad V
- Structure prediction-driven genetics in Saccharomyces cerevisiae identifies an interface between the t-RPA proteins Stn1 and Ten1.
- Genetics. 2010; 185: 11-21
- Display abstract
In Saccharomyces cerevisiae, Cdc13, Stn1, and Ten1 are essential for both chromosome capping and telomere length homeostasis. These three proteins have been proposed to perform their roles at chromosome termini as a telomere-dedicated t-RPA complex, on the basis of several parallels with the conventional RPA complex. In this study, we have used several approaches to test whether a predicted alpha-helix in the N-terminal domain of the S. cerevisiae Stn1 protein is required for formation of the proposed t-RPA complex, in a manner analogous to the comparable helix in Rpa2. Analysis of a panel of Rpa2-OB(Stn1) chimeras indicates that whether a chimeric protein contains the Rpa2 or Stn1 version of this alpha-helix dictates its ability to function in place of Rpa2 or Stn1, respectively. In addition, mutations introduced into a hydrophobic surface of the predicted Stn1 alpha-helix eliminated association with Ten1. Strikingly, allele-specific suppression of a stn1 mutation in this helix (stn1-L164D) by a ten1 mutation (ten1-D138Y) resulted in a restored Stn1-Ten1 interaction, supporting the identification of a Stn1-Ten1 interface. We conclude that Stn1 interacts with Ten1 through an alpha-helix, in a manner analogous to the interaction between the comparable subunits of the RPA complex.
- Mitchell MT et al.
- Cdc13 N-terminal dimerization, DNA binding, and telomere length regulation.
- Mol Cell Biol. 2010; 30: 5325-34
- Display abstract
The essential yeast protein Cdc13 facilitates chromosome end replication by recruiting telomerase to telomeres, and together with its interacting partners Stn1 and Ten1, it protects chromosome ends from nucleolytic attack, thus contributing to genome integrity. Although Cdc13 has been studied extensively, the precise role of its N-terminal domain (Cdc13N) in telomere length regulation remains unclear. Here we present a structural, biochemical, and functional characterization of Cdc13N. The structure reveals that this domain comprises an oligonucleotide/oligosaccharide binding (OB) fold and is involved in Cdc13 dimerization. Biochemical data show that Cdc13N weakly binds long, single-stranded, telomeric DNA in a fashion that is directly dependent on domain oligomerization. When introduced into full-length Cdc13 in vivo, point mutations that prevented Cdc13N dimerization or DNA binding caused telomere shortening or lengthening, respectively. The multiple DNA binding domains and dimeric nature of Cdc13 offer unique insights into how it coordinates the recruitment and regulation of telomerase access to the telomeres.
- Gao H, Toro TB, Paschini M, Braunstein-Ballew B, Cervantes RB, Lundblad V
- Telomerase recruitment in Saccharomyces cerevisiae is not dependent on Tel1-mediated phosphorylation of Cdc13.
- Genetics. 2010; 186: 1147-59
- Display abstract
In Saccharomyces cerevisiae, association between the Est1 telomerase subunit and the telomere-binding protein Cdc13 is essential for telomerase to be recruited to its site of action. A current model proposes that Tel1 binding to telomeres marks them for elongation, as the result of phosphorylation of a proposed S/TQ cluster in the telomerase recruitment domain of Cdc13. However, three observations presented here argue against one key aspect of this model. First, the pattern of Cdc13 phosphatase-sensitive isoforms is not altered by loss of Tel1 function or by mutations introduced into two conserved serines (S249 and S255) in the Cdc13 recruitment domain. Second, an interaction between Cdc13 and Est1, as monitored by a two-hybrid assay, is dependent on S255 but Tel1-independent. Finally, a derivative of Cdc13, cdc13-(S/TQ)11-->(S/TA)11, in which every potential consensus phosphorylation site for Tel1 has been eliminated, confers nearly wild-type telomere length. These results are inconsistent with a model in which the Cdc13-Est1 interaction is regulated by Tel1-mediated phosphorylation of the Cdc13 telomerase recruitment domain. We propose an alternative model for the role of Tel1 in telomere homeostasis, which is based on the assumption that Tel1 performs the same molecular task at double-strand breaks (DSBs) and chromosome termini.
- Kozak ML et al.
- Inactivation of the Sas2 histone acetyltransferase delays senescence driven by telomere dysfunction.
- EMBO J. 2010; 29: 158-70
- Display abstract
Changes in telomere chromatin have been linked to cellular senescence, but the underlying mechanisms and impact on lifespan are unclear. We found that inactivation of the Sas2 histone acetyltransferase delays senescence in Saccharomyces cerevisiae telomerase (tlc1) mutants through a homologous recombination-dependent mechanism. Sas2 acetylates histone H4 lysine 16 (H4K16), and telomere shortening in tlc1 mutants was accompanied by a selective and Sas2-dependent increase in subtelomeric H4K16 acetylation. Further, mutation of H4 lysine 16 to arginine, which mimics constitutively deacetylated H4K16, delayed senescence and was epistatic to sas2 deletion, indicating that deacetylated H4K16 mediates the delay caused by sas2 deletion. Sas2 normally prevents the Sir2/3/4 heterochromatin complex from leaving the telomere and spreading to internal euchromatic loci. Senescence was delayed by sir3 deletion, but not sir2 deletion, indicating that senescence delay is mediated by release of Sir3 specifically from the telomere repeats. In contrast, sir4 deletion sped senescence and blocked the delay conferred by sas2 or sir3 deletion. We thus show that manipulation of telomere chromatin modulates senescence caused by telomere shortening.
- Zhang W, Durocher D
- De novo telomere formation is suppressed by the Mec1-dependent inhibition of Cdc13 accumulation at DNA breaks.
- Genes Dev. 2010; 24: 502-15
- Display abstract
DNA double-strand breaks (DSBs) are a threat to cell survival and genome integrity. In addition to canonical DNA repair systems, DSBs can be converted to telomeres by telomerase. This process, herein termed telomere healing, endangers genome stability, since it usually results in chromosome arm loss. Therefore, cells possess mechanisms that prevent the untimely action of telomerase on DSBs. Here we report that Mec1, the ATR ortholog, couples the detection of DNA ends with the inhibition of telomerase. Mec1 inhibits telomere healing by phosphorylating Cdc13 on its S306 residue, a phosphorylation event that suppresses Cdc13 accumulation at DSBs. Conversely, telomere addition at accidental breaks is promoted by Pph3, the yeast protein phosphatase 4 (PP4). Pph3 is itself modulated by Rrd1, an activator of PP2A family phosphatases. Rrd1 and Pph3 oppose Cdc13 S306 phosphorylation and are necessary for the efficient accumulation of Cdc13 at DNA breaks. These studies therefore identify a mechanism by which the ATR family of kinases enforces genome integrity, and a process that underscores the contribution of Cdc13 to the fate of DNA ends.
- Meng FL et al.
- Sua5p a single-stranded telomeric DNA-binding protein facilitates telomere replication.
- EMBO J. 2009; 28: 1466-78
- Display abstract
In budding yeast Saccharomyces cerevisiae, telomere length maintenance involves a complicated network as more than 280 telomere maintenance genes have been identified in the nonessential gene deletion mutant set. As a supplement, we identified additional 29 telomere maintenance genes, which were previously taken as essential genes. In this study, we report a novel function of Sua5p in telomere replication. Epistasis analysis and telomere sequencing show that sua5Delta cells display progressively shortened telomeres at early passages, and Sua5 functions downstream telomerase recruitment. Further, biochemical, structural and genetic studies show that Sua5p specifically binds single-stranded telomeric (ssTG) DNA in vitro through a distinct DNA-binding region on its surface, and the DNA-binding ability is essential for its telomere function. Thus, Sua5p represents a novel ssTG DNA-binding protein and positively regulates the telomere length in vivo.
- DeZwaan DC, Toogun OA, Echtenkamp FJ, Freeman BC
- The Hsp82 molecular chaperone promotes a switch between unextendable and extendable telomere states.
- Nat Struct Mol Biol. 2009; 16: 711-6
- Display abstract
Distinct protein assemblies are nucleated at telomeric DNA to both guard the ends from damage and lengthen the DNA after replication. In yeast, Cdc13 recruits either Stn1-Ten1 to form a protective cap or the telomerase holoenzyme to extend the DNA. We have established an in vitro yeast telomere system in which Stn1-Ten1-unextendable or telomerase-extendable states can be observed. Both assemblies are Cdc13 dependent, as the Cdc13 C-terminal region supports Stn1-Ten1 interactions and the N-terminal region contains a telomerase-activation function. Notably, the yeast Hsp90 chaperone Hsp82 mediates the switch between the telomere capping and extending structures by modulating the DNA binding activity of Cdc13. Taken together, our data show that the Hsp82 chaperone facilitates telomere DNA maintenance by promoting transitions between two operative complexes and by reducing the potential for binding events that would otherwise block the assembly of downstream structures.
- Xu L, Petreaca RC, Gasparyan HJ, Vu S, Nugent CI
- TEN1 is essential for CDC13-mediated telomere capping.
- Genetics. 2009; 183: 793-810
- Display abstract
Telomere binding proteins protect chromosome ends from degradation and mask chromosome termini from checkpoint surveillance. In Saccharomyces cerevisiae, Cdc13 binds single-stranded G-rich telomere repeats, maintaining telomere integrity and length. Two additional proteins, Ten1 and Stn1, interact with Cdc13 but their contributions to telomere integrity are not well defined. Ten1 is known to prevent accumulation of aberrant single-stranded telomere DNA; whether this results from defective end protection or defective telomere replication is unclear. Here we report our analysis of a new group of ten1 temperature-sensitive (ts) mutants. At permissive temperatures, ten1-ts strains display greatly elongated telomeres. After shift to nonpermissive conditions, however, ten1-ts mutants accumulate extensive telomeric single-stranded DNA. Cdk1 activity is required to generate these single-stranded regions, and deleting the EXO1 nuclease partially suppresses ten1-ts growth defects. This is similar to cdc13-1 mutants, suggesting ten1-ts strains are defective for end protection. Moreover, like Cdc13, our analysis reveals Ten1 promotes de novo telomere addition. Interestingly, in ten1-ts strains at high temperatures, telomeric single-stranded DNA and Rad52-YFP repair foci are strongly induced despite Cdc13 remaining associated with telomeres, revealing Cdc13 telomere binding is not sufficient for end protection. Finally, unlike cdc13-1 mutants, ten1-ts strains display strong synthetic interactions with mutations in the POLalpha complex. These results emphasize that Cdc13 relies on Ten1 to execute its essential function, but leave open the possibility that Ten1 has a Cdc13-independent role in DNA replication.
- Khadaroo B et al.
- The DNA damage response at eroded telomeres and tethering to the nuclear pore complex.
- Nat Cell Biol. 2009; 11: 980-7
- Display abstract
The ends of linear eukaryotic chromosomes are protected by telomeres, which serve to ensure proper chromosome replication and to prevent spurious recombination at chromosome ends. In this study, we show by single cell analysis that in the absence of telomerase, a single short telomere is sufficient to induce the recruitment of checkpoint and recombination proteins. Notably, a DNA damage response at eroded telomeres starts many generations before senescence and is characterized by the recruitment of Cdc13 (cell division cycle 13), replication protein A, DNA damage checkpoint proteins and the DNA repair protein Rad52 into a single focus. Moreover, we show that eroded telomeres, although remaining at the nuclear periphery, move to the nuclear pore complex. Our results link the DNA damage response at eroded telomeres to changes in subnuclear localization and suggest the existence of collapsed replication forks at eroded telomeres.
- Lydall D
- Taming the tiger by the tail: modulation of DNA damage responses by telomeres.
- EMBO J. 2009; 28: 2174-87
- Display abstract
Telomeres are by definition stable and inert chromosome ends, whereas internal chromosome breaks are potent stimulators of the DNA damage response (DDR). Telomeres do not, as might be expected, exclude DDR proteins from chromosome ends but instead engage with many DDR proteins. However, the most powerful DDRs, those that might induce chromosome fusion or cell-cycle arrest, are inhibited at telomeres. In budding yeast, many DDR proteins that accumulate most rapidly at double strand breaks (DSBs), have important functions in physiological telomere maintenance, whereas DDR proteins that arrive later tend to have less important functions. Considerable diversity in telomere structure has evolved in different organisms and, perhaps reflecting this diversity, different DDR proteins seem to have distinct roles in telomere physiology in different organisms. Drawing principally on studies in simple model organisms such as budding yeast, in which many fundamental aspects of the DDR and telomere biology have been established; current views on how telomeres harness aspects of DDR pathways to maintain telomere stability and permit cell-cycle division are discussed.
- Tomar RS, Zheng S, Brunke-Reese D, Wolcott HN, Reese JC
- Yeast Rap1 contributes to genomic integrity by activating DNA damage repair genes.
- EMBO J. 2008; 27: 1575-84
- Display abstract
Rap1 (repressor-activator protein 1) is a multifunctional protein that controls telomere function, silencing and the activation of glycolytic and ribosomal protein genes. We have identified a novel function for Rap1, regulating the ribonucleotide reductase (RNR) genes that are required for DNA repair and telomere expansion. Both the C terminus and DNA-binding domain of Rap1 are required for the activation of the RNR genes, and the phenotypes of different Rap1 mutants suggest that it utilizes both regions to carry out distinct steps in the activation process. Recruitment of Rap1 to the RNR3 gene is dependent on activation of the DNA damage checkpoint and chromatin remodelling by SWI/SNF. The dependence on SWI/SNF for binding suggests that Rap1 acts after remodelling to prevent the repositioning of nucleosomes back to the repressed state. Furthermore, the recruitment of Rap1 requires TAF(II)s, suggesting a role for TFIID in stabilizing activator binding in vivo. We propose that Rap1 acts as a rheostat controlling nucleotide pools in response to shortened telomeres and DNA damage, providing a mechanism for fine-tuning the RNR genes during checkpoint activation.
- Chamilos G, Lewis RE, Lamaris GA, Albert ND, Kontoyiannis DP
- Genomewide screening for genes associated with gliotoxin resistance and sensitivity in Saccharomyces cerevisiae.
- Antimicrob Agents Chemother. 2008; 52: 1325-9
- Display abstract
Gliotoxin (GT) is a secondary fungal metabolite with pleiotropic immunosuppressive properties that have been implicated in Aspergillus virulence. However, the mechanisms of GT cytotoxicity and its molecular targets in eukaryotic cells have not been fully characterized. We screened a haploid library of Saccharomyces cerevisiae single-gene deletion mutants (4,787 strains in EUROSCARF) to identify nonessential genes associated with GT increased resistance (GT-IR) and increased sensitivity (GT-IS). The susceptibility of the wild-type parental strain BY4741 to GT was initially assessed by broth microdilution methods using different media. GT-IR and GT-IS were defined as a fourfold increase and decrease, respectively, in MIC, and this was additionally confirmed by susceptibility testing on agar yeast extract-peptone-glucose plates. The specificity of GT-IR and GT-IS mutants exhibiting normal growth compared with the wild-type strain was further tested in studies of their susceptibility to conventional antifungal agents, cycloheximide, and H2O2. GT-IR was associated with the disruption of genes acting in general metabolism (OPI1, SNF1, IFA38), mitochondrial function (RTG2), DNA damage repair (RAD18), and vesicular transport (APL2) and genes of unknown function (YGL235W, YOR345C, YLR456W, YGL072C). The disruption of three genes encoding transsulfuration (CYS3), mitochondrial function (MEF2), and an unknown function (YKL037W) led to GT-IS. Specificity for GT-IR and GT-IS was observed in all mutants. Importantly, the majority (69%) of genes implicated in GT-IR (6/10) and GT-IS (2/3) have human homologs. We identified novel Saccharomyces genes specifically implicated in GT-IR or GT-IS. Because most of these genes are evolutionarily conserved, further characterization of their function could improve our understanding of GT cytotoxicity mechanisms in humans.
- Breitkreutz BJ et al.
- The BioGRID Interaction Database: 2008 update.
- Nucleic Acids Res. 2008; 36: 63740-63740
- Display abstract
The Biological General Repository for Interaction Datasets (BioGRID) database (http://www.thebiogrid.org) was developed to house and distribute collections of protein and genetic interactions from major model organism species. BioGRID currently contains over 198 000 interactions from six different species, as derived from both high-throughput studies and conventional focused studies. Through comprehensive curation efforts, BioGRID now includes a virtually complete set of interactions reported to date in the primary literature for both the budding yeast Saccharomyces cerevisiae and the fission yeast Schizosaccharomyces pombe. A number of new features have been added to the BioGRID including an improved user interface to display interactions based on different attributes, a mirror site and a dedicated interaction management system to coordinate curation across different locations. The BioGRID provides interaction data with monthly updates to Saccharomyces Genome Database, Flybase and Entrez Gene. Source code for the BioGRID and the linked Osprey network visualization system is now freely available without restriction.
- Blasco MA
- Telomere length, stem cells and aging.
- Nat Chem Biol. 2007; 3: 640-9
- Display abstract
Telomere shortening occurs concomitant with organismal aging, and it is accelerated in the context of human diseases associated with mutations in telomerase, such as some cases of dyskeratosis congenita, idiopathic pulmonary fibrosis and aplastic anemia. People with these diseases, as well as Terc-deficient mice, show decreased lifespan coincidental with a premature loss of tissue renewal, which suggests that telomerase is rate-limiting for tissue homeostasis and organismal survival. These findings have gained special relevance as they suggest that telomerase activity and telomere length can directly affect the ability of stem cells to regenerate tissues. If this is true, stem cell dysfunction provoked by telomere shortening may be one of the mechanisms responsible for organismal aging in both humans and mice. Here, we will review the current evidence linking telomere shortening to aging and stem cell dysfunction.
- Passos JF et al.
- Mitochondrial dysfunction accounts for the stochastic heterogeneity in telomere-dependent senescence.
- PLoS Biol. 2007; 5: 110-110
- Display abstract
Aging is an inherently stochastic process, and its hallmark is heterogeneity between organisms, cell types, and clonal populations, even in identical environments. The replicative lifespan of primary human cells is telomere dependent; however, its heterogeneity is not understood. We show that mitochondrial superoxide production increases with replicative age in human fibroblasts despite an adaptive UCP-2-dependent mitochondrial uncoupling. This mitochondrial dysfunction is accompanied by compromised [Ca(2+)]i homeostasis and other indicators of a retrograde response in senescent cells. Replicative senescence of human fibroblasts is delayed by mild mitochondrial uncoupling. Uncoupling reduces mitochondrial superoxide generation, slows down telomere shortening, and delays formation of telomeric gamma-H2A.X foci. This indicates mitochondrial production of reactive oxygen species (ROS) as one of the causes of replicative senescence. By sorting early senescent (SES) cells from young proliferating fibroblast cultures, we show that SES cells have higher ROS levels, dysfunctional mitochondria, shorter telomeres, and telomeric gamma-H2A.X foci. We propose that mitochondrial ROS is a major determinant of telomere-dependent senescence at the single-cell level that is responsible for cell-to-cell variation in replicative lifespan.
- Negrini S, Ribaud V, Bianchi A, Shore D
- DNA breaks are masked by multiple Rap1 binding in yeast: implications for telomere capping and telomerase regulation.
- Genes Dev. 2007; 21: 292-302
- Display abstract
Eukaryotic cells distinguish their chromosome ends from accidental DNA double-strand breaks by packaging them in a protective structure referred to as the telomere "cap." Here we investigate the nature of the telomere cap by examining events at DNA breaks generated adjacent to either natural telomeric sequences (TG repeats) or arrays of Rap1-binding sites that vary in length. Although DNA breaks adjacent to either short or long telomeric sequences are efficiently converted into stable telomeres, they elicit very different initial responses. Short telomeric sequences (80 base pair [bp]) are avidly bound by Mre11, as well as the telomere capping protein Cdc13 and telomerase enzyme, consistent with their rapid telomerase-dependent elongation. Surprisingly, little or no Mre11 binding is detected at long telomere tracts (250 bp), and this is correlated with reduced Cdc13 and telomerase binding. Consistent with these observations, ends with long telomere tracts undergo strongly reduced exonucleolytic resection and display limited binding by both Rpa1 and Mec1, suggesting that they fail to elicit a checkpoint response. Rap1 binding is required for end concealment at long tracts, but Rif proteins, yKu, and Cdc13 are not. These results shed light on the nature of the telomere cap and mechanisms that regulate telomerase access at chromosome ends.
- Bianchi A, Shore D
- Early replication of short telomeres in budding yeast.
- Cell. 2007; 128: 1051-62
- Display abstract
The maintenance of an appropriate number of telomere repeats by telomerase is essential for proper chromosome protection. The action of telomerase at the telomere terminus is regulated by opposing activities that either recruit/activate the enzyme at shorter telomeres or inhibit it at longer ones, thus achieving a stable average telomere length. To elucidate the mechanistic details of telomerase regulation we engineered specific chromosome ends in yeast so that a single telomere could be suddenly shortened and, as a consequence of its reduced length, elongated by telomerase. We show that shortened telomeres replicate early in S phase, unlike normal-length telomeres, due to the early firing of origins of DNA replication in subtelomeric regions. Early telomere replication correlates with increased telomere length and telomerase activity. These data reveal an epigenetic effect of telomere length on the activity of nearby replication origins and an unanticipated link between telomere replication timing and telomerase action.
- Lin YC, Wu Lee YH, Lin JJ
- Genetic analysis reveals essential and non-essential amino acids within the telomeric DNA-binding interface of Cdc13p.
- Biochem J. 2007; 403: 289-95
- Display abstract
Cdc13p is a specific single-stranded telomeric DNA-binding protein of Saccharomyces cerevisiae. It is involved in protecting telomeres and regulating telomere length. The telomere-binding domain of Cdc13p is located between residues 497 and 693, and its structure has been resolved by NMR spectroscopy. A series of aromatic, hydrophobic and basic residues located at the DNA-binding surface of Cdc13p are involved in binding to telomeres. Here we applied a genetic approach to analyse the involvements of these residues in telomere binding. A series of mutants within the telomere-binding domain of Cdc13p were identified that failed to complement cdc13 mutants in vivo. Among the amino acids that were isolated, the Tyr522, Arg635, and Ile633 residues were shown to locate at the DNA-binding surface. We further demonstrated that Y522C and R635A mutants failed to bind telomeric DNA in vitro, indicating that these residues are indeed required for telomere binding. We did not, however, isolate other mutant residues located at the DNA-binding surface of Cdc13p beyond these three residues. Instead, a mutant on Lys568 was isolated that did not affect the essential function of Cdc13p. The Lys568 is also located on the DNA-binding surface of Cdc13p. Thus these results suggested that other DNA-binding residues are not essential for telomere binding. In the present study, we have established a genetic test that enabled the identification of telomere-binding residues of Cdc13p in vivo. This type of analysis provides information on those residues that indeed contribute to telomere binding in vivo.
- Zeller CE, Parnell SC, Dohlman HG
- The RACK1 ortholog Asc1 functions as a G-protein beta subunit coupled to glucose responsiveness in yeast.
- J Biol Chem. 2007; 282: 25168-76
- Display abstract
According to the prevailing paradigm, G-proteins are composed of three subunits, an alpha subunit with GTPase activity and a tightly associated betagamma subunit complex. In the yeast Saccharomyces cerevisiae there are two known Galpha proteins (Gpa1 and Gpa2) but only one Gbetagamma, which binds only to Gpa1. Here we show that the yeast ortholog of RACK1 (receptor for activated protein kinase C1) Asc1 functions as the Gbeta for Gpa2. As with other known Gbeta proteins, Asc1 has a 7-WD domain structure, interacts directly with the Galpha in a guanine nucleotide-dependent manner, and inhibits Galpha guanine nucleotide exchange activity. In addition, Asc1 binds to the effector enzyme adenylyl cyclase (Cyr1), and diminishes the production of cAMP in response to glucose stimulation. Thus, whereas Gpa2 promotes glucose signaling through elevated production of cAMP, Asc1 has opposing effects on these same processes. Our findings reveal the existence of an unusual Gbeta subunit, one having multiple functions within the cell in addition to serving as a signal transducer for cell surface receptors and intracellular effectors.
- Tsolou A, Lydall D
- Mrc1 protects uncapped budding yeast telomeres from exonuclease EXO1.
- DNA Repair (Amst). 2007; 6: 1607-17
- Display abstract
Mrc1 (Mediator of Replication Checkpoint 1) is a component of the DNA replication fork machinery and is necessary for checkpoint activation after replication stress. In this study, we addressed the role of Mrc1 at uncapped telomeres. Our experiments show that Mrc1 contributes to the vitality of both cdc13-1 and yku70Delta telomere capping mutants. Cells with telomere capping defects containing MRC1 or mrc1(AQ), a checkpoint defective allele, exhibit similar growth, suggesting growth defects of cdc13-1 mrc1Delta are not due to checkpoint defects. This is in accordance with Mrc1-independent Rad53 activation after telomere uncapping. Poor growth of cdc13-1 mutants in the absence of Mrc1 is a result of enhanced single stranded DNA accumulation at uncapped telomeres. Consistent with this, deletion of EXO1, encoding a nuclease that contributes to single stranded DNA accumulation after telomere uncapping, improves growth of cdc13-1 mrc1Delta strains and decreases ssDNA production. Our observations show that Mrc1, a core component of the replication fork, plays an important role in telomere capping, protecting from nucleases and checkpoint pathways.
- Falcon S, Gentleman R
- Using GOstats to test gene lists for GO term association.
- Bioinformatics. 2007; 23: 257-8
- Display abstract
MOTIVATION: Functional analyses based on the association of Gene Ontology (GO) terms to genes in a selected gene list are useful bioinformatic tools and the GOstats package has been widely used to perform such computations. In this paper we report significant improvements and extensions such as support for conditional testing. RESULTS: We discuss the capabilities of GOstats, a Bioconductor package written in R, that allows users to test GO terms for over or under-representation using either a classical hypergeometric test or a conditional hypergeometric that uses the relationships among GO terms to decorrelate the results. AVAILABILITY: GOstats is available as an R package from the Bioconductor project: http://bioconductor.org
- Schaetzlein S et al.
- Exonuclease-1 deletion impairs DNA damage signaling and prolongs lifespan of telomere-dysfunctional mice.
- Cell. 2007; 130: 863-77
- Display abstract
Exonuclease-1 (EXO1) mediates checkpoint induction in response to telomere dysfunction in yeast, but it is unknown whether EXO1 has similar functions in mammalian cells. Here we show that deletion of the nuclease domain of Exo1 reduces accumulation of DNA damage and DNA damage signal induction in telomere-dysfunctional mice. Exo1 deletion improved organ maintenance and lifespan of telomere-dysfunctional mice but did not increase chromosomal instability or cancer formation. Deletion of Exo1 also ameliorated the induction of DNA damage checkpoints in response to gamma-irradiation and conferred cellular resistance to 6-thioguanine-induced DNA damage. Exo1 deletion impaired upstream induction of DNA damage responses by reducing ssDNA formation and the recruitment of Replication Protein A (RPA) and ATR at DNA breaks. Together, these studies provide evidence that EXO1 contributes to DNA damage signal induction in mammalian cells, and deletion of Exo1 can prolong survival in the context of telomere dysfunction.
- Stark C, Breitkreutz BJ, Reguly T, Boucher L, Breitkreutz A, Tyers M
- BioGRID: a general repository for interaction datasets.
- Nucleic Acids Res. 2006; 34: 5359-5359
- Display abstract
Access to unified datasets of protein and genetic interactions is critical for interrogation of gene/protein function and analysis of global network properties. BioGRID is a freely accessible database of physical and genetic interactions available at http://www.thebiogrid.org. BioGRID release version 2.0 includes >116 000 interactions from Saccharomyces cerevisiae, Caenorhabditis elegans, Drosophila melanogaster and Homo sapiens. Over 30 000 interactions have recently been added from 5778 sources through exhaustive curation of the Saccharomyces cerevisiae primary literature. An internally hyper-linked web interface allows for rapid search and retrieval of interaction data. Full or user-defined datasets are freely downloadable as tab-delimited text files and PSI-MI XML. Pre-computed graphical layouts of interactions are available in a variety of file formats. User-customized graphs with embedded protein, gene and interaction attributes can be constructed with a visualization system called Osprey that is dynamically linked to the BioGRID.
- Reiner S, Micolod D, Zellnig G, Schneiter R
- A genomewide screen reveals a role of mitochondria in anaerobic uptake of sterols in yeast.
- Mol Biol Cell. 2006; 17: 90-103
- Display abstract
The mechanisms that govern intracellular transport of sterols in eukaryotic cells are not well understood. Saccharomyces cerevisiae is a facultative anaerobic organism that becomes auxotroph for sterols and unsaturated fatty acids in the absence of oxygen. To identify pathways that are required for uptake and transport of sterols, we performed a systematic screen of the yeast deletion mutant collection for genes that are required for growth under anaerobic conditions. Of the approximately 4800 nonessential genes represented in the deletion collection, 37 were essential for growth under anaerobic conditions. These affect a wide range of cellular functions, including biosynthetic pathways for certain amino acids and cofactors, reprogramming of transcription and translation, mitochondrial function and biogenesis, and membrane trafficking. Thirty-three of these mutants failed to grow on lipid-supplemented media when combined with a mutation in HEM1, which mimics anaerobic conditions in the presence of oxygen. Uptake assays with radio- and fluorescently labeled cholesterol revealed that 17 of the 33 mutants strongly affect uptake and/or esterification of exogenously supplied cholesterol. Examination of the subcellular distribution of sterols in these uptake mutants by cell fractionation and fluorescence microscopy indicates that some of the mutants block incorporation of cholesterol into the plasma membrane, a presumably early step in sterol uptake. Unexpectedly, the largest class of uptake mutants is affected in mitochondrial functions, and many of the uptake mutants show electron-dense mitochondrial inclusions. These results indicate that a hitherto uncharacterized mitochondrial function is required for sterol uptake and/or transport under anaerobic conditions and are discussed in light of the fact that mitochondrial import of cholesterol is required for steroidogenesis in vertebrate cells.
- Gatbonton T et al.
- Telomere length as a quantitative trait: genome-wide survey and genetic mapping of telomere length-control genes in yeast.
- PLoS Genet. 2006; 2: 35-35
- Display abstract
Telomere length-variation in deletion strains of Saccharomyces cerevisiae was used to identify genes and pathways that regulate telomere length. We found 72 genes that when deleted confer short telomeres, and 80 genes that confer long telomeres relative to those of wild-type yeast. Among identified genes, 88 have not been previously implicated in telomere length control. Genes that regulate telomere length span a variety of functions that can be broadly separated into telomerase-dependent and telomerase-independent pathways. We also found 39 genes that have an important role in telomere maintenance or cell proliferation in the absence of telomerase, including genes that participate in deoxyribonucleotide biosynthesis, sister chromatid cohesion, and vacuolar protein sorting. Given the large number of loci identified, we investigated telomere lengths in 13 wild yeast strains and found substantial natural variation in telomere length among the isolates. Furthermore, we crossed a wild isolate to a laboratory strain and analyzed telomere length in 122 progeny. Genome-wide linkage analysis among these segregants revealed two loci that account for 30%-35% of telomere length-variation between the strains. These findings support a general model of telomere length-variation in outbred populations that results from polymorphisms at a large number of loci. Furthermore, our results laid the foundation for studying genetic determinants of telomere length-variation and their roles in human disease.
- Tong AH, Boone C
- Synthetic genetic array analysis in Saccharomyces cerevisiae.
- Methods Mol Biol. 2006; 313: 171-92
- Display abstract
Synthetic lethality occurs when the combination of two mutations leads to an inviable organism. Screens for synthetic lethal genetic interactions have been used extensively to identify genes whose products buffer one another or impinge on the same essential pathway. For the yeast Saccharomyces cerevisiae, we developed a method termed Synthetic Genetic Array (SGA) analysis, which offers an efficient approach for the systematic construction of double mutants and enables a global analysis of synthetic lethal genetic interactions. In a typical SGA screen, a query mutation is crossed to an ordered array of approx 5000 viable gene deletion mutants (representing approximately 80% of all yeast genes) such that meiotic progeny harboring both mutations can be scored for fitness defects. This array-based approach automates yeast genetic analysis in general and can be easily adapted for a number of different screens, including genetic suppression, plasmid shuffling, dosage lethality, or suppression.
- Rog O, Smolikov S, Krauskopf A, Kupiec M
- The yeast VPS genes affect telomere length regulation.
- Curr Genet. 2005; 47: 18-28
- Display abstract
Eukaryotic cells invest a large proportion of their genome in maintaining telomere length homeostasis. Among the 173 non-essential yeast genes found to affect telomere length, a large proportion is involved in vacuolar traffic. When mutated, these vacuolar protein-sorting (VPS) genes lead to telomeres shorter than those observed in the wild type. Using genetic analysis, we characterized the pathway by which VPS15, VPS34, VPS22, VPS23 and VPS28 affect the telomeres. Our results indicate that these VPS genes affect telomere length through a single pathway and that this effect requires the activity of telomerase and the Ku heterodimer, but not the activity of Tel1p or Rif2p. We present models to explain the link between vacuolar traffic and telomere length homeostasis.
- Chakhparonian M, Faucher D, Wellinger RJ
- A mutation in yeast Tel1p that causes differential effects on the DNA damage checkpoint and telomere maintenance.
- Curr Genet. 2005; 48: 310-22
- Display abstract
ATM/ATR homologs are the central elements of genome surveillance mechanisms in many organisms, including yeasts, flies, and mammals. In Saccharomyces cerevisiae, most checkpoint responses depend on the ATR ortholog Mec1p. The yeast ATM ortholog, Tel1p, so far has been implicated in a specific DNA damage checkpoint during S-phase as well as in telomere homeostasis. In particular, yeast cells lacking only Tel1p harbor short but stable telomeres, while cells lacking both Tel1p and Mec1p are unable to maintain telomeric repeats and senesce. Here, we present the characterization of a new mutation in the TEL1-gene, called tel1-11, which was isolated by virtue of a synthetic lethal interaction at 37 degrees C with a previously described mec1-ts mutation. Interestingly, telomere and checkpoint functions are differentially affected by the mutant protein Tel1-11p. The Tel1p-dependent checkpoint response is undetectable in cells containing Tel1-11p and incubated at 37 degrees C, but basic telomere function is maintained. Further, when the same cells are incubated at 26 degrees C, Tel1-11p confers full proficiency for all telomere functions analyzed, whereas the function for DNA-damage checkpoint activation is clearly affected. The results thus strongly suggest that the different cellular pathways affected by Tel1p do not require the same level of Tel1p activity to be fully functional.
- Bianchi A, Negrini S, Shore D
- Delivery of yeast telomerase to a DNA break depends on the recruitment functions of Cdc13 and Est1.
- Mol Cell. 2004; 16: 139-46
- Display abstract
The yeast single-strand TG-repeat telomere binding protein Cdc13 and the telomerase accessory protein Est1 play essential roles in chromosome end replication. To determine whether a proposed Cdc13-Est1 interaction recruits telomerase (Est2), we used a simplified system in which telomere formation was monitored at an HO-induced DNA double-strand break (DSB). Tethering of either Cdc13 or Est1 adjacent to a DSB promoted telomere formation, and tethering of Est1, even in the absence of a DSB, resulted in the recruitment of Est2. Est1 association with a DSB containing an adjacent short TG-repeat sequence depended on the Cdc13-Est1 interaction affected by cdc13-2 and est1-60 mutations, whereas Cdc13 association did not. Similarly, Est2 binding to the DSB also required the Cdc13-Est1 interaction, but not synthesis of new TG repeats at the break site. These data demonstrate a critical role for Est1 in recruiting telomerase to its site of action, in cooperation with the telomere binding protein Cdc13.
- Mieczkowski PA, Mieczkowska JO, Dominska M, Petes TD
- Genetic regulation of telomere-telomere fusions in the yeast Saccharomyces cerevisae.
- Proc Natl Acad Sci U S A. 2003; 100: 10854-9
- Display abstract
Yeast strains with mutations in both TEL1 and MEC1 have short telomeres and elevated rates of chromosome deletions. By using a PCR assay, we demonstrate that mec1 tel1 strains also have telomere-telomere fusions (T-TFs). T-TFs require Lig4p (a ligase required for nonhomologous end-joining DNA repair). The highest rates of T-TFs are found in strains with combination of mutations that affect telomere length and DNA damage checkpoints (mec1 tel1, mec3 tel1, mre11 mec1, and ddc1 tel1 strains). Examining many mutant genotypes, we find good agreement between the level of T-TFs and the rate of chromosomal deletions. In addition, if telomeres are elongated in a mec1 tel1 strain, we eliminate T-TFs and reduce the deletion rate. The correlation between the level of T-TFs and the rate of deletions argues that many of these deletions reflect a cycle of T-TF formation (resulting in dicentric chromosomes), followed by chromosome breakage.
- Teixeira MT, Forstemann K, Gasser SM, Lingner J
- Intracellular trafficking of yeast telomerase components.
- EMBO Rep. 2002; 3: 652-9
- Display abstract
Telomerase uses an internal RNA moiety as template for the synthesis of telomere repeats. In Saccharomyces cerevisiae, the telomerase holoenzyme contains the telomerase reverse transcriptase subunit Est2p, the telomerase RNA moiety TLC1, the telomerase associated proteins Est1p and Est3p, and Sm proteins. Here we assess telomerase assembly by determining the localization of telomerase components. We found that Est1p, Est2p and TLC1 can migrate independently of each other to the nucleus. With limiting amounts of TLC1, overexpressed Est1p and Est2p accumulated in the nucleolus, whereas enzymatically active Est2p-TLC1 complexes are distributed over the entire nucleus. The distribution to the nucleoplasm depended on the specific interaction between Est2p and TLC1 but was independent of Est1p and Est3p. Altogether, our results suggest a role of the nucleolus in telomerase biogenesis. We also describe experiments that support a transient cytoplasmic localization of TLC1 RNA.
- DuBois ML, Haimberger ZW, McIntosh MW, Gottschling DE
- A quantitative assay for telomere protection in Saccharomyces cerevisiae.
- Genetics. 2002; 161: 995-1013
- Display abstract
Telomeres are the protective ends of linear chromosomes. Telomeric components have been identified and described by their abilities to bind telomeric DNA, affect telomere repeat length, participate in telomeric DNA replication, or modulate transcriptional silencing of telomere-adjacent genes; however, their roles in chromosome end protection are not as well defined. We have developed a genetic, quantitative assay in Saccharomyces cerevisiae to measure whether various telomeric components protect chromosome ends from homologous recombination. This "chromosomal cap" assay has revealed that the telomeric end-binding proteins, Cdc13p and Ku, both protect the chromosome end from homologous recombination, as does the ATM-related kinase, Tel1p. We propose that Cdc13p and Ku structurally inhibit recombination at telomeres and that Tel1p regulates the chromosomal cap, acting through Cdc13p. Analysis with recombination mutants indicated that telomeric homologous recombination events proceeded by different mechanisms, depending on which capping component was compromised. Furthermore, we found that neither telomere repeat length nor telomeric silencing correlated with chromosomal capping efficiency. This capping assay provides a sensitive in vivo approach for identifying the components of chromosome ends and the mechanisms by which they are protected.
- Enomoto S, Glowczewski L, Berman J
- MEC3, MEC1, and DDC2 are essential components of a telomere checkpoint pathway required for cell cycle arrest during senescence in Saccharomyces cerevisiae.
- Mol Biol Cell. 2002; 13: 2626-38
- Display abstract
When telomerase is absent and/or telomeres become critically short, cells undergo a progressive decline in viability termed senescence. The telomere checkpoint model predicts that cells will respond to a damaged or critically short telomere by transiently arresting and activating repair of the telomere. We examined the senescence of telomerase-deficient Saccharomyces cerevisiae at the cellular level to ask if the loss of telomerase activity triggers a checkpoint response. As telomerase-deficient mutants were serially subcultured, cells exhibited a progressive decline in average growth rate and an increase in the number of cells delayed in the G2/M stage of the cell cycle. MEC3, MEC1, and DDC2, genes important for the DNA damage checkpoint response, were required for the cell cycle delay in telomerase-deficient cells. In contrast, TEL1, RAD9, and RAD53, genes also required for the DNA damage checkpoint response, were not required for the G2/M delay in telomerase-deficient cells. We propose that the telomere checkpoint is distinct from the DNA damage checkpoint and requires a specific set of gene products to delay the cell cycle and presumably to activate telomerase and/or other telomere repair activities.
- Grandin N, Damon C, Charbonneau M
- Ten1 functions in telomere end protection and length regulation in association with Stn1 and Cdc13.
- EMBO J. 2001; 20: 1173-83
- Display abstract
In Saccharomyces cerevisiae, Cdc13 has been proposed to mediate telomerase recruitment at telomere ends. Stn1, which associates with Cdc13 by the two-hybrid interaction, has been implicated in telomere maintenance. Ten1, a previously uncharacterized protein, was found to associate physically with both Stn1 and Cdc13. A binding defect between Stn1-13 and Ten1 was responsible for the long telomere phenotype of stn1-13 mutant cells. Moreover, rescue of the cdc13-1 mutation by STN1 was much improved when TEN1 was simultaneously overexpressed. Several ten1 mutations were found to confer telomerase-dependent telomere lengthening. Other, temperature-sensitive, mutants of TEN1 arrested at G(2)/M via activation of the Rad9-dependent DNA damage checkpoint. These ten1 mutant cells were found to accumulate single-stranded DNA in telomeric regions of the chromosomes. We propose that Ten1 is required to regulate telomere length, as well as to prevent lethal damage to telomeric DNA.
- Bennett CB et al.
- Genes required for ionizing radiation resistance in yeast.
- Nat Genet. 2001; 29: 426-34
- Display abstract
The ability of Saccharomyces cerevisiae to tolerate ionizing radiation damage requires many DNA-repair and checkpoint genes, most having human orthologs. A genome-wide screen of diploid mutants homozygous with respect to deletions of 3,670 nonessential genes revealed 107 new loci that influence gamma-ray sensitivity. Many affect replication, recombination and checkpoint functions. Nearly 90% were sensitive to other agents, and most new genes could be assigned to the following functional groups: chromatin remodeling, chromosome segregation, nuclear pore formation, transcription, Golgi/vacuolar activities, ubiquitin-mediated protein degradation, cytokinesis, mitochondrial activity and cell wall maintenance. Over 50% share homology with human genes, including 17 implicated in cancer, indicating that a large set of newly identified human genes may have related roles in the toleration of radiation damage.
- Grandin N, Damon C, Charbonneau M
- Cdc13 prevents telomere uncapping and Rad50-dependent homologous recombination.
- EMBO J. 2001; 20: 6127-39
- Display abstract
Cdc13 performs an essential function in telomere end protection in budding yeast. Here, we analyze the consequences on telomere dynamics of cdc13-induced telomeric DNA damage in proliferating cells. Checkpoint-deficient cdc13-1 cells accumulated DNA damage and eventually senesced. However, these telomerase-proficient cells could survive by using homologous recombination but, contrary to telomerase-deficient cells, did so without prior telomere shortening. Strikingly, homologous recombination in cdc13-1 mec3, as well as in telomerase-deficient cdc13-1 cells, which were Rad52- and Rad50-dependent but Rad51-independent, exclusively amplified the TG(1-3) repeats. This argues that not only short telomeres are substrates for type II recombination. The Cdc13-1 mutant protein harbored a defect in its association with Stn1 and Ten1 but also an additional, unknown, defect that could not be cured by expressing a Cdc13-1- Ten1-Stn1 fusion. We propose that Cdc13 prevents telomere uncapping and inhibits recombination between telomeric sequences through a pathway distinct from and complementary to that used by telomerase.
- Grandin N, Charbonneau M
- Hsp90 levels affect telomere length in yeast.
- Mol Genet Genomics. 2001; 265: 126-34
- Display abstract
Cdc13 is a Saccharomyces cerevisiae protein that binds to telomeric single-stranded DNA and regulates telomerase activity. Stnl has been shown by two-hybrid analysis to form a physical complex with Cdc13. Temperature-sensitive mutations in CDC13 and STN1, which are both essential genes, activate a DNA damage-dependent checkpoint which is the cause of the arrest seen in the mutant strains. The stn1-13 mutation induces dramatic telomere elongation which is telomerase dependent, as shown here. Additional mutants for STN1, which show a tighter arrest phenotype than stn1-13, were generated in order to perform genetic screens aiming at uncovering new regulators of telomerase. HSC82, which encodes a conserved molecular chaperone of the Hsp90 family, was thus isolated as a high-dosage suppressor of a temperature-sensitive mutation in STN1. Overexpression of HSC82 also partially suppressed the growth defect of cdc13-1 cells. Overexpression of HSC82 was found to correct the telomeric defect associated with stn1 mutations. Shortening of telomeres was also observed in wild-type cells upon overexpression of HSC82, or of its temperature-inducible homologue, HSP82. These results identify Hsc82/Hsp82 as potential regulators of telomerase in yeast cells.
- Breton AM, Schaeffer J, Aigle M
- The yeast Rvs161 and Rvs167 proteins are involved in secretory vesicles targeting the plasma membrane and in cell integrity.
- Yeast. 2001; 18: 1053-68
- Display abstract
The Rvs161 and Rvs167 proteins are known to play a role in actin cytokeleton organization and endocytosis. Moreover, Rvs167p functionally interacts with the myosin Myo2p. Therefore, we explored the involvement of the Rvs proteins in vesicle traffic and in cell integrity. The rvs mutants accumulate late secretory vesicles at sites of membrane and cell wall construction. They are synthetic-lethal with the slt2/mpk1 mutation, which affects the MAP kinase cascade controlled by Pkc1p and is required for cell integrity. The phenotype of the double mutants is close to that described for the pkc1 mutant. Synthetic defects for growth are also observed with mutation in KRE6, a gene coding for a glucan synthase, required for cell wall construction. These data support the idea that the Rvs proteins are involved in the late targeting of vesicles whose cargoes are required for cell wall construction.
- Alic N, Higgins VJ, Dawes IW
- Identification of a Saccharomyces cerevisiae gene that is required for G1 arrest in response to the lipid oxidation product linoleic acid hydroperoxide.
- Mol Biol Cell. 2001; 12: 1801-10
- Display abstract
Reactive oxygen species cause damage to all of the major cellular constituents, including peroxidation of lipids. Previous studies have revealed that oxidative stress, including exposure to oxidation products, affects the progression of cells through the cell division cycle. This study examined the effect of linoleic acid hydroperoxide, a lipid peroxidation product, on the yeast cell cycle. Treatment with this peroxide led to accumulation of unbudded cells in asynchronous populations, together with a budding and replication delay in synchronous ones. This observed modulation of G1 progression could be distinguished from the lethal effects of the treatment and may have been due to a checkpoint mechanism, analogous to that known to be involved in effecting cell cycle arrest in response to DNA damage. By examining several mutants sensitive to linoleic acid hydroperoxide, the YNL099c open reading frame was found to be required for the arrest. This gene (designated OCA1) encodes a putative protein tyrosine phosphatase of previously unknown function. Cells lacking OCA1 did not accumulate in G1 on treatment with linoleic acid hydroperoxide, nor did they show a budding, replication, or Start delay in synchronous cultures. Although not essential for adaptation or immediate cellular survival, OCA1 was required for growth in the presence of linoleic acid hydroperoxide, thus indicating that it may function in linking growth, stress responses, and the cell cycle. Identification of OCA1 establishes cell cycle arrest as an actively regulated response to oxidative stress and will enable further elucidation of oxidative stress-responsive signaling pathways in yeast.
- Chan SW, Chang J, Prescott J, Blackburn EH
- Altering telomere structure allows telomerase to act in yeast lacking ATM kinases.
- Curr Biol. 2001; 11: 1240-50
- Display abstract
BACKGROUND: Telomerase is a ribonucleoprotein that copies a short RNA template into telomeric DNA, maintaining eukaryotic chromosome ends and preventing replicative senescence. Telomeres differentiate chromosome ends from DNA double-stranded breaks. Nevertheless, the DNA damage-responsive ATM kinases Tel1p and Mec1p are required for normal telomere maintenance in Saccharomyces cerevisiae. We tested whether the ATM kinases are required for telomerase enzyme activity or whether it is their action on the telomere that allows telomeric DNA synthesis. RESULTS: Cells lacking Tel1p and Mec1p had wild-type levels of telomerase activity in vitro. Furthermore, altering telomere structure in three different ways showed that telomerase can function in ATM kinase-deleted cells: tel1 mec1 cells senesced more slowly than tel1 mec1 cells that also lacked TLC1, which encodes telomerase RNA, suggesting that tel1 mec1 cells have residual telomerase function; deleting the telomere-associated proteins Rif1p and Rif2p in tel1 mec1 cells prevented senescence; we isolated a point mutation in the telomerase RNA template domain (tlc1-476A) that altered telomeric DNA sequences, causing uncontrolled telomeric DNA elongation and increasing single strandedness. In tel1 mec1 cells, tlc1-476A telomerase was also capable of uncontrolled synthesis, but only after telomeres had shortened for >30 generations. CONCLUSION: Our results show that, without Tel1p and Mec1p, telomerase is still active and can act in vivo when the telomere structure is disrupted by various means. Hence, a primary function of the ATM-family kinases in telomere maintenance is to act on the substrate of telomerase, the telomere, rather than to activate the enzymatic activity of telomerase.
- Nugent CI et al.
- Telomere maintenance is dependent on activities required for end repair of double-strand breaks.
- Curr Biol. 1998; 8: 657-60
- Display abstract
Telomeres are functionally distinct from ends generated by chromosome breakage, in that telomeres, unlike double-strand breaks, are insulated from recombination with other chromosomal termini [1]. We report that the Ku heterodimer and the Rad50/Mre11/Xrs2 complex, both of which are required for repair of double-strand breaks [2-5], have separate roles in normal telomere maintenance in yeast. Using epistasis analysis, we show that the Ku end-binding complex defined a third telomere-associated activity, required in parallel with telomerase [6] and Cdc13, a protein binding the single-strand portion of telomere DNA [7,8]. Furthermore, loss of Ku function altered the expression of telomere-located genes, indicative of a disruption of telomeric chromatin. These data suggest that the Ku complex and the Cdc13 protein function as terminus-binding factors, contributing distinct roles in chromosome end protection. In contrast, MRE11 and RAD50 were required for the telomerase-mediated pathway, rather than for telomeric end protection; we propose that this complex functions to prepare DNA ends for telomerase to replicate. These results suggest that as a part of normal telomere maintenance, telomeres are identified as double-strand breaks, with additional mechanisms required to prevent telomere recombination. Ku, Cdc13 and telomerase define three epistasis groups required in parallel for telomere maintenance.
- Laroche T et al.
- Mutation of yeast Ku genes disrupts the subnuclear organization of telomeres.
- Curr Biol. 1998; 8: 653-6
- Display abstract
The mammalian Ku70 and Ku86 proteins form a heterodimer that binds to the ends of double-stranded DNA in vitro and is required for repair of radiation-induced strand breaks and V(D)J recombination [1,2]. Deletion of the Saccharomyces cerevisiae genes HDF1 and HDF2--encoding yKu70p and yKu80p, respectively--enhances radiation sensitivity in a rad52 background [3,4]. In addition to repair defects, the length of the TG-rich repeat on yeast telomere ends shortens dramatically [5,6]. We have shown previously that in yeast interphase nuclei, telomeres are clustered in a limited number of foci near the nuclear periphery [7], but the elements that mediate this localization remained unknown. We report here that deletion of the genes encoding yKu70p or its partner yKu80p altered the positioning of telomeric DNA in the yeast nucleus. These are the first mutants shown to affect the subnuclear localization of telomeres. Strains deficient for either yKu70p or yKu80p lost telomeric silencing, although they maintained repression at the silent mating-type loci. In addition, the telomere-associated silencing factors Sir3p and Sir4p and the TG-repeat-binding protein Rap1p lost their punctate pattern of staining and became dispersed throughout the nucleoplasm. Our results implicate the yeast Ku proteins directly in aspects of telomere organization, which in turn affects the repression of telomere-proximal genes.
- Grandin N, Reed SI, Charbonneau M
- Stn1, a new Saccharomyces cerevisiae protein, is implicated in telomere size regulation in association with Cdc13.
- Genes Dev. 1997; 11: 512-27
- Display abstract
We have isolated STN1, an essential Saccharomyces cerevisiae gene, as a suppressor of the cdc13-1 mutation. A synthetic lethal interaction between a temperature-sensitive mutant allele of STN1, stn1-13, and cdc13-1 was observed. Stn1 and Cdc13 proteins displayed a physical interaction by two-hybrid analysis. As shown previously for cdc13-1, stn1-13 cells at the restrictive temperature accumulate single-stranded DNA in subtelomeric regions of the chromosomes, but to a lesser extent than cdc13-1 cells. In addition, both Cdc13 and Stn1 were found to be involved in the regulation of telomere length, mutations in STN1 or CDC13 conferring an increase in telomere size. Loss of Stn1 function activated the RAD9 and MEC3 G2/M checkpoints, therefore confirming that DNA damage is generated. We propose that Stn1 functions in telomere metabolism during late S phase in cooperation with Cdc13.
- Hughes TR, Morris DK, Salinger A, Walcott N, Nugent CI, Lundblad V
- The role of the EST genes in yeast telomere replication.
- Ciba Found Symp. 1997; 211: 41-7
- Display abstract
We have recently completed a large mutant screen designed to identify new mutants of Saccharomyces cerevisiae with a telomerase-like defect. From this screen; 22 mutants were identified that mapped to three genes, called EST1, EST2 and EST3, as well as a novel EST-like mutation in a fourth gene, previously identified as CDC13. Mutations in each of these genes give rise to phenotypes that are indistinguishable from those observed when TLC1, encoding the yeast telomerase RNA, is deleted. In addition, genetic analysis indicates that all four genes function in the same pathway for telomere replication as defined by TLC1, the one known component of telomerase. This indicates that these genes encode factors that are essential in vivo for telomerase function. Genetic and biochemical analyses have shown that EST1 and CDC13 encode single-stranded telomeric DNA-binding proteins, suggesting that these two proteins may function to mediate access of telomerase to the end of the telomere.
- Wotton D, Shore D
- A novel Rap1p-interacting factor, Rif2p, cooperates with Rif1p to regulate telomere length in Saccharomyces cerevisiae.
- Genes Dev. 1997; 11: 748-60
- Display abstract
The Saccharomyces cerevisiae Rap1 protein binds with high affinity to sites within the poly(C(1-3)A) tracts at telomeres, where it plays a role in both telomere length regulation and the initiation of telomeric silencing. Rap1p initiates silencing at telomeres by interacting through its carboxy-terminal domain with Sir3p and Sir4p, both of which are required for repression. This same domain of Rap1p also negatively regulates telomere elongation, through an unknown mechanism. We have identified a new Rap1-interacting factor (Rif2p) that plays a role in telomere length regulation. Rif2p has considerable functional similarities with a Rap1p-interacting factor (Rif1p) identified previously. Mutations in RIF1 or RIF2 (unlike mutations in the silencing genes SIR3 and SIR4) result in moderate telomere elongation and improved telomeric silencing. However, deletion of both RIF1 and RIF2 in the same cell results in a dramatic increase in telomere length, similar to that seen with a carboxy-terminal truncation of Rap1p. In addition, overexpression of either RIF1 or RIF2 decreases telomere length, and co-overexpression of these proteins can reverse the telomere elongation effect of overexpression of the Rap1p carboxyl terminus. Finally, we show that Rif1p and Rif2p can interact with each other in vivo. These results suggest that telomere length regulation is mediated by a protein complex consisting of Rif1p and Rif2p, each of which has distinct regulatory functions. One role of Rap1p in telomere length regulation is to recruit these proteins to the telomeres.
- Zakian VA
- Structure, function, and replication of Saccharomyces cerevisiae telomeres.
- Annu Rev Genet. 1996; 30: 141-72
- Display abstract
A combination of classical genetic, biochemical, and molecular biological approaches have generated a rather detailed understanding of the structure and function of Saccharomyces telomeres. Yeast telomeres are essential to allow the cell to distinguish intact from broken chromosomes, to protect the end of the chromosome from degradation, and to facilitate the replication of the very end of the chromosome. In addition, yeast telomeres are a specialized site for gene expression in that the transcription of genes placed near them is reversibly repressed. A surprisingly large number of genes have been identified that influence either telomere structure or telomere function (or both), although in many cases the mechanism of action of these genes is poorly understood. This article reviews the recent literature on telomere biology and highlights areas for future research.
- Weinert TA, Kiser GL, Hartwell LH
- Mitotic checkpoint genes in budding yeast and the dependence of mitosis on DNA replication and repair.
- Genes Dev. 1994; 8: 652-65
- Display abstract
In eukaryotes a cell-cycle control termed a checkpoint causes arrest in the S or G2 phases when chromosomes are incompletely replicated or damaged. Previously, we showed in budding yeast that RAD9 and RAD17 are checkpoint genes required for arrest in the G2 phase after DNA damage. Here, we describe a genetic strategy that identified four additional checkpoint genes that act in two pathways. Both classes of genes are required for arrest in the G2 phase after DNA damage, and one class of genes is also required for arrest in S phase when DNA replication is incomplete. The G2-specific genes include MEC3 (for mitosis entry checkpoint), RAD9, RAD17, and RAD24. The genes common to both S phase and G2 phase pathways are MEC1 and MEC2. The MEC2 gene proves to be identical to the RAD53 gene. Checkpoint mutants were identified by their interactions with a temperature-sensitive allele of the cell division cycle gene CDC13; cdc13 mutants arrested in G2 and survived at the restrictive temperature, whereas all cdc13 checkpoint double mutants failed to arrest in G2 and died rapidly at the restrictive temperature. The cell-cycle roles of the RAD and MEC genes were examined by combination of rad and mec mutant alleles with 10 cdc mutant alleles that arrest in different stages of the cell cycle at the restrictive temperature and by the response of rad and mec mutant alleles to DNA damaging agents and to hydroxyurea, a drug that inhibits DNA replication. We conclude that the checkpoint in budding yeast consists of overlapping S-phase and G2-phase pathways that respond to incomplete DNA replication and/or DNA damage and cause arret of cells before mitosis.
- Thorsness PE, White KH, Fox TD
- Inactivation of YME1, a member of the ftsH-SEC18-PAS1-CDC48 family of putative ATPase-encoding genes, causes increased escape of DNA from mitochondria in Saccharomyces cerevisiae.
- Mol Cell Biol. 1993; 13: 5418-26
- Display abstract
The yeast nuclear gene YME1 was one of six genes recently identified in a screen for mutations that elevate the rate at which DNA escapes from mitochondria and migrates to the nucleus. yme1 mutations, including a deletion, cause four known recessive phenotypes: an elevation in the rate at which copies of TRP1 and ARS1, integrated into the mitochondrial genome, escape to the nucleus; a heat-sensitive respiratory-growth defect; a cold-sensitive growth defect on rich glucose medium; and synthetic lethality in rho- (cytoplasmic petite) cells. The cloned YME1 gene complements all of these phenotypes. The gene product, Yme1p, is immunologically detectable as an 82-kDa protein present in mitochondria. Yme1p is a member of a family of homologous putative ATPases, including Sec18p, Pas1p, Cdc48p, TBP-1, and the FtsH protein. Yme1p is most similar to the Escherichia coli FtsH protein, an essential protein involved in septum formation during cell division. This observation suggests the hypothesis that Yme1p may play a role in mitochondrial fusion and/or division.