Secondary literature sources for UreE_N
The following references were automatically generated.
- Desguin B, Zhang T, Soumillion P, Hols P, Hu J, Hausinger RP
- METALLOPROTEINS. A tethered niacin-derived pincer complex with a nickel-carbon bond in lactate racemase.
- Science. 2015; 349: 66-9
- Display abstract
Lactic acid racemization is involved in lactate metabolism and cell wall assembly of many microorganisms. Lactate racemase (Lar) requires nickel, but the nickel-binding site and the role of three accessory proteins required for its activation remain enigmatic. We combined mass spectrometry and x-ray crystallography to show that Lar from Lactobacillus plantarum possesses an organometallic nickel-containing prosthetic group. A nicotinic acid mononucleotide derivative is tethered to Lys(184) and forms a tridentate pincer complex that coordinates nickel through one metal-carbon and two metal-sulfur bonds, with His(200) as another ligand. Although similar complexes have been previously synthesized, there was no prior evidence for the existence of pincer cofactors in enzymes. The wide distribution of the accessory proteins without Lar suggests that it may play a role in other enzymes.
- Merloni A et al.
- Molecular landscape of the interaction between the urease accessory proteins UreE and UreG.
- Biochim Biophys Acta. 2014; 1844: 1662-74
- Display abstract
Urease, the most efficient enzyme so far discovered, depends on the presence of nickel ions in the catalytic site for its activity. The transformation of inactive apo-urease into active holo-urease requires the insertion of two Ni(II) ions in the substrate binding site, a process that involves the interaction of four accessory proteins named UreD, UreF, UreG and UreE. This study, carried out using calorimetric and NMR-based structural analysis, is focused on the interaction between UreE and UreG from Sporosarcina pasteurii, a highly ureolytic bacterium. Isothermal calorimetric protein-protein titrations revealed the occurrence of a binding event between SpUreE and SpUreG, entailing two independent steps with positive cooperativity (Kd1=42+/-9muM; Kd2=1.7+/-0.3muM). This was interpreted as indicating the formation of the (UreE)2(UreG)2 hetero-oligomer upon binding of two UreG monomers onto the pre-formed UreE dimer. The molecular details of this interaction were elucidated using high-resolution NMR spectroscopy. The occurrence of SpUreE chemical shift perturbations upon addition of SpUreG was investigated and analyzed to establish the protein-protein interaction site. The latter appears to involve the Ni(II) binding site as well as mobile portions on the C-terminal and the N-terminal domains. Docking calculations based on the information obtained from NMR provided a structural basis for the protein-protein contact site. The high sequence and structural similarity within these protein classes suggests a generality of the interaction mode among homologous proteins. The implications of these results on the molecular details of the urease activation process are considered and analyzed.
- Johnson KA et al.
- CorA is a copper repressible surface-associated copper(I)-binding protein produced in Methylomicrobium album BG8.
- PLoS One. 2014; 9: 87750-87750
- Display abstract
CorA is a copper repressible protein previously identified in the methanotrophic bacterium Methylomicrobium album BG8. In this work, we demonstrate that CorA is located on the cell surface and binds one copper ion per protein molecule, which, based on X-ray Absorption Near Edge Structure analysis, is in the reduced state (Cu(I)). The structure of endogenously expressed CorA was solved using X-ray crystallography. The 1.6 A three-dimensional structure confirmed the binding of copper and revealed that the copper atom was coordinated in a mononuclear binding site defined by two histidines, one water molecule, and the tryptophan metabolite, kynurenine. This arrangement of the copper-binding site is similar to that of its homologous protein MopE* from Metylococcus capsulatus Bath, confirming the importance of kynurenine for copper binding in these proteins. Our findings show that CorA has an overall fold similar to MopE, including the unique copper(I)-binding site and most of the secondary structure elements. We suggest that CorA plays a role in the M. album BG8 copper acquisition.
- Fong YH, Wong HC, Yuen MH, Lau PH, Chen YW, Wong KB
- Structure of UreG/UreF/UreH complex reveals how urease accessory proteins facilitate maturation of Helicobacter pylori urease.
- PLoS Biol. 2013; 11: 1001678-1001678
- Display abstract
Urease is a metalloenzyme essential for the survival of Helicobacter pylori in acidic gastric environment. Maturation of urease involves carbamylation of Lys219 and insertion of two nickel ions at its active site. This process requires GTP hydrolysis and the formation of a preactivation complex consisting of apo-urease and urease accessory proteins UreF, UreH, and UreG. UreF and UreH form a complex to recruit UreG, which is a SIMIBI class GTPase, to the preactivation complex. We report here the crystal structure of the UreG/UreF/UreH complex, which illustrates how UreF and UreH facilitate dimerization of UreG, and assembles its metal binding site by juxtaposing two invariant Cys66-Pro67-His68 metal binding motif at the interface to form the (UreG/UreF/UreH)2 complex. Interaction studies revealed that addition of nickel and GTP to the UreG/UreF/UreH complex releases a UreG dimer that binds a nickel ion at the dimeric interface. Substitution of Cys66 and His68 with alanine abolishes the formation of the nickel-charged UreG dimer. This nickel-charged UreG dimer can activate urease in vitro in the presence of the UreF/UreH complex. Static light scattering and atomic absorption spectroscopy measurements demonstrated that the nickel-charged UreG dimer, upon GTP hydrolysis, reverts to its monomeric form and releases nickel to urease. Based on our results, we propose a mechanism on how urease accessory proteins facilitate maturation of urease.
- Brophy MB, Nakashige TG, Gaillard A, Nolan EM
- Contributions of the S100A9 C-terminal tail to high-affinity Mn(II) chelation by the host-defense protein human calprotectin.
- J Am Chem Soc. 2013; 135: 17804-17
- Display abstract
Human calprotectin (CP) is an antimicrobial protein that coordinates Mn(II) with high affinity in a Ca(II)-dependent manner at an unusual histidine-rich site (site 2) formed at the S100A8/S100A9 dimer interface. We present a 16-member CP mutant family where mutations in the S100A9 C-terminal tail (residues 96-114) are employed to evaluate the contributions of this region, which houses three histidines and four acidic residues, to Mn(II) coordination at site 2. The results from analytical size-exclusion chromatography, Mn(II) competition titrations, and electron paramagnetic resonance spectroscopy establish that the C-terminal tail is essential for high-affinity Mn(II) coordination by CP in solution. The studies indicate that His103 and His105 (HXH motif) of the tail complete the Mn(II) coordination sphere in solution, affording an unprecedented biological His6 site. These solution studies are in agreement with a Mn(II)-CP crystal structure reported recently (Damo, S. M.; et al. Proc. Natl. Acad. Sci. U.S.A. 2013, 110, 3841). Remarkably high-affinity Mn(II) binding is retained when either H103 or H105 are mutated to Ala, when the HXH motif is shifted from positions 103-105 to 104-106, and when the human tail is substituted by the C-terminal tail of murine S100A9. Nevertheless, antibacterial activity assays employing human CP mutants reveal that the native disposition of His residues is important for conferring growth inhibition against Escherichia coli and Staphylococcus aureus. Within the S100 family, the S100A8/S100A9 heterooligomer is essential for providing high-affinity Mn(II) binding; the S100A7, S100A9(C3S), S100A12, and S100B homodimers do not exhibit such Mn(II)-binding capacity.
- Allen S, Badarau A, Dennison C
- The influence of protein folding on the copper affinities of trafficking and target sites.
- Dalton Trans. 2013; 42: 3233-9
- Display abstract
The relative influence of protein unfolding on the Cu(I) affinity of trafficking and target sites for copper has been determined. For the copper metallochaperone Atx1 from Synechocystis PCC 6803 (a cyanobacterium), Saccharomyces cerevisiae and humans unfolding in urea results in a decrease in the Cu(I) affinity from (4-5) x 10(17) M(-1) to (1-3) x 10(16) M(-1) at pH 7. The affinities of the unfolded Atx1s are similar to those for CXXC-containing peptides. Partial unfolding, due to the loop 5 His61Lys mutation in Synechocystis Atx1, gives rise to a more limited decrease in Cu(I) affinity. For the copper target protein plastocyanin from Synechocystis, chemical unfolding results in the Cu(I) affinity decreasing by 5-orders of magnitude. This differential influence of protein unfolding on Cu(I) affinity is due to a more complex copper site structure in the target protein, including numerous interactions of non-coordinating residues with ligating amino acids. This second-coordination sphere is much simpler in the Atx1s with the main interaction provided by the loop 5 residue that tunes the Cu(I) affinity by altering the pK(a) of the C-terminal Cys ligand of the CXXC motif. This interaction and others are absent in the unfolded Atx1s and the two Cys ligands have pK(a) values reminiscent of free thiols (>8) resulting in lowered Cu(I) affinities at pH 7. Residues close to the active site of the thiol-disulfide oxidoreductase thioredoxin appear to lower the Cu(I) affinity of its CXXC motif to 3.1 x 10(15) M(-1) at pH 7, presumably to prevent copper binding in vivo. The structure of a copper site, including the number and relative position of ligands in the primary structure and the complexity of the second-coordination sphere, results in dramatically different effects of unfolding on Cu(I) affinity that has important implications for copper homeostasis.
- Tottey S et al.
- Cyanobacterial metallochaperone inhibits deleterious side reactions of copper.
- Proc Natl Acad Sci U S A. 2012; 109: 95-100
- Display abstract
Copper metallochaperones supply copper to cupro-proteins through copper-mediated protein-protein-interactions and it has been hypothesized that metallochaperones thereby inhibit copper from causing damage en route. Evidence is presented in support of this latter role for cyanobacterial metallochaperone, Atx1. In cyanobacteria Atx1 contributes towards the supply of copper to plastocyanin inside thylakoids but it is shown here that in copper-replete medium, copper can reach plastocyanin without Atx1. Unlike metallochaperone-independent copper-supply to superoxide dismutase in eukaryotes, glutathione is not essential for Atx1-independent supply to plastocyanin: Double mutants missing atx1 and gshB (encoding glutathione synthetase) accumulate the same number of atoms of copper per cell in the plastocyanin pool as wild type. Critically, Deltaatx1DeltagshB are hypersensitive to elevated copper relative to wild type cells and also relative to DeltagshB single mutants with evidence that hypersensitivity arises due to the mislocation of copper to sites for other metals including iron and zinc. The zinc site on the amino-terminal domain (ZiaA(N)) of the P(1)-type zinc-transporting ATPase is especially similar to the copper site of the Atx1 target PacS(N), and ZiaA(N) will bind Cu(I) more tightly than zinc. An NMR model of a substituted-ZiaA(N)-Cu(I)-Atx1 heterodimer has been generated making it possible to visualize a juxtaposition of residues surrounding the ZiaA(N) zinc site, including Asp(18), which normally repulse Atx1. Equivalent repulsion between bacterial copper metallochaperones and the amino-terminal regions of P(1)-type ATPases for metals other than Cu(I) is conserved, again consistent with a role for copper metallochaperones to withhold copper from binding sites for other metals.
- Higgins KA, Carr CE, Maroney MJ
- Specific metal recognition in nickel trafficking.
- Biochemistry. 2012; 51: 7816-32
- Display abstract
Nickel is an essential metal for a number of bacterial species that have developed systems for acquiring, delivering, and incorporating the metal into target enzymes and controlling the levels of nickel in cells to prevent toxic effects. As with other transition metals, these trafficking systems must be able to distinguish between the desired metal and other transition metal ions with similar physical and chemical properties. Because there are few enzymes (targets) that require nickel for activity (e.g., Escherichia coli transports nickel for hydrogenases made under anaerobic conditions, and Helicobacter pylori requires nickel for hydrogenase and urease that are essential for acid viability), the "traffic pattern" for nickel is relatively simple, and nickel trafficking therefore presents an opportunity to examine a system for the mechanisms that are used to distinguish nickel from other metals. In this review, we describe the details known for examples of uptake permeases, metallochaperones and proteins involved in metallocenter assembly, and nickel metalloregulators. We also illustrate a variety of mechanisms, including molecular recognition in the case of NikA protein and examples of allosteric regulation for HypA, NikR, and RcnR, employed to generate specific biological responses to nickel ions.
- Matoba Y et al.
- A molecular mechanism for copper transportation to tyrosinase that is assisted by a metallochaperone, caddie protein.
- J Biol Chem. 2011; 286: 30219-31
- Display abstract
The Cu(II)-soaked crystal structure of tyrosinase that is present in a complex with a protein, designated "caddie," which we previously determined, possesses two copper ions at its catalytic center. We had identified two copper-binding sites in the caddie protein and speculated that copper bound to caddie may be transported to the tyrosinase catalytic center. In our present study, at a 1.16-1.58 A resolution, we determined the crystal structures of tyrosinase complexed with caddie prepared by altering the soaking time of the copper ion and the structures of tyrosinase complexed with different caddie mutants that display little or no capacity to activate tyrosinase. Based on these structures, we propose a molecular mechanism by which two copper ions are transported to the tyrosinase catalytic center with the assistance of caddie acting as a metallochaperone.
- Lam R et al.
- Crystal structure of a truncated urease accessory protein UreF from Helicobacter pylori.
- Proteins. 2010; 78: 2839-48
- Display abstract
Urease plays a central role in the pathogenesis of Helicobacter pylori in humans. Maturation of this nickel metalloenzyme in bacteria requires the participation of the accessory proteins UreD (termed UreH in H. pylori), UreF, and UreG, which form sequential complexes with the urease apoprotein as well as UreE, a metallochaperone. Here, we describe the crystal structure of C-terminal truncated UreF from H. pylori (residues 1-233), the first UreF structure to be determined, at 1.55 A resolution using SAD methods. UreF forms a dimer in vitro and adopts an all-helical fold congruent with secondary structure prediction. On the basis of evolutionary conservation analysis, the structure reveals a probable binding surface for interaction with other urease components as well as key conserved residues of potential functional relevance.
- Ye J, Ajees AA, Yang J, Rosen BP
- The 1.4 A crystal structure of the ArsD arsenic metallochaperone provides insights into its interaction with the ArsA ATPase.
- Biochemistry. 2010; 49: 5206-12
- Display abstract
Arsenic is a carcinogen that tops the Superfund list of hazardous chemicals. Bacterial resistance to arsenic is facilitated by ArsD, which delivers As(III) to the ArsA ATPase, the catalytic subunit of the ArsAB pump. Here we report the structure of the arsenic metallochaperone ArsD at 1.4 A and a model for its binding of metalloid. There are two ArsD molecules in the asymmetric unit. The overall structure of the ArsD monomer has a thioredoxin fold, with a core of four beta-strands flanked by four alpha-helices. Based on data from structural homologues, ArsD was modeled with and without bound As(III). ArsD binds one arsenic per monomer coordinated with the three sulfur atoms of Cys12, Cys13, and Cys18. Using this structural model, an algorithm was used to dock ArsD and ArsA. The resulting docking model provides testable predictions of the contact points of the two proteins and forms the basis for future experiments.
- Hearnshaw S et al.
- A tetranuclear Cu(I) cluster in the metallochaperone protein CopZ.
- Biochemistry. 2009; 48: 9324-6
- Display abstract
Copper trafficking proteins and copper-sensitive regulators are often found to be able to bind multiple Cu(I) ions in the form of Cu(I) clusters. We have determined the high-resolution X-ray crystal structure of an Atx1-like copper chaperone protein from Bacillus subtilis containing a novel tetranuclear Cu(I) cluster. The identities and oxidation states of the cluster ions were established unambiguously by refinement of X-ray energy-dependent anomalous scattering factors. The [Cu(4)(S-Cys)(4)(N-His)(2)] cluster geometry provides new structural insights into not only the binding of multiple cuprous ions by metallochaperones but also protein-associated tetranuclear Cu(I) clusters, including those found in eukaryotic copper-responsive transcription factors.
- Quiroz-Valenzuela S, Sukuru SC, Hausinger RP, Kuhn LA, Heller WT
- The structure of urease activation complexes examined by flexibility analysis, mutagenesis, and small-angle X-ray scattering.
- Arch Biochem Biophys. 2008; 480: 51-7
- Display abstract
Conformational changes of Klebsiella aerogenes urease apoprotein (UreABC)(3) induced upon binding of the UreD and UreF accessory proteins were examined by a combination of flexibility analysis, mutagenesis, and small-angle X-ray scattering (SAXS). ProFlex analysis of urease provided evidence that the major domain of UreB can move in a hinge-like motion to account for prior chemical cross-linking results. Rigidification of the UreB hinge region, accomplished through a G11P mutation, reduced the extent of urease activation, in part by decreasing the nickel content of the mutant enzyme, and by sequestering a portion of the urease apoprotein in a novel activation complex that includes all of the accessory proteins. SAXS analyses of urease, (UreABC-UreD)(3), and (UreABC-UreDF)(3) confirm that UreD and UreF bind near UreB at the periphery of the (UreAC)(3) structure. This study supports an activation model in which a domain-shifted UreB conformation in (UreABC-UreDF)(3) allows CO(2) and nickel ions to gain access to the nascent active site.
- Singleton C, Le Brun NE
- Atx1-like chaperones and their cognate P-type ATPases: copper-binding and transfer.
- Biometals. 2007; 20: 275-89
- Display abstract
Copper is an essential yet toxic metal ion. To satisfy cellular requirements, while, at the same time, minimizing toxicity, complex systems of copper trafficking have evolved in all cell types. The best conserved and most widely distributed of these involve Atx1-like chaperones and P(1B)-type ATPase transporters. Here, we discuss current understanding of how these chaperones bind Cu(I) and transfer it to the Atx1-like N-terminal domains of their cognate transporter.
- Kim JK, Mulrooney SB, Hausinger RP
- Biosynthesis of active Bacillus subtilis urease in the absence of known urease accessory proteins.
- J Bacteriol. 2005; 187: 7150-4
- Display abstract
Bacillus subtilis contains urease structural genes but lacks the accessory genes typically required for GTP-dependent incorporation of nickel. Nevertheless, B. subtilis was shown to possess a functional urease, and the recombinant enzyme conferred low levels of nickel-dependent activity to Escherichia coli. Additional investigations of the system lead to the suggestion that B. subtilis may use unidentified accessory proteins for in vivo urease activation.
- Banci L, Bertini I, Ciofi-Baffoni S, Su XC, Borrelly GP, Robinson NJ
- Solution structures of a cyanobacterial metallochaperone: insight into an atypical copper-binding motif.
- J Biol Chem. 2004; 279: 27502-10
- Display abstract
The Atx1 copper metallochaperone from Synechocystis PCC 6803, ScAtx1, interacts with two P(1)-type copper ATPases to supply copper proteins within intracellular compartments, avoiding ATPases for other metals en route. Here we report NMR-derived solution structures for ScAtx1. The monomeric apo form has a betaalphabetabetaalpha fold with backbone motions largely restricted to loop 1 containing Cys-12 and Cys-15. The tumbling rate of Cu(I)ScAtx1 (0.1-0.8 mm) implies dimers. Experimental restraints are satisfied by symmetrical dimers with Cys-12 or His-61, but not Cys-15, invading the copper site of the opposing subunit. A full sequence of copper ligands from the cell surface to thylakoid compartments is proposed, considering in vitro homodimer liganding to mimic in vivo liganding in ScAtx1-ATPase heterodimers. A monomeric high resolution structure for Cu(I)ScAtx1, with Cys-12, Cys-15, and His-61 as ligands, is calculated without violations despite the rotational correlation time. (2)J(NH) couplings in the imidazole ring of His-61 establish coordination of N(epsilon2) to copper. His-61 is analogous to Lys-65 in eukaryotic metallochaperones, stabilizing Cu(I)S(2) complexes but by binding Cu(I) rather than compensating charge. Cys-Cys-His ligand sets are an emergent theme in some copper metallochaperones, although not in related Atx1, CopZ, or Hah1. Surface charge (Glu-13) close to the metal-binding site of ScAtx1 is likely to support interaction with complementary surfaces of copper-transporting ATPases (PacS-Arg-11 and CtaA-Lys-14) but to discourage interaction with zinc ATPase ZiaA and so inhibit aberrant formation of copper-ZiaA complexes.
- Mehta N, Olson JW, Maier RJ
- Characterization of Helicobacter pylori nickel metabolism accessory proteins needed for maturation of both urease and hydrogenase.
- J Bacteriol. 2003; 185: 726-34
- Display abstract
Previous studies demonstrated that two accessory proteins, HypA and HypB, play a role in nickel-dependent maturation of both hydrogenase and urease in Helicobacter pylori. Here, the two proteins were purified and characterized. HypA bound two Ni(2+) ions per dimer with positive cooperativity (Hill coefficient, approximately 2.0). The dissociation constants K(1) and K(2) for Ni(2+) were 58 and 1.3 microM, respectively. Studies on purified site-directed mutant proteins in each of the five histidine residues within HypA, revealed that only one histidine residue (His2) is vital for nickel binding. Nuclear magnetic resonance analysis showed that this purified mutant version (H2A) was similar in structure to that of the wild-type HypA protein. A chromosomal site-directed mutant of hypA (in the codon for His2) lacked hydrogenase activity and possessed only 2% of the wild-type urease activity. Purified HypB had a GTPase activity of 5 nmol of GTP hydrolyzed per nmol of HypB per min. Site-directed mutagenesis within the lysine residue in the conserved GTP-binding motif of HypB (Lys59) nearly abolished the GTPase activity of the mutant protein (K59A). In native solution, both HypA and HypB exist as homodimers with molecular masses of 25.8 and 52.4 kDa, respectively. However, a 1:1 molar mixture of HypA plus HypB gave rise to a 43.6-kDa species composed of both proteins. A 43-kDa heterodimeric HypA-HypB complex was also detected by cross-linking. The cross-linked adduct was still observed in the presence of 0.5 mM GTP or 1 microM nickel or when the mutant version of HypA (altered in His2) and HypB (altered in Lys59) were tested. Individually, HypA and HypB formed homodimeric cross-linked adducts. An interaction between HypA and the Hp0868 protein (encoded by the gene downstream of hypA) could not be detected via cross-linking, although such an interaction was predicted by yeast two-hybrid studies. In addition, the phenotype of an insertional mutation within the Hp0868 gene indicated that its presence is not critical for either the urease or the hydrogenase activity.
- Benoit S, Maier RJ
- Dependence of Helicobacter pylori urease activity on the nickel-sequestering ability of the UreE accessory protein.
- J Bacteriol. 2003; 185: 4787-95
- Display abstract
The Helicobacter pylori ureE gene product was previously shown to be required for urease expression, but its characteristics and role have not been determined. The UreE protein has now been overexpressed in Escherichia coli, purified, and characterized, and three altered versions were expressed to address a nickel-sequestering role of UreE. Purified UreE formed a dimer in solution and was capable of binding one nickel ion per dimer. Introduction of an extra copy of ureE into the chromosome of mutants carrying mutations in the Ni maturation proteins HypA and HypB resulted in partial restoration of urease activity (up to 24% of the wild-type levels). Fusion proteins of UreE with increased ability to bind nickel were constructed by adding histidine-rich sequences (His-6 or His-10 to the C terminus and His-10 as a sandwich fusion) to the UreE protein. Each fusion protein was overexpressed in E. coli and purified, and its nickel-binding capacity and affinity were determined. Each construct was also expressed in wild-type H. pylori and in hypA and hypB mutant strains for determining in vivo urease activities. The urease activity was increased by introduction of all the engineered versions, with the greatest Ni-sequestering version (the His-6 version) also conferring the greatest urease activity on both the hypA and hypB mutants. The differences in urease activities were not due to differences in the amounts of urease peptides. Addition of His-6 to another expressed protein (triose phosphate isomerase) did not result in stimulation of urease, so urease activation is not related to the level of nonspecific protein-bound nickel. The results indicate a correlation between H. pylori urease activity and the nickel-sequestering ability of the UreE accessory protein.
- Heimer SR, Mobley HL
- Interaction of Proteus mirabilis urease apoenzyme and accessory proteins identified with yeast two-hybrid technology.
- J Bacteriol. 2001; 183: 1423-33
- Display abstract
Proteus mirabilis, a gram-negative bacterium associated with complicated urinary tract infections, produces a metalloenzyme urease which hydrolyzes urea to ammonia and carbon dioxide. The apourease is comprised of three structural subunits, UreA, UreB, and UreC, assembled as a homotrimer of individual UreABC heterotrimers (UreABC)(3). To become catalytically active, apourease acquires divalent nickel ions through a poorly understood process involving four accessory proteins, UreD, UreE, UreF, and UreG. While homologues of UreD, UreF, and UreG have been copurified with apourease, it remains unclear specifically how these polypeptides associate with the apourease or each other. To identify interactions among P. mirabilis accessory proteins, in vitro immunoprecipitation and in vivo yeast two-hybrid assays were employed. A complex containing accessory protein UreD and structural protein UreC was isolated by immunoprecipitation and characterized with immunoblots. This association occurs independently of coaccessory proteins UreE, UreF, and UreG and structural protein UreA. In a yeast two-hybrid screen, UreD was found to directly interact in vivo with coaccessory protein UreF. Unique homomultimeric interactions of UreD and UreF were also detected in vivo. To substantiate the study of urease proteins with a yeast two-hybrid assay, previously described UreE dimers and homomultimeric UreA interactions among apourease trimers were confirmed in vivo. Similarly, a known structural interaction involving UreA and UreC was also verified. This report suggests that in vivo, P. mirabilis UreD may be important for recruitment of UreF to the apourease and that crucial homomultimeric associations occur among these accessory proteins.
- Xu Z, Knafels JD, Yoshino K
- Crystal structure of the bacterial protein export chaperone secB.
- Nat Struct Biol. 2000; 7: 1172-7
- Display abstract
SecB is a bacterial molecular chaperone involved in mediating translocation of newly synthesized polypeptides across the cytoplasmic membrane of bacteria. The crystal structure of SecB from Haemophilus influenzae shows that the molecule is a tetramer organized as a dimer of dimers. Two long channels run along the side of the molecule. These are bounded by flexible loops and lined with conserved hydrophobic amino acids, which define a suitable environment for binding non-native polypeptides. The structure also reveals an acidic region on the top surface of the molecule, several residues of which have been implicated in binding to SecA, its downstream target.
- Yamaguchi K, Hausinger RP
- Substitution of the urease active site carbamate by dithiocarbamate and vanadate.
- Biochemistry. 1997; 36: 15118-22
- Display abstract
Urease possesses a dinuclear nickel active site with the metals bridged by a carbamylated lysine residue. In vitro activation of apoprotein (Apo) is achieved by incubation with Ni(II) and bicarbonate as a source of CO2. Analogues of CO2 and bicarbonate were examined for their effects on the Apo activation process. While SO2 had little effect, CS2 was shown to inhibit Apo activation via its ability to substitute for CO2 to yield an inactive dithiocarbamate-containing protein. Sulfur-to-Ni charge-transfer transitions arising from this species yielded an electronic absorption band at 324 nm with a shoulder at 382 nm. Borate, sulfate, phosphate, and molybdate had essentially no effect on Apo activation and did not substitute for bicarbonate, while treatment of Apo with Ni(II) plus vanadate led to the production of active urease containing two Ni and one V per active site. Vanadate-dependent activation of Apo resembled the normal activation process in terms of concentration of anion required, optimal pH, and incubation time needed. Furthermore, the UV-visible spectrum, maximal specific activity [386 +/- 26 U.(mg of protein)-1], Km (1.83 +/- 0.20 mM urea), and pH dependence for the vanadate-containing urease were essentially identical to properties observed for bicarbonate-activated enzyme. Vanadate-activated Apo is proposed to possess a vanadylated lysine that bridges the two Ni ions comprising its metallocenter.
- Park IS et al.
- Characterization of the mononickel metallocenter in H134A mutant urease.
- J Biol Chem. 1996; 271: 18632-7
- Display abstract
A mutant form of Klebsiella aerogenes urease possessing Ala instead of His at position 134 (H134A) is inactive and binds approximately half the normal complement of nickel (Park, I.-S., and Hausinger, R. P.(1993) Protein Sci. 2, 1034-1041). The crystal structure of the H134A protein was obtained at 2.0-A resolution, and it confirms that only Ni-1 of the two nickel ions found in the native enzyme is present. In contrast to the pseudotetrahedral geometry observed for Ni-1 in native urease (where it is liganded by His-246, His-272, one oxygen atom of carbamylated Lys-217, and a water molecule at partial occupancy), the mononickel metallocenter in the H134A protein was found to possess octahedral geometry and was coordinated by the above protein ligands plus three water molecules. The nickel site of H134A urease was probed by UV-visible, variable temperature magnetic circular dichroism, and x-ray absorption spectroscopies. The spectroscopic data are consistent with the presence of Ni(II) in octahedral geometry coordinated by two histidylimidazoles and additional oxygen and/or nitrogen donors. These data underscore the requirement of Ni-2 for formation of active urease and demonstrate the important role of Ni-2 in establishing the proper Ni-1 coordination geometry.
- Brayman TG, Hausinger RP
- Purification, characterization, and functional analysis of a truncated Klebsiella aerogenes UreE urease accessory protein lacking the histidine-rich carboxyl terminus.
- J Bacteriol. 1996; 178: 5410-6
- Display abstract
Klebsiella aerogenes UreE, one of four accessory proteins involved in urease metallocenter assembly, contains a histidine-rich C terminus (10 of the last 15 residues) that is likely to participate in metal ion coordination by this nickel-binding protein. To study the function of the histidine-rich region in urease activation, ureE in the urease gene cluster was mutated to result in synthesis of a truncated peptide, H144* UreE, lacking the final 15 residues. Urease activity in cells containing H144* UreE approached the activities for cells possessing the wild-type protein at nickel ion concentrations ranging from 0 to 1 mM in both nutrient-rich and minimal media. In contrast, clear reductions in urease activities were observed when two ureE deletion mutant strains were examined, especially at lower nickel ion concentrations. Surprisingly, the H144* UreE, like the wild-type protein, was readily purified with a nickel-nitrilotriacetic acid resin. Denaturing polyacrylamide gel electrophoretic analysis and N-terminal sequencing confirmed that the protein was a truncated UreE. Size exclusion chromatography indicated that the H144* UreE peptide associated into a homodimer, as known for the wild-type protein. The truncated protein was shown to cooperatively bind 1.9 +/- 0.2 Ni(II) ions as assessed by equilibrium dialysis measurements, compared with the 6.05 +/- 0.25 Ni ions per dimer reported previously for the native protein. These results demonstrate that the histidine-rich motif is not essential to UreE function and is not solely responsible for UreE nickel-binding ability. Rather, we propose that internal nickel binding sites of UreE participate in urease metallocenter assembly.
- Park IS, Hausinger RP
- Metal ion interaction with urease and UreD-urease apoproteins.
- Biochemistry. 1996; 35: 5345-52
- Display abstract
Klebsiella aerogenes urease in a Ni-containing enzyme (two Ni per alpha beta gamma unit) that is purified as an apoprotein from cells grown in Ni-free medium. Partial activation of urease and UreD-urease apoproteins is achieved in vitro by incubation in the presence of Ni(II) and CO2, whereas incubation of these proteins with Ni alone leads to the formation of inactive species [Park, I.-S., & Hausinger, R. P. (1995) Science 267, 1156-1158]. Here we determined the kinetics of these inhibitory reactions and demonstrated the presence of two Ni ions per alpha beta gamma unit in the inactive proteins. Although metal-substituted urease has never been purified from Ni-deprived cell, several other metal ions were shown to bind to the urease apoproteins. Divalent Zn, C, Co, and Mn all inhibited Ni- and Co2-promoted urease activation at concentrations below that of Ni, whereas Mg and Ca ions did not inhibit this process. Ni-inhibited species recovered their ability to be partially activated after EDTA treatment. In contrast, samples that were exposed to Co or Cu ions were irreversibly inactivated, and EDTA treatment of Zn- or Mn-inhibited samples led to reduced levels of activation competence. Mn-substituted urease, generated from urease apoprotein samples in a Mn- and Co2-dependent manner, was shown to be active, whereas other metal-substituted forms if urease lacked activity. The Mn-protein possessed only 2% of the activity of Ni-activated apoprotein [ approximately 8.0 vs approximately 400 mumol min-1 (mg protein)-1], but its KM value was only moderately altered from that of the native enzyme (3.86 +/- 0.15 mM vs 0.2 mM). Unlike the Ni-containing enzyme, Mn-urease was inhibited by EDTA. Given the evidence that urease apoprotein binds numerous metal ions, we speculate on possible roles for the UreD, UreF, and UreG accessory proteins in urease activation.
- Jabri E, Karplus PA
- Structures of the Klebsiella aerogenes urease apoenzyme and two active-site mutants.
- Biochemistry. 1996; 35: 10616-26
- Display abstract
Urease from Klebsiella aerogenes [Jabri et al. (1995) Science 268, 998-1004] is an (alpha beta gamma)3 trimer with each alpha-subunit having an (alpha beta)8-barrel domain containing a binickel active center. Here we examine structure-function relations for urease in more detail through structural analysis of the urease apoenzyme at 2.3 A resolution and mutants of two key catalytic residues (H219A and H320A) at 2.5 A resolution. With the exception of the active site, in which a water molecule takes the place of the missing carbamate and nickel atoms, the structure of the apoenzyme is nearly identical to that of the holoenzyme, suggesting a high degree of preorganization which helps explain the tight binding of nickel. In the structure of H219A, the major change involves a conformational shift and ordering of the active site flap, but a small shift in the side chain of Asp alpha 221 could contribute to the lower activity of H219A. In the H320A structure, the catalytic water, primarily a Ni-2 ligand in the holoenzyme, shifts into a bridging position. This shift shows that the nickel ligation is rather sensitive to the environment and the change in ligation may contribute to the 10(5)-fold lower activity of H320A. In addition, these results show that urease is resilient to the loss of nickel ions and mutations. Analysis of the urease tertiary/quaternary structure suggests that the stability of this enzyme may be largely due to its burial of an unusually large fraction of its residues: 50% in the gamma-subunit, 30% in the beta-subunit, and 60% in the alpha-subunit.
- Park IS, Hausinger RP
- Requirement of carbon dioxide for in vitro assembly of the urease nickel metallocenter.
- Science. 1995; 267: 1156-8
- Display abstract
Assembly of protein metallocenters is not well understood. Urease offers a tractable system for examination of this process. Formation of the urease metallocenter in vivo is known to require four accessory proteins: UreD, postulated to be a urease-specific molecular chaperone; UreE, a nickel(II)-binding protein; and UreF and UreG, of unknown function. Activation of purified Klebsiella aerogenes urease apoprotein was accomplished in vitro by providing carbon dioxide (half-maximal activation at approximately 0.2 percent carbon dioxide) in addition to nickel ion. Activation coincided with carbon dioxide incorporation into urease in a pH-dependent reaction (pKa > or = 9, where Ka is the acid constant). The concentration of carbon dioxide also affected the amount of activation of UreD-urease apoprotein complexes. These results suggest that carbon dioxide binding to urease apoprotein generates a ligand that facilitates productive nickel binding.
- Mobley HL, Garner RM, Bauerfeind P
- Helicobacter pylori nickel-transport gene nixA: synthesis of catalytically active urease in Escherichia coli independent of growth conditions.
- Mol Microbiol. 1995; 16: 97-109
- Display abstract
Urease is a virulence determinant, a taxonomic and diagnostic marker, and immunogen for Helicobacter pylori, an aetiologic agent of gastritis and peptic ulceration. This enzyme requires Ni2+ ions in the active site for successful hydrolysis of urea. When expressed in Escherichia coli, recombinant urease is only weakly active unless urease structural subunits are overexpressed, exogenous NiCl2 is added, and the host strain is grown in medium that does not chelate free Ni2+. As wild-type H. pylori does not require such conditions for very high levels of urease expression, we reasoned that additional genes were required to accumulate the metal ion. To isolate such genes, E. coli SE5000 (pHP808), which carries the H. pylori urease gene cluster, was complemented with a lambda ZAP-derived plasmid library of the H. pylori chromosome. One of 1000 ampicillin-resistant clones, plated onto urea segregation agar, produced detectable urease. Urease activity of this co-transformant, grown in Luria broth containing 1 microM NiCl2, was 36 mumol NH3 min-1 mg-1 protein. Urease-enhancing activity, which is not directly linked to the urease gene cluster, was localized by subcloning and nucleotide sequencing. The largest open reading frame, designated nixA, predicted a polypeptide of 34,317 Da that displayed characteristics of an integral membrane protein. In vitro transcription-translation of nixA sequences yielded a polypeptide estimated to be 32 kDa in size. An in-frame Bal31 deletion within nixA abolished urease-enhancing activity. At 50 nM NiCl2, E. coli containing the nixA clone transported 1250 +/- 460 pmol Ni2+ min-1 10(-8) cells, whereas the vector control transported only 140 +/- 85 pmol Ni2+ min-1 10(8) cells, i.e. significantly less (P = 0.01). We conclude that NixA confers upon E. coli a high-affinity nickel-transport system (KT = 11.3 +/- 2.4 nM; Vmax = 1750 +/- 220 pmol Ni2+ min-1 10(-8) cells) and is necessary for expression of catalytically active urease, regardless of growth conditions.
- Park IS, Hausinger RP
- Evidence for the presence of urease apoprotein complexes containing UreD, UreF, and UreG in cells that are competent for in vivo enzyme activation.
- J Bacteriol. 1995; 177: 1947-51
- Display abstract
In vivo activation of Klebsiella aerogenes urease, a nickel-containing enzyme, requires the presence of functional UreD, UreF, and UreG accessory proteins and is further facilitated by UreE. These accessory proteins are proposed to be involved in metallocenter assembly (M. H. Lee, S. B. Mulrooney, M. J. Renner, Y. Markowicz, and R. P. Hausinger, J. Bacteriol. 174:4324-4330, 1992). A series of three UreD-urease apoprotein complexes are present in cells that express ureD at high levels, and these complexes are thought to be essential for in vivo activation of the enzyme (I.-S. Park, M. B. Carr, and R. P. Hausinger, Proc. Natl. Acad. Sci. USA 91:3233-3237, 1994). In this study, we describe the effect of accessory gene deletions on urease complex formation. The ureE, ureF, and ureG gene products were found not to be required for formation of the UreD-urease complexes; however, the complexes from the ureF deletion mutant exhibited delayed elution during size exclusion chromatography. Because these last complexes were of typical UreD-urease sizes according to native gel electrophoretic analysis, we propose that UreF alters the conformation of the UreD-urease complexes. The same studies revealed the presence of an additional series of urease apoprotein complexes present only in cells containing ureD, ureF, and ureG, along with the urease subunit genes. These new complexes were shown to contain urease, UreD, UreF, and UreG. We propose that the UreD-UreF-UreG-urease apoprotein complexes represent the activation-competent form of urease apoprotein in the cell.
- Hausinger RP
- Nickel enzymes in microbes.
- Sci Total Environ. 1994; 148: 157-66
- Display abstract
Four microbial enzymes are known to require nickel: hydrogenase, methyl coenzyme M reductase, carbon monoxide dehydrogenase, and urease. Recent biochemical and molecular biological experiments have provided clear evidence for the existence of multiple auxiliary genes that facilitate nickel incorporation into urease and hydrogenase. Similarly, accessory factors are also likely to be required for the other two enzymes. One of the urease-related genes (ureE) encodes a cytoplasmic protein that has been purified and shown to bind nickel reversibly. We propose that the UreE protein serves as a nickel donor to urease apoprotein. A second urease-related auxiliary gene (ureG) possesses a sequence motif that is found in ATP- and GTP-binding proteins. We have shown that nickel incorporation into urease requires energy and speculate that the UreG protein may serve as an energy transducer, coupling the energy of NTP hydrolysis to metallocenter incorporation. The UreG protein is related in sequence to HypB, a protein that has been proposed to function in nickel processing in hydrogenases. Hence, the mechanisms for metallocenter biosynthesis in these two dissimilar enzymes may have evolved from a common nickel incorporation system.
- Park IS, Hausinger RP
- Site-directed mutagenesis of Klebsiella aerogenes urease: identification of histidine residues that appear to function in nickel ligation, substrate binding, and catalysis.
- Protein Sci. 1993; 2: 1034-41
- Display abstract
Comparison of six urease sequences revealed the presence of 10 conserved histidine residues (H96 in the gamma subunit, H39 and H41 in beta, and H134, H136, H219, H246, H312, H320, and H321 in the alpha subunit of the Klebsiella aerogenes enzyme). Each of these residues in K. aerogenes urease was substituted with alanine by site-directed mutagenesis, and the mutant proteins were purified and characterized in order to identify essential histidine residues and assign their roles. The gamma H96A, beta H39A, beta H41A, alpha H312A, and alpha H321A mutant proteins possess activities and nickel contents similar to wild-type enzyme, suggesting that these residues are not essential for substrate binding, catalysis, or metal binding. In contrast, the alpha H134A, alpha H136A, and alpha H246A proteins exhibit no detectable activity and possess 53%, 6%, and 21% of the nickel content of wild-type enzyme. These results are consistent with alpha H134, alpha H136, and alpha H246 functioning as nickel ligands. The alpha H219A protein is active and has nickel (approximately 1.9% and approximately 80%, respectively, when compared to wild-type protein) but exhibits a very high Km value (1,100 +/- 40 mM compared to 2.3 +/- 0.2 mM for the wild-type enzyme). These results are compatible with alpha H219 having some role in facilitating substrate binding. Finally, the alpha H320A protein (Km = 8.3 +/- 0.2 mM) only displays approximately 0.003% of the wild-type enzyme activity, despite having a normal nickel content.(ABSTRACT TRUNCATED AT 250 WORDS)
- Lee MH, Mulrooney SB, Renner MJ, Markowicz Y, Hausinger RP
- Klebsiella aerogenes urease gene cluster: sequence of ureD and demonstration that four accessory genes (ureD, ureE, ureF, and ureG) are involved in nickel metallocenter biosynthesis.
- J Bacteriol. 1992; 174: 4324-30
- Display abstract
The region located immediately upstream from the Klebsiella aerogenes urease structural genes was sequenced and shown to possess an open reading frame capable of encoding a 29.8-kDa peptide. Deletions were generated in this gene, denoted ureD, and in each of the genes (ureE, ureF, and ureG) located immediately downstream of the three structural genes. Transformation of the mutated plasmids into Escherichia coli resulted in high levels of urease expression, but the enzyme was inactive (deletions in ureD, ureF, or ureG) or only partially active (deletions in ureE). Ureases were purified from the recombinant cells and shown to be identical to control enzyme when analyzed by gel filtration chromatography and sodium dodecyl sulfate-polyacrylamide gel electrophoresis; however, in every case the activity levels correlated to nickel contents as analyzed by atomic absorption analysis. UreD, UreE, UreF, and UreG peptides were tentatively identified by gel electrophoretic comparison of mutant and control cell extracts, by in vivo expression of separately cloned genes, or by in vitro transcription-translation analyses; the assignments were confirmed for UreE and UreG by amino-terminal sequencing. The latter peptides (apparent M(r)s, 23,900 and 28,500) were present at high levels comparable to those of the urease subunits, whereas the amounts of UreF (apparent M(r), 27,000) and UreD (apparent M(r), 29,300) were greatly reduced, perhaps because of the lack of good ribosome binding sites in the regions upstream of these open reading frames. These results demonstrate that all four accessory genes are necessary for the functional incorporation of the urease metallocenter.