Secondary literature sources for WRKY
The following references were automatically generated.
- Liang L, Flury S, Kalck V, Hohn B, Molinier J
- CENTRIN2 interacts with the Arabidopsis homolog of the human XPC protein (AtRAD4) and contributes to efficient synthesis-dependent repair of bulky DNA lesions.
- Plant Mol Biol. 2006; 61: 345-56
- Display abstract
Arabidopsis thaliana CENTRIN2 (AtCEN2) has been shown to modulate Nucleotide Excision Repair (NER) and Homologous Recombination (HR). The present study provides evidence that AtCEN2 interacts with the Arabidopsis homolog of human XPC, AtRAD4 and that the distal EF-hand Ca(2+) binding domain is essential for this interaction. In addition, the synthesis-dependent repair efficiency of bulky DNA lesions was enhanced in cell extracts prepared from Arabidopsis plants overexpressing the full length AtCEN2 but not in those overexpressing a truncated AtCEN2 form, suggesting a role for the distal EF-hand Ca(2+) binding domain in the early step of the NER process. Upon UV-C treatment the AtCEN2 protein was shown to be increased in concentration and to be localised in the nucleus rapidly. Taken together these data suggest that AtCEN2 is a part of the AtRAD4 recognition complex and that this interaction is required for efficient NER. In addition, NER and HR appear to be differentially modulated upon exposure of plants to DNA damaging agents. This suggests in plants, that processing of bulky DNA lesions highly depends on the excision repair efficiency, especially the recognition step, thus influencing the recombinational repair pathway.
- Krizek BA, Sulli C
- Mapping sequences required for nuclear localization and the transcriptional activation function of the Arabidopsis protein AINTEGUMENTA.
- Planta. 2006; 224: 612-21
- Display abstract
The Arabidopsis thaliana floral development protein AINTEGUMENTA (ANT) is a member of a large family of DNA binding proteins (AP2/ERF family) that control plant growth and development in response to developmental or environmental signals. Transcriptional activation and/or repression activities have been demonstrated for several members of this protein family. We have used fusions between ANT and the GAL4 DNA binding domain to identify an 80 amino acid sequence important for the transcriptional activation function of ANT. This region shows similarity to transcriptional activation domains in other proteins, as it is rich in Ser/Thr, Gln/Asn, and acidic amino acids. We also demonstrate that ANT can activate gene expression in Arabidopsis plants through binding to a DNA sequence corresponding to an in vitro determined ANT binding site. Finally, we show that ANT is nuclear localized and that the sequence KKKR (amino acids 252-255) is required for nuclear localization of the protein.
- Gorelik M, Lunin VV, Skarina T, Savchenko A
- Structural characterization of GntR/HutC family signaling domain.
- Protein Sci. 2006; 15: 1506-11
- Display abstract
The crystal structure of Escherichia coli PhnF C-terminal domain (C-PhnF) was solved at 1.7 A resolution by the single wavelength anomalous dispersion (SAD) method. The PhnF protein belongs to the HutC subfamily of the large GntR transcriptional regulator family. Members of this family share similar N-terminal DNA-binding domains, but are divided into four subfamilies according to their heterogenic C-terminal domains, which are involved in effector binding and oligomerization. The C-PhnF structure provides for the first time the scaffold of this domain for the HutC subfamily, which covers about 31% of GntR-like regulators. The structure represents a mixture of alpha-helices and beta-strands, with a six-stranded antiparallel beta-sheet at the core. C-PhnF monomers form a dimer by establishing interdomain eight-strand beta-sheets that include core antiparallel and N-terminal two-strand parallel beta-sheets from each monomer. C-PhnF shares strong structural similarity with the chorismate lyase fold, which features a buried active site locked behind two helix-turn-helix loops. The structural comparison of the C-PhnF and UbiC proteins allows us to propose that a similar site in the PhnF structure is adapted for effector binding.
- Wilson JJ, Kovall RA
- Crystal structure of the CSL-Notch-Mastermind ternary complex bound to DNA.
- Cell. 2006; 124: 985-96
- Display abstract
Notch signaling mediates communication between cells and is essential for proper embryonic patterning and development. CSL is a DNA binding transcription factor that regulates transcription of Notch target genes by interacting with coregulators. Transcriptional activation requires the displacement of corepressors from CSL by the intracellular portion of the receptor Notch (NotchIC) and the recruitment of the coactivator protein Mastermind to the complex. Here we report the 3.1 A structure of the ternary complex formed by CSL, NotchIC, and Mastermind bound to DNA. As expected, the RAM domain of Notch interacts with the beta trefoil domain of CSL; however, the C-terminal domain of CSL has an unanticipated central role in the interface formed with the Notch ankyrin repeats and Mastermind. Ternary complex formation induces a substantial conformational change within CSL, suggesting a molecular mechanism for the conversion of CSL from a repressor to an activator.
- Li X et al.
- Genome-wide analysis of basic/helix-loop-helix transcription factor family in rice and Arabidopsis.
- Plant Physiol. 2006; 141: 1167-84
- Display abstract
The basic/helix-loop-helix (bHLH) transcription factors and their homologs form a large family in plant and animal genomes. They are known to play important roles in the specification of tissue types in animals. On the other hand, few plant bHLH proteins have been studied functionally. Recent completion of whole genome sequences of model plants Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa) allows genome-wide analysis and comparison of the bHLH family in flowering plants. We have identified 167 bHLH genes in the rice genome, and their phylogenetic analysis indicates that they form well-supported clades, which are defined as subfamilies. In addition, sequence analysis of potential DNA-binding activity, the sequence motifs outside the bHLH domain, and the conservation of intron/exon structural patterns further support the evolutionary relationships among these proteins. The genome distribution of rice bHLH genes strongly supports the hypothesis that genome-wide and tandem duplication contributed to the expansion of the bHLH gene family, consistent with the birth-and-death theory of gene family evolution. Bioinformatics analysis suggests that rice bHLH proteins can potentially participate in a variety of combinatorial interactions, endowing them with the capacity to regulate a multitude of transcriptional programs. In addition, similar expression patterns suggest functional conservation between some rice bHLH genes and their close Arabidopsis homologs.
- AbuQamar S et al.
- Expression profiling and mutant analysis reveals complex regulatory networks involved in Arabidopsis response to Botrytis infection.
- Plant J. 2006; 48: 28-44
- Display abstract
The expression profiles of Botrytis-inoculated Arabidopsis plants were studied to determine the nature of the defense transcriptome and to identify genes involved in host responses to the pathogen. Normally resistant Arabidopsis wild-type plants were compared with coi1, ein2, and nahG plants that are defective in various defense responses and/or show increased susceptibility to Botrytis. In wild-type plants, the expression of 621 genes representing approximately 0.48% of the Arabidopsis transcriptome was induced greater than or equal to twofold after infection. Of these 621 Botrytis-induced genes (BIGs), 462 were induced at or before 36 h post-inoculation, and may be involved in resistance to the pathogen. The expression of 181 BIGs was dependent on a functional COI1 gene required for jasmonate signaling, whereas the expression of 63 and 80 BIGs were dependent on ethylene (ET) signaling or salicylic acid accumulation, respectively, based on results from ein2 and nahG plants. BIGs encode diverse regulatory and structural proteins implicated in pathogen defense and abiotic and oxidative-stress responses. Thirty BIGs encode putative DNA-binding proteins that belong to ET response, zinc-finger, MYB, WRKY, and HD-ZIP family transcription-factor proteins. Fourteen BIGs were studied in detail to determine their role in resistance to Botrytis. T-DNA insertion alleles of ZFAR1 (At2G40140), the gene encoding a putative zinc-finger protein with ankyrin-repeat domains, showed increased local susceptibility to Botrytis and sensitivity to germination in the presence of abscisic acid (ABA), supporting the role of ABA in mediating responses to Botrytis infection. In addition, two independent T-DNA insertion alleles in the WRKY70 gene showed increased susceptibility to Botrytis. The transcriptional activation of genes involved in plant hormone signaling and synthesis, removal of reactive oxygen species, and defense and abiotic-stress responses, coupled with the susceptibility of the wrky70 and zfar1 mutants, highlights the complex genetic network underlying defense responses to Botrytis in Arabidopsis.
- Fu S, Rogowsky P, Nover L, Scanlon MJ
- The maize heat shock factor-binding protein paralogs EMP2 and HSBP2 interact non-redundantly with specific heat shock factors.
- Planta. 2006; 224: 42-52
- Display abstract
The heat shock response (HSR) is a conserved mechanism by which transcripts of heat shock protein (hsp) genes accumulate following mobilization of heat shock transcription factors (HSFs) in response to thermal stress. Studies in animals identified the heat shock factor-binding protein1 (HSBP1) that interacts with heat shock transcription factor1 (HSF1) during heat shock attenuation; overexpression analyses revealed that the coiled-coil protein HSBP1 functions as a negative regulator of the HSR. Zea mays contains two HSBP paralogs, EMP2 and HSBP2, which exhibit differential accumulation during the HSR and plant development. Embryo-lethal recessive emp2 mutations revealed that EMP2 is required for the down-regulation of hsp transcription during embryogenesis, whereas accumulation of HSBP2 is induced in seedlings following heat shock. Notwithstanding, no interaction has yet been demonstrated between a plant HSBP and a plant HSF. In this report 22 maize HSF isoforms are identified comprising three structural classes: HSF-A, HSF-B and HSF-C. Phylogenetic analysis of Arabidopsis, maize and rice HSFs reveals that at least nine ancestral HSF isoforms were present prior to the separation of monocot and eudicots, followed by differential amplification of HSF members in these lineages. Yeast two-hybrid analyses show that EMP2 and HSBP2 interact non-redundantly with specific HSF-A isoforms. Site-specific mutagenesis of HSBP2 reveals that interactions between hydrophobic residues within the coiled coil are required for HSF::HSBP2 binding; domain swapping demonstrate that the isoform specificity of HSF::HSBP interaction is conferred by residues outside of the coiled coil. These data suggest that the non-redundant functions of the maize HSBPs may be explained, at least in part, by the specificity of HSBP::HSF interactions during plant development.
- Laubinger S et al.
- Arabidopsis SPA proteins regulate photoperiodic flowering and interact with the floral inducer CONSTANS to regulate its stability.
- Development. 2006; 133: 3213-22
- Display abstract
The four-member SPA protein family of Arabidopsis acts in concert with the E3 ubiquitin ligase COP1 to suppress photomorphogenesis in dark-grown seedlings. Here, we demonstrate that SPA proteins are, moreover, essential for photoperiodic flowering. Mutations in SPA1 cause phyA-independent early flowering under short day (SD) but not long day (LD) conditions, and this phenotype is enhanced by additional loss of SPA3 and SPA4 function. These spa1 spa3 spa4 triple mutants flower at the same time in LD and SD, indicating that the SPA gene family is essential for the inhibition of flowering under non-inductive SD. Among the four SPA genes, SPA1 is necessary and sufficient for normal photoperiodic flowering. Early flowering of SD-grown spa mutant correlates with strongly increased FT transcript levels, whereas CO transcript levels are not altered. Epistasis analysis demonstrates that both early flowering and FT induction in spa1 mutants is fully dependent on CO. Consistent with this finding, SPA proteins interact physically with CO in vitro and in vivo, suggesting that SPA proteins regulate CO protein function. Domain mapping shows that the SPA1-CO interaction requires the CCT-domain of CO, but is independent of the B-box type Zn fingers of CO. We further show that spa1 spa3 spa4 mutants exhibit strongly increased CO protein levels, which are not caused by a change in CO gene expression. Taken together, our results suggest, that SPA proteins regulate photoperiodic flowering by controlling the stability of the floral inducer CO.
- Ben-Naim O et al.
- The CCAAT binding factor can mediate interactions between CONSTANS-like proteins and DNA.
- Plant J. 2006; 46: 462-76
- Display abstract
CONSTANS-Like (COL) proteins are plant-specific nuclear regulators of gene expression but do not contain a known DNA-binding motif. We tested whether a common DNA-binding protein can deliver these proteins to specific cis-acting elements. We screened for proteins that interact with two members of a subgroup of COL proteins. These COL proteins were Tomato COL1 (TCOL1), which does not seem to be involved in the control of flowering time, and the Arabidopsis thaliana CONSTANS (AtCO) protein which mediates photoperiodic induction of flowering. We show that the C-terminal plant-specific CCT (CO, CO-like, TIMING OF CAB EXPRESSION 1) domain of both proteins binds the trimeric CCAAT binding factor (CBF) via its HAP5/NF-YC component. Chromatin immunoprecipitation demonstrated that TCOL is recruited to the CCAAT motifs of the yeast CYC1 and HEM1 promoters by HAP5. In Arabidopsis, each of the three CBF components is encoded by several different genes that are highly transcribed. Under warm long days, high levels of expression of a tomato HAP5 (THAP5a) gene can reduce the flowering time of Arabidopsis. A mutation in the CCT domain of TCOL1 disrupts the interaction with THAP5 and the analogous mutation in AtCO impairs its function and delays flowering. CBFs are therefore likely to recruit COL proteins to their DNA target motifs in planta.
- Tian Y, Lu XY, Peng LS, Fang J
- [The structure and function of plant WRKY transcription factors]
- Yi Chuan. 2006; 28: 1607-12
- Display abstract
WRKY transcription factors that are unique to plants are the new type transcriptional regulatory factors in which N-terminal ends contain a conserved WRKYGQR amino acids sequences. WRKY transcription factors regulate the target genes expression that contain the W-box elements in the promoter regions by specifically binding to (T)(T)TGAC(C/T) sequence. Therefore, the WRKY transcription factors participate in the plant various kinds defense responses and regulate the plant growth and development. This article reviews the progress of the basic structure and biological function of plant WRKY transcription factors.
- Anantharaman V, Aravind L
- Diversification of catalytic activities and ligand interactions in the protein fold shared by the sugar isomerases, eIF2B, DeoR transcription factors, acyl-CoA transferases and methenyltetrahydrofolate synthetase.
- J Mol Biol. 2006; 356: 823-42
- Display abstract
Evolution of diverse catalytic and ligand-binding activities in a given protein fold is a widely observed phenomenon in the protein-domain universe. However, the details of this evolutionary process, general principles, if any, and implications for origins of particular catalytic mechanisms are poorly understood in many common protein folds. Taking advantage of the wealth of currently available protein structure and sequence data, we explore these issues in the context of a large assemblage of biochemically diverse protein domains sharing a common origin, namely the sugar isomerases, translation factor eIF2B, ligand-binding domains of the DeoR-family transcription factors, acetyl-CoA transferases and methenyltetrahydrofolate synthetase. We show that in at least three independent instances, including the sugar-binding domains of the DeoR family transcription factors, this domain has been used as small molecule sensor coupled to helix-turn-helix DNA-binding domains. In at least two of these instances the domain functions as a non-catalytic sensor of ligands. We provide evidence that the ancestral version of this fold was a distinct version of the Rosmann-like folds, which probably possessed two distinct ligand-binding areas that were differentially utilized in different descendents. Analyzing the sequences and structures of proteins in this fold we show that there are two principal factors related to the origin of catalytic diversity in this fold. Firstly, specific inserts and extension added to the core domain on multiple occasions in evolution have affected the access to the active site regions, and thereby allowed for different substrates and allosteric regulators. The second major factor appears to be the emergence of considerable diversity of family-specific residues with important biochemical roles. Interestingly, proteins of this fold, which catalyze similar reactions on similar substrates, might possess very distinctive sets of active residues required for substrate binding catalysis. In particular, different sugar isomerases or acyl transferases in this fold might show distinct constellations of active site residues. These findings suggest that whereas ligand-binding, and even generic catalytic ability emerged early in the evolution of the fold, the specific catalytic mechanisms appear to have independently emerged on multiple occasions in the generic precursors of this fold.
- Xu X, Chen C, Fan B, Chen Z
- Physical and functional interactions between pathogen-induced Arabidopsis WRKY18, WRKY40, and WRKY60 transcription factors.
- Plant Cell. 2006; 18: 1310-26
- Display abstract
Limited information is available about the roles of specific WRKY transcription factors in plant defense. We report physical and functional interactions between structurally related and pathogen-induced WRKY18, WRKY40, and WRKY60 transcription factors in Arabidopsis thaliana. The three WRKY proteins formed both homocomplexes and heterocomplexes and DNA binding activities were significantly shifted depending on which WRKY proteins were present in these complexes. Single WRKY mutants exhibited no or small alterations in response to the hemibiotrophic bacterial pathogen Pseudomonas syringae and the necrotrophic fungal pathogen Botrytis cinerea. However, wrky18 wrky40 and wrky18 wrky60 double mutants and the wrky18 wrky40 wrky60 triple mutant were substantially more resistant to P. syringae but more susceptible to B. cinerea than wild-type plants. Thus, the three WRKY proteins have partially redundant roles in plant responses to the two distinct types of pathogens, with WRKY18 playing a more important role than the other two. The contrasting responses of these WRKY mutants to the two pathogens correlated with opposite effects on pathogen-induced expression of salicylic acid-regulated PATHOGENESIS-RELATED1 and jasmonic acid-regulated PDF1.2. While constitutive expression of WRKY18 enhanced resistance to P. syringae, its coexpression with WRKY40 or WRKY60 made plants more susceptible to both P. syringae and B. cinerea. These results indicate that the three WRKY proteins interact both physically and functionally in a complex pattern of overlapping, antagonistic, and distinct roles in plant responses to different types of microbial pathogens.
- Yamasaki K et al.
- An Arabidopsis SBP-domain fragment with a disrupted C-terminal zinc-binding site retains its tertiary structure.
- FEBS Lett. 2006; 580: 2109-16
- Display abstract
SQUAMOSA promoter-binding proteins (SBPs) form a major family of plant-specific transcription factors, mainly related to flower development. SBPs share a highly conserved DNA-binding domain of approximately 80 amino acids (SBP domain), which contains two non-interleaved zinc-binding sites formed by eight conserved Cys or His residues. In the present study, an Arabidopsis SPL12 SBP-domain fragment that lacks a Cys residue involved in the C-terminal zinc-binding pocket was found to retain a folded structure, even though only a single Zn2+ ion binds to the fragment. Solution structure of this fragment determined by NMR is very similar to the previously determined structures of the full SBP domains of Arabidopsis SPL4 and SPL7. Considering the previous observations that chelating all the Zn2+ ions of SBPs resulted in the complete unfolding of the structure and that a mutation of the Cys residue equivalent to that described above impaired the DNA-binding activity, we propose that the Zn2+ ion at the N-terminal site is necessary to maintain the overall tertiary structure, while the Zn2+ ion at the C-terminal site is necessary for the DNA binding, mainly by guiding the basic C-terminal loop to correctly fit into the DNA groove.
- Bowman BR et al.
- Multipurpose MRG domain involved in cell senescence and proliferation exhibits structural homology to a DNA-interacting domain.
- Structure. 2006; 14: 151-8
- Display abstract
The ubiquitous MRG/MORF family of proteins is involved in cell senescence, or the terminal loss of proliferative potential, a model for aging and tumor suppression at the cellular level. These proteins are defined by the approximately 20 kDa MRG domain that binds a plethora of transcriptional regulators and chromatin-remodeling factors, including the histone deacetylase transcriptional corepressor mSin3A and the novel nuclear protein PAM14, and they are also known components of the Tip60/NuA4 complex via interactions with the MRG binding protein (MRGBP). We present here the crystal structure of a prototypic MRG domain from human MRG15 whose core consists of two orthogonal helix hairpins. Despite the lack of sequence similarity, the core structure has surprisingly striking homology to a DNA-interacting domain of the tyrosine site-specific recombinases XerD, lambda integrase, and Cre. Site-directed mutagenesis studies based on the X-ray structure and bioinformatics identified key residues involved in the binding of PAM14 and MRGBP.
- Babu MM, Iyer LM, Balaji S, Aravind L
- The natural history of the WRKY-GCM1 zinc fingers and the relationship between transcription factors and transposons.
- Nucleic Acids Res. 2006; 34: 6505-20
- Display abstract
WRKY and GCM1 are metal chelating DNA-binding domains (DBD) which share a four stranded fold. Using sensitive sequence searches, we show that this WRKY-GCM1 fold is also shared by the FLYWCH Zn-finger domain and the DBDs of two classes of Mutator-like element (MULE) transposases. We present evidence that they share a stabilizing core, which suggests a possible origin from a BED finger-like intermediate that was in turn ultimately derived from a C2H2 Zn-finger domain. Through a systematic study of the phyletic pattern, we show that this WRKY-GCM1 superfamily is a widespread eukaryote-specific group of transcription factors (TFs). We identified several new members across diverse eukaryotic lineages, including potential TFs in animals, fungi and Entamoeba. By integrating sequence, structure, gene expression and transcriptional network data, we present evidence that at least two major global regulators belonging to this superfamily in Saccharomyces cerevisiae (Rcs1p and Aft2p) have evolved from transposons, and attained the status of transcription regulatory hubs in recent course of ascomycete yeast evolution. In plants, we show that the lineage-specific expansion of WRKY-GCM1 domain proteins acquired functional diversity mainly through expression divergence rather than by protein sequence divergence. We also use the WRKY-GCM1 superfamily as an example to illustrate the importance of transposons in the emergence of new TFs in different lineages.
- Yin G et al.
- Cloning, characterization and subcellular localization of a gene encoding a human Ubiquitin-conjugating enzyme (E2) homologous to the Arabidopsis thaliana UBC-16 gene product.
- Front Biosci. 2006; 11: 1500-7
- Display abstract
Ubiquitin charging and activation of class III E2 enzymes has been directly linked to their nuclear import. It has not been published whether other classes E2s also abide by this mechanism. During the large-scale sequencing analysis of a human fetal brain cDNA library, we isolated a cDNA clone that is 2252 base pair in length, encoding a putative 162 amino acid protein, which shares high homology to Arabidopsis thaliana ubiquitin-conjugating enzyme 16 (Accession number NP_565110, 51% identity and 71% similarity) at protein level. Bioinformatics analysis revealed that the gene is composed of 7 exons, located on human chromosome 8q13-8q21.1, and that the predicted protein of the gene is a class I E2, for only composed of a conserved approximately 150-amino acid catalytic core, ubiquitin-conjugating enzyme E2 domain (UBC domain). In the C-terminal of the UBC domain sequence, there are two nuclear localization signals (NLSs). RT-PCR showed that this gene is ubiquitously expressed in 16 kinds of normal human tissues, but expression level is very low, unless in human heart, brain, liver, and pancreas. The subcellular localizations of the new human Ubiquitin conjugating enzyme E2 and its mutation were also examined, which showed that the nuclear localization of hUBC16 depended on two conditions: It has NLS, and at the same time, has enzyme active site, too, at least in HEK293 cells.
- Bravo J, Aguilar-Henonin L, Olmedo G, Guzman P
- Four distinct classes of proteins as interaction partners of the PABC domain of Arabidopsis thaliana Poly(A)-binding proteins.
- Mol Genet Genomics. 2005; 272: 651-65
- Display abstract
Poly(A)-binding proteins (PABPs) play an important role in the regulation of translation and the control of mRNA stability in eukaryotes, and their functions are known to be essential in many organisms. PABPs contain a highly conserved C-terminal segment termed the PABC domain. The PABC domain from human PABP interacts with the proteins PAIP1, PAIP2 and RF3 via its PAM2 motifs. These interactions are important for modulating translation. Arabidopsis has eight PABPs, an unexpectedly large number in comparison to other eukaryotes whose genomes have been sequenced. Six of the Arabidopsis PABPs contain the conserved PABC domain. In this work, we have identified PABC-interacting proteins in Arabidopsis. Two proteins, which we named CID1 and CID7, were initially isolated in a two-hybrid screen, and eleven more were predicted to be present in the Arabidopsis proteome and eleven in the rice proteome. Among the 24 PAM2-containing proteins in this set, we observed a diversity of modules of intriguing function, ranging from acidic regions similar to the PAM1 motif found in human PAIP1 and PAIP2, to domains such as the small MutS-related domain, the Lsm domains of Ataxin-2, and RNA recognition motifs (RRMs). We suggest that the large number of PABPs and PAM2-containing proteins may have evolved to provide plants with greater flexibility in modulating the metabolism of specific transcripts. We also found that two PABP genes, PAB2 (ubiquitously expressed) and PAB5 (expressed in reproductive tissues), are essential for viability, suggesting that each has a vital and specific function.
- Noutoshi Y et al.
- A single amino acid insertion in the WRKY domain of the Arabidopsis TIR-NBS-LRR-WRKY-type disease resistance protein SLH1 (sensitive to low humidity 1) causes activation of defense responses and hypersensitive cell death.
- Plant J. 2005; 43: 873-88
- Display abstract
In this study we characterized the sensitive to low humidity 1 (slh1) mutant of Arabidopsis ecotype No-0 which exhibits normal growth on agar plate medium but which on transfer to soil shows growth arrest and development of necrotic lesions. cDNA microarray hybridization and RNA gel blot analysis revealed that genes associated with activation of disease resistance were upregulated in the slh1 mutants in response to conditions of low humidity. Furthermore, the slh1 mutants accumulate callose, autofluorescent compounds and salicylic acid (SA). We demonstrate that SA is required for the slh1 phenotype but not PAD4 or NPR1. SLH1 was isolated by map-based cloning and it encodes a resistance (R)-like protein consisting of a domain with Toll and interleukin-1 receptor homology (TIR), a nucleotide-binding domain (NB), leucine-rich repeats (LRR) and a carboxy-terminal WRKY domain. SLH1 is identical to the R gene RRS1-R of the Arabidopsis ecotype Nd-1, a gene which confers resistance to the bacterial pathogen Ralstonia solanacearum GMI1000 and also functions as an R gene to this pathogen in No-0. We identified a 3 bp insertion mutation in slh1 that results in the addition of a single amino acid in the WRKY domain; thereby impairing its DNA-binding activity. Our data suggest that SLH1 disease resistance signaling may be negatively regulated by its WRKY domain in the R protein and that the constitutive defense activation conferred by the slh1 mutation is inhibited by conditions of high humidity.
- Wu KL, Guo ZJ, Wang HH, Li J
- The WRKY family of transcription factors in rice and Arabidopsis and their origins.
- DNA Res. 2005; 12: 9-26
- Display abstract
WRKY transcription factors, originally isolated from plants contain one or two conserved WRKY domains, about 60 amino acid residues with the WRKYGQK sequence followed by a C2H2 or C2HC zinc finger motif. Evidence is accumulating to suggest that the WRKY proteins play significant roles in responses to biotic and abiotic stresses, and in development. In this research, we identified 102 putative WRKY genes from the rice genome and compared them with those from Arabidopsis. The WRKY genes from rice and Arabidopsis were divided into three groups with several subgroups on the basis of phylogenies and the basic structure of the WRKY domains (WDs). The phylogenetic trees generated from the WDs and the genes indicate that the WRKY gene family arose during evolution through duplication and that the dramatic amplification of rice WRKY genes in group III is due to tandem and segmental gene duplication compared with those of Arabidopsis. The result suggests that some of the rice WRKY genes in group III are evolutionarily more active than those in Arabidopsis, and may have specific roles in monocotyledonous plants. Further, it was possible to identify the presence of WRKY-like genes in protists (Giardia lamblia and Dictyostelium discoideum) and green algae Chlamydomonas reinhardtii through database research, demonstrating the ancient origin of the gene family. The results obtained by alignments of the WDs from different species and other analysis imply that domain gain and loss is a divergent force for expansion of the WRKY gene family, and that a rapid amplification of the WRKY genes predate the divergence of monocots and dicots. On the basis of these results, we believe that genes encoding a single WD may have been derived from the C-terminal WD of the genes harboring two WDs. The conserved intron splicing positions in the WDs of higher plants offer clues about WRKY gene evolution, annotation, and classification.
- Yamasaki K et al.
- Solution structure of the major DNA-binding domain of Arabidopsis thaliana ethylene-insensitive3-like3.
- J Mol Biol. 2005; 348: 253-64
- Display abstract
Ethylene-insensitive3 (EIN3) and EIN3-like (EIL) proteins are essential transcription factors in the ethylene signaling of higher plants. The EIN3/EIL proteins bind to the promoter regions of the downstream genes and regulate their expression. The location of the DNA-binding domain (DBD) in the primary structure was unclear, since the proteins show no sequence similarity to other known DBDs. Here, we identify the major DBD of an EIN3/EIL protein, Arabidopsis thaliana EIL3, containing a key mutational site for DNA binding and signaling (ein3-3 site), and determine its solution structure by NMR spectroscopy. The structure consists of five alpha-helices, possessing a novel fold dissimilar to known DBD structures. By a chemical-shift perturbation analysis, a region including the ein3-3 site is suggested to be involved in DNA binding.
- Park CY et al.
- WRKY group IId transcription factors interact with calmodulin.
- FEBS Lett. 2005; 579: 1545-50
- Display abstract
Calmodulin (CaM) is a ubiquitous Ca(2+)-binding protein known to regulate diverse cellular functions by modulating the activity of various target proteins. We isolated a cDNA encoding AtWRKY7, a novel CaM-binding transcription factor, from an Arabidopsis expression library with horseradish peroxidase-conjugated CaM. CaM binds specifically to the Ca(2+)-dependent CaM-binding domain (CaMBD) of AtWRKY7, as shown by site-directed mutagenesis, a gel mobility shift assay, a split-ubiquitin assay, and a competition assay using a Ca2+/CaM-dependent enzyme. Furthermore, we show that the CaMBD of AtWRKY7 is a conserved structural motif (C-motif) found in group IId of the WRKY protein family.
- Wei G, Pan Y, Lei J, Zhu YX
- Molecular cloning, phylogenetic analysis, expressional profiling and in vitro studies of TINY2 from Arabidopsis thaliana.
- J Biochem Mol Biol. 2005; 38: 440-6
- Display abstract
A cDNA that was rapidly induced upon abscisic acid, cold, drought, mechanical wounding and to a lesser extent, by high salinity treatment, was isolated from Arabidopsis seedlings. It was classified as DREB subfamily member based on multiple sequence alignment and phylogenetic characterization. Since it encoded a protein with a typical ERF/AP2 DNA-binding domain and was closely related to the TINY gene, we named it TINY2. Gel retardation assay revealed that TINY2 was able to form a specific complex with the previously characterized DRE element while showed only residual affinity to the GCC box. When fused to the GAL4 DNA-binding domain, either full-length or its C-terminus functioned effectively as a trans-activator in the yeast one-hybrid assay while its N-terminus was completely inactive. Our data indicate that TINY2 could be a new member of the AP2/EREBP transcription factor family involved in activation of down-stream genes in response to environmental stress.
- Schauser L, Wieloch W, Stougaard J
- Evolution of NIN-like proteins in Arabidopsis, rice, and Lotus japonicus.
- J Mol Evol. 2005; 60: 229-37
- Display abstract
Genetic studies in Lotus japonicus and pea have identified Nin as a core symbiotic gene required for establishing symbiosis between legumes and nitrogen fixing bacteria collectively called Rhizobium. Sequencing of additional Lotus cDNAs combined with analysis of genome sequences from Arabidopsis and rice reveals that Nin homologues in all three species constitute small gene families. In total, the Arabidopsis and rice genomes encode nine and three NIN-like proteins (NLPs), respectively. We present here a bioinformatics analysis and prediction of NLP evolution. On a genome scale we show that in Arabidopsis, this family has evolved through segmental duplication rather than through tandem amplification. Alignment of all predicted NLP protein sequences shows a composition with six conserved modules. In addition, Lotus and pea NLPs contain segments that might characterize NIN proteins of legumes and be of importance for their function in symbiosis. The most conserved region in NLPs, the RWP-RK domain, has secondary structure predictions consistent with DNA binding properties. This motif is shared by several other small proteins in both Arabidopsis and rice. In rice, the RWP-RK domain sequences have diversified significantly more than in Arabidopsis. Database searches reveal that, apart from its presence in Arabidopsis and rice, the motif is also found in the algae Chlamydomonas and in the slime mold Dictyostelium discoideum. Thus, the origin of this putative DNA binding region seems to predate the fungus-plant divide.
- Waltner JK, Peterson FC, Lytle BL, Volkman BF
- Structure of the B3 domain from Arabidopsis thaliana protein At1g16640.
- Protein Sci. 2005; 14: 2478-83
- Display abstract
A novel DNA binding motif, the B3 domain, has been identified in a number of transcription factors specific to higher plant species, and was recently found to define a new protein fold. Here we report the second structure of a B3 domain, that of the Arabidopsis thaliana protein, At1g16640. As part of an effort to 'rescue' structural genomics targets deemed unsuitable for structure determination as full-length proteins, we applied a combined bioinformatic and experimental strategy to identify an optimal construct containing a predicted conserved domain. By screening a series of N- and C-terminally truncated At1g16640 fragments, we isolated a stable folded domain that met our criteria for structural analysis by NMR spectroscopy. The structure of the B3 domain of At1g16640 consists of a seven-stranded beta-sheet arranged in an open barrel and two short alpha-helices, one at each end of the barrel. While At1g16640 is quite distinct from previously characterized B3 domain proteins in terms of amino acid sequence similarity, it adopts the same novel fold that was recently revealed by the RAV1 B3 domain structure. However, putative DNA-binding elements conserved in B3 domains from the RAV, ARF, and ABI3/VP1 subfamilies are largely absent in At1g16640, perhaps suggesting that B3 domains could function in contexts other than transcriptional regulation.
- Balaji S, Babu MM, Iyer LM, Aravind L
- Discovery of the principal specific transcription factors of Apicomplexa and their implication for the evolution of the AP2-integrase DNA binding domains.
- Nucleic Acids Res. 2005; 33: 3994-4006
- Display abstract
The comparative genomics of apicomplexans, such as the malarial parasite Plasmodium, the cattle parasite Theileria and the emerging human parasite Cryptosporidium, have suggested an unexpected paucity of specific transcription factors (TFs) with DNA binding domains that are closely related to those found in the major families of TFs from other eukaryotes. This apparent lack of specific TFs is paradoxical, given that the apicomplexans show a complex developmental cycle in one or more hosts and a reproducible pattern of differential gene expression in course of this cycle. Using sensitive sequence profile searches, we show that the apicomplexans possess a lineage-specific expansion of a novel family of proteins with a version of the AP2 (Apetala2)-integrase DNA binding domain, which is present in numerous plant TFs. About 20-27 members of this apicomplexan AP2 (ApiAP2) family are encoded in different apicomplexan genomes, with each protein containing one to four copies of the AP2 DNA binding domain. Using gene expression data from Plasmodium falciparum, we show that guilds of ApiAP2 genes are expressed in different stages of intraerythrocytic development. By analogy to the plant AP2 proteins and based on the expression patterns, we predict that the ApiAP2 proteins are likely to function as previously unknown specific TFs in the apicomplexans and regulate the progression of their developmental cycle. In addition to the ApiAP2 family, we also identified two other novel families of AP2 DNA binding domains in bacteria and transposons. Using structure similarity searches, we also identified divergent versions of the AP2-integrase DNA binding domain fold in the DNA binding region of the PI-SceI homing endonuclease and the C-terminal domain of the pleckstrin homology (PH) domain-like modules of eukaryotes. Integrating these findings, we present a reconstruction of the evolutionary scenario of the AP2-integrase DNA binding domain fold, which suggests that it underwent multiple independent combinations with different types of mobile endonucleases or recombinases. It appears that the eukaryotic versions have emerged from versions of the domain associated with mobile elements, followed by independent lineage-specific expansions, which accompanied their recruitment to transcription regulation functions.
- Olsen AN, Ernst HA, Leggio LL, Skriver K
- NAC transcription factors: structurally distinct, functionally diverse.
- Trends Plant Sci. 2005; 10: 79-87
- Display abstract
NAC proteins constitute one of the largest families of plant-specific transcription factors, and the family is present in a wide range of land plants. Here, we summarize the biological and molecular functions of the NAC family, paying particular attention to the intricate regulation of NAC protein level and localization, and to the first indications of NAC participation in transcription factor networks. The recent determination of the DNA and protein binding NAC domain structure offers insight into the molecular functions of the protein family. Research into NAC transcription factors has demonstrated the importance of this protein family in the biology of plants and the need for further studies.
- Birkenbihl RP, Jach G, Saedler H, Huijser P
- Functional dissection of the plant-specific SBP-domain: overlap of the DNA-binding and nuclear localization domains.
- J Mol Biol. 2005; 352: 585-96
- Display abstract
SBP-domain proteins are plant-specific putative transcription factors. They all contain the highly conserved 76 amino acid residue SBP-domain, shown to bind specifically to related motifs in the Antirrhinum majus SQUA promoter and the orthologous Arabidopsis thaliana AP1 promoter. The structural basis for this sequence-specific binding of DNA are two Zn-finger like structures formed by the coordination of two zinc ions by conserved cysteine and histidine residues. Amino acid exchanges of the cysteine residues involved revealed that each of the Zn(2+)-coordinating structures is essential for DNA binding. By random target-site selection studies, it is shown that the palindromic GTAC core motif is essential for efficient DNA binding with additional nucleotides preferred by different SBP-domain proteins. Despite their different functions and origin from plants at different evolutionary distances, the mode of DNA binding is conserved from the single-cell algae Chlamydomonas reinhardtii to the moss Physcomitrella patens and higher plants. At the C-terminal end of the SBP-domain, a putative bipartite nuclear localization signal is located, which overlaps with the DNA-binding domain, in particular with the second Zn(2+)-binding structure. By immunolocalization of SPL3 and transient expression of SBP-green fluorescent protein fusion proteins in plant cells, it is shown that this nuclear localization signal is functional. Exchange of a highly conserved serine next to the nuclear localization signal by aspartate, which may mimic phosphorylation, resulted in a decreased nuclear import (SPL8), while DNA binding in vitro was abolished completely. In contrast, exchange by alanine increased nuclear import and left DNA binding intact. This suggests that the function of SBP-domain proteins is also regulated by post-translational modification on the levels of nuclear import and DNA binding.
- Lai LB et al.
- The Arabidopsis R2R3 MYB proteins FOUR LIPS and MYB88 restrict divisions late in the stomatal cell lineage.
- Plant Cell. 2005; 17: 2754-67
- Display abstract
The two guard cells of a stoma are produced by a single symmetric division just before terminal differentiation. Recessive mutations in the FOUR LIPS (FLP) gene abnormally induce at least four guard cells in contact with one another. These pattern defects result from a persistence of precursor cell identity that leads to extra symmetric divisions at the end of the cell lineage. FLP is likely to be required for the correct timing of the transition from cell cycling to terminal differentiation. FLP encodes a two-repeat (R2R3) MYB protein whose expression accumulates just before the symmetric division. A paralogous gene, MYB88, overlaps with FLP function in generating normal stomatal patterning. Plants homozygous for mutations in both genes exhibit more severe defects than flp alone, and transformation of flp plants with a genomic MYB88 construct restores a wild-type phenotype. Both genes compose a distinct and relatively basal clade of atypical R2R3 MYB proteins that possess an unusual pattern of amino acid substitutions in their putative DNA binding domains. Our results suggest that two related transcription factors jointly restrict divisions late in the Arabidopsis thaliana stomatal cell lineage.
- Song J et al.
- Solution structure of At3g04780.1-des15, an Arabidopsis thaliana ortholog of the C-terminal domain of human thioredoxin-like protein.
- Protein Sci. 2005; 14: 1059-63
- Display abstract
The structure of At3g04780.1-des15, an Arabidopsis thaliana ortholog of the C-terminal domain of human thioredoxin-like protein, was determined by NMR spectroscopy. The structure is dominated by a beta-barrel sandwich. A two-stranded anti-parallel beta-sheet, which seals off one end of the beta-barrel, is flanked by two flexible loops rich in acidic amino acids. Although this fold often provides a ligand binding site, the structure did not reveal an appreciable cavity inside the beta-barrel. The three-dimensional structure of At3g04780.1-des15 provides an entry point for understanding its functional role and those of its mammalian homologs.
- Lee HS, Gruschus JM, Zhang T, Ferretti JA
- NMR assignments of the DNA-bound human Csx/Nkx2.5 homeodomain and NK2-specific domain.
- J Biomol NMR. 2005; 31: 75-6
- Solomon IH, Hager JM, Safi R, McDonnell DP, Redinbo MR, Ortlund EA
- Crystal structure of the human LRH-1 DBD-DNA complex reveals Ftz-F1 domain positioning is required for receptor activity.
- J Mol Biol. 2005; 354: 1091-102
- Display abstract
The DNA-binding and ligand-binding functions of nuclear receptors are localized to independent domains separated by a flexible hinge. The DNA-binding domain (DBD) of the human liver receptor homologue-1 (hLRH-1), which controls genes central to development and metabolic homeostasis, interacts with monomeric DNA response elements and contains an Ftz-F1 motif that is unique to the NR5A nuclear receptor subfamily. Here, we present the 2.2A resolution crystal structure of the hLRH-1 DBD in complex with duplex DNA, and elucidate the sequence-specific DNA contacts essential for the ability of LRH-1 to bind to DNA as a monomer. We show that the unique Ftz-F1 domain folds into a novel helix that packs against the DBD but does not contact DNA. Mutations expected to disrupt the positioning of the Ftz-F1 helix do not eliminate DNA binding but reduce the transcriptional activity of full-length LRH-1 significantly. Moreover, we find that altering the Ftz-F1 helix positioning eliminates the enhancement of LRH-1-mediated transcription by the coactivator GRIP1, an action that is associated primarily with the distantly located ligand-binding domain (LBD). Taken together, these results indicate that subtle structural changes in a nuclear receptor DBD can exert long-range functional effects on the LBD of a receptor, and significantly impact transcriptional regulation.
- Abel S, Savchenko T, Levy M
- Genome-wide comparative analysis of the IQD gene families in Arabidopsis thaliana and Oryza sativa.
- BMC Evol Biol. 2005; 5: 72-72
- Display abstract
BACKGROUND: Calcium signaling plays a prominent role in plants for coordinating a wide range of developmental processes and responses to environmental cues. Stimulus-specific generation of intracellular calcium transients, decoding of calcium signatures, and transformation of the signal into cellular responses are integral modules of the transduction process. Several hundred proteins with functions in calcium signaling circuits have been identified, and the number of downstream targets of calcium sensors is expected to increase. We previously identified a novel, calmodulin-binding nuclear protein, IQD1, which stimulates glucosinolate accumulation and plant defense in Arabidopsis thaliana. Here, we present a comparative genome-wide analysis of a new class of putative calmodulin target proteins in Arabidopsis and rice. RESULTS: We identified and analyzed 33 and 29 IQD1-like genes in Arabidopsis thaliana and Oryza sativa, respectively. The encoded IQD proteins contain a plant-specific domain of 67 conserved amino acid residues, referred to as the IQ67 domain, which is characterized by a unique and repetitive arrangement of three different calmodulin recruitment motifs, known as the IQ, 1-5-10, and 1-8-14 motifs. We demonstrated calmodulin binding for IQD20, the smallest IQD protein in Arabidopsis, which consists of a C-terminal IQ67 domain and a short N-terminal extension. A striking feature of IQD proteins is the high isoelectric point (approximately 10.3) and frequency of serine residues (approximately 11%). We compared the Arabidopsis and rice IQD gene families in terms of gene structure, chromosome location, predicted protein properties and motifs, phylogenetic relationships, and evolutionary history. The existence of an IQD-like gene in bryophytes suggests that IQD proteins are an ancient family of calmodulin-binding proteins and arose during the early evolution of land plants. CONCLUSION: Comparative phylogenetic analyses indicate that the major IQD gene lineages originated before the monocot-eudicot divergence. The extant IQD loci in Arabidopsis primarily resulted from segmental duplication and reflect preferential retention of paralogous genes, which is characteristic for proteins with regulatory functions. Interaction of IQD1 and IQD20 with calmodulin and the presence of predicted calmodulin binding sites in all IQD family members suggest that IQD proteins are a new class of calmodulin targets. The basic isoelectric point of IQD proteins and their frequently predicted nuclear localization suggest that IQD proteins link calcium signaling pathways to the regulation of gene expression. Our comparative genomics analysis of IQD genes and encoded proteins in two model plant species provides the first step towards the functional dissection of this emerging family of putative calmodulin targets.
- Pandey GK, Grant JJ, Cheong YH, Kim BG, Li L, Luan S
- ABR1, an APETALA2-domain transcription factor that functions as a repressor of ABA response in Arabidopsis.
- Plant Physiol. 2005; 139: 1185-93
- Display abstract
The plant hormone abscisic acid (ABA) plays an important role in plant development and stress responses. An important step of ABA action is activation or inactivation of gene expression. Although several transcription factors are identified to function as positive regulators of ABA-induced gene expression, little is known about the negative regulators of ABA-regulated gene expression. Here, we have identified an APETALA2 (AP2) domain transcription factor that serves as a repressor of ABA response during seed germination and ABA- and stress-induced gene expression in Arabidopsis (Arabidopsis thaliana). The expression of the AP2-like ABA repressor 1 (ABR1) gene itself was responsive to ABA and stress conditions including cold, high salt, and drought. Disruption of ABR1 led to hypersensitive response to ABA in seed germination and root growth assays. The mutant plants were also hypersensitive to osmotic stress conditions, such as high salt and high concentrations of mannitol. Further analyses indicated that increased stress sensitivity may result from hypersensitivity to ABA as ABA biosynthesis inhibitor rescued the stress hypersensitivity phenotype. The abr1 mutant plants accumulated significantly higher levels of ABA- and stress-inducible gene transcripts as compared to the wild-type plants, supporting the hypothesis that this AP2 domain protein serves as a repressor of ABA-regulated gene expression.
- Yamasaki K et al.
- A novel zinc-binding motif revealed by solution structures of DNA-binding domains of Arabidopsis SBP-family transcription factors.
- J Mol Biol. 2004; 337: 49-63
- Display abstract
SQUAMOSA promoter binding proteins (SBPs) form a major family of plant-specific transcription factors related to flower development. Although SBPs are heterogeneous in primary structure, they share a highly conserved DNA-binding domain (DBD) that has been suggested to be zinc binding. Here we report the NMR solution structures of DBDs of two SBPs of Arabidopsis thaliana, SPL4 and SPL7. The two share essentially the same structural features. Each structure contains two zinc-binding sites consisting of eight Cys or His residues in a Cys3HisCys2HisCys or Cys6HisCys sequence motif in which the first four residues coordinate to one zinc and the last four coordinate to the other. These structures are dissimilar to other known zinc-binding structures, and thus represent a novel type of zinc-binding motif. The electrostatic profile on the surface suggested that a continuous region, including all the conserved basic residues, is involved in the DNA binding, the mode of which is likely to be novel as well.
- Lopez-Mendez B et al.
- NMR assignment of the hypothetical ENTH-VHS domain At3g16270 from Arabidopsis thaliana.
- J Biomol NMR. 2004; 29: 205-6
- Reyes JC, Muro-Pastor MI, Florencio FJ
- The GATA family of transcription factors in Arabidopsis and rice.
- Plant Physiol. 2004; 134: 1718-32
- Display abstract
GATA transcription factors are a group of DNA binding proteins broadly distributed in eukaryotes. The GATA factors DNA binding domain is a class IV zinc finger motif in the form CX(2)CX(17-20)CX(2)C followed by a basic region. In plants, GATA DNA motifs have been implicated in light-dependent and nitrate-dependent control of transcription. Herein, we show that the Arabidopsis and the rice (Oryza sativa) genomes present 29 and 28 loci, respectively, that encode for putative GATA factors. A phylogenetic analysis of the 57 GATA factors encoding genes, as well as the study of their intron-exon structure, indicates the existence of seven subfamilies of GATA genes. Some of these subfamilies are represented in both species but others are exclusive for one of them. In addition to the GATA zinc finger motif, polypeptides of the different subfamilies are characterized by the presence of additional domains such as an acidic domain, a CCT (CONSTANS, CO-like, and TOC1) domain, or a transposase-like domain also found in FAR1 and FHY3. Subfamily VI comprises genes that encode putative bi-zinc finger polypeptides, also found in metazoan and fungi, and a tri-zinc finger protein which has not been previously reported in eukaryotes. The phylogeny of the GATA zinc finger motif, excluding flanking regions, evidenced the existence of four classes of GATA zinc fingers, three of them containing 18 residues in the zinc finger loop and one containing a 20-residue loop. Our results support multiple models of evolution of the GATA gene family in plants including gene duplication and exon shuffling.
- Deppmann CD et al.
- Dimerization specificity of all 67 B-ZIP motifs in Arabidopsis thaliana: a comparison to Homo sapiens B-ZIP motifs.
- Nucleic Acids Res. 2004; 32: 3435-45
- Display abstract
Basic region-leucine zipper (B-ZIP) proteins are a class of dimeric sequence-specific DNA-binding proteins unique to eukaryotes. We have identified 67 B-ZIP proteins in the Arabidopsis thaliana genome. No A.thaliana B-ZIP domains are homologous with any Homo sapiens B-ZIP domains. Here, we predict the dimerization specificity properties of the 67 B-ZIP proteins in the A.thaliana genome based on three structural properties of the dimeric alpha-helical leucine zipper coiled coil structure: (i) length of the leucine zipper, (ii) placement of asparagine or a charged amino acid in the hydrophobic interface and (iii) presence of interhelical electrostatic interactions. Many A.thaliana B-ZIP leucine zippers are predicted to be eight or more heptads in length, in contrast to the four or five heptads typically found in H.sapiens, a prediction experimentally verified by circular dichroism analysis. Asparagine in the a position of the coiled coil is typically observed in the second heptad in H.sapiens. In A.thaliana, asparagine is abundant in the a position of both the second and fifth heptads. The particular placement of asparagine in the a position helps define 14 families of homodimerizing B-ZIP proteins in A.thaliana, in contrast to the six families found in H.sapiens. The repulsive interhelical electrostatic interactions that are used to specify heterodimerizing B-ZIP proteins in H.sapiens are not present in A.thaliana. Instead, we predict that plant leucine zippers rely on charged amino acids in the a position to drive heterodimerization. It appears that A.thaliana define many families of homodimerizing B-ZIP proteins by having long leucine zippers with asparagine judiciously placed in the a position of different heptads.
- Im YJ et al.
- Structural analysis of Arabidopsis thaliana nucleoside diphosphate kinase-2 for phytochrome-mediated light signaling.
- J Mol Biol. 2004; 343: 659-70
- Display abstract
In plants, nucleoside diphosphate kinases (NDPKs) play a key role in the signaling of both stress and light. However, little is known about the structural elements involved in their function. Of the three NDPKs (NDPK1-NDPK3) expressed in Arabidopsis thaliana, NDPK2 is involved in phytochrome-mediated signal transduction. In this study, we found that the binding of dNDP or NTP to NDPK2 strengthens the interaction significantly between activated phytochrome and NDPK2. To better understand the structural basis of the phytochrome-NDPK2 interaction, we determined the X-ray structures of NDPK1, NDPK2, and dGTP-bound NDPK2 from A.thaliana at 1.8A, 2.6A, and 2.4A, respectively. The structures showed that nucleotide binding caused a slight conformational change in NDPK2 that was confined to helices alphaA and alpha2. This suggests that the presence of nucleotide in the active site and/or the evoked conformational change contributes to the recognition of NDPK2 by activated phytochrome. In vitro binding assays showed that only NDPK2 interacted specifically with the phytochrome and the C-terminal regulatory domain of phytochrome is involved in the interaction. A domain swap experiment between NDPK1 and NDPK2 showed that the variable C-terminal region of NDPK2 is important for the activation by phytochrome. The structure of Arabidopsis NDPK1 and NDPK2 showed that the isoforms share common electrostatic surfaces at the nucleotide-binding site, but the variable C-terminal regions have distinct electrostatic charge distributions. These findings suggest that the binding of nucleotide to NDPK2 plays a regulatory role in phytochrome signaling and that the C-terminal extension of NDPK2 provides a potential binding surface for the specific interaction with phytochromes.
- Blommel PG et al.
- Crystal structure of gene locus At3g16990 from Arabidopsis thaliana.
- Proteins. 2004; 57: 221-2
- Olsen AN, Ernst HA, Lo Leggio L, Johansson E, Larsen S, Skriver K
- Preliminary crystallographic analysis of the NAC domain of ANAC, a member of the plant-specific NAC transcription factor family.
- Acta Crystallogr D Biol Crystallogr. 2004; 60: 112-5
- Display abstract
The NAC domain (residues 1-168) of ANAC, encoded by the abscisic acid-responsive NAC gene from Arabidopsis thaliana, was recombinantly produced in Escherichia coli and crystallized in hanging drops. Three morphologically different crystal forms were obtained within a relatively narrow range of conditions: 10-15% PEG 4000 and 0.1 M imidazole/malic acid buffer pH 7.0 in the reservoir, 3.2-7.7 mg ml(-1) protein stock and a 1:1 ratio of reservoir to protein solution in the hanging drop. One of the crystal forms, designated crystal form III, was found to be suitable for further X-ray analysis. Form III crystals belong to space group P2(1)2(1)2(1), with unit-cell parameters a = 62.0, b = 75.2, c = 80.8 A at 100 K. The unit-cell volume is consistent with two molecules in the asymmetric unit and a peak in the native Patterson map suggests the presence of a non-crystallographic twofold axis parallel to a crystallographic axis. Size-exclusion chromatography of the NAC domain showed that the dimeric state is also the preferred state in solution and probably represents the biologically active form. Data sets were collected from four potential heavy-atom derivatives of the form III crystals. The derivatized crystals are reasonably isomorphous with the non-derivatized crystals and the four data sets are being evaluated for use in structure determination by multiple isomorphous replacement.
- Magnani E, Sjolander K, Hake S
- From endonucleases to transcription factors: evolution of the AP2 DNA binding domain in plants.
- Plant Cell. 2004; 16: 2265-77
- Display abstract
All members of the AP2/ERF family of plant transcription regulators contain at least one copy of a DNA binding domain called the AP2 domain. The AP2 domain has been considered plant specific. Here, we show that homologs are present in the cyanobacterium Trichodesmium erythraeum, the ciliate Tetrahymena thermophila, and the viruses Enterobacteria phage Rb49 and Bacteriophage Felix 01. We demonstrate that the T. erythraeum AP2 domain selectively binds stretches of poly(dG)/poly(dC) showing functional conservation with plant AP2/ERF proteins. The newly discovered nonplant proteins bearing an AP2 domain are predicted to be HNH endonucleases. Sequence conservation extends outside the AP2 domain to include part of the endonuclease domain for the T. erythraeum protein and some plant AP2/ERF proteins. Our phylogenetic analysis of the broader family of AP2 domains supports the possibility of lateral gene transfer. We hypothesize that a horizontal transfer of an HNH-AP2 endonuclease from bacteria or viruses into plants may have led to the origin of the AP2/ERF family of transcription factors via transposition and homing processes.
- Song J, Vinarov D, Tyler EM, Shahan MN, Tyler RC, Markley JL
- Hypothetical protein At2g24940.1 from Arabidopsis thaliana has a cytochrome b5 like fold.
- J Biomol NMR. 2004; 30: 215-8
- Endres RG, Schulthess TC, Wingreen NS
- Toward an atomistic model for predicting transcription-factor binding sites.
- Proteins. 2004; 57: 262-8
- Display abstract
Identifying the specific DNA-binding sites of transcription-factor proteins is essential to understanding the regulation of gene expression in the cell. Bioinformatics approaches are fast compared to experiments, but require prior knowledge of multiple binding sites for each protein. Here, we present an atomistic force-field method to predict binding sites based only on the X-ray structure of a related bound complex. Specific flexible contacts between the protein and DNA are modeled by a library of amino acid side-chain rotamers. Using the example of the mouse transcription factor, Zif268, a well-studied zinc-finger protein, we show that the protein sequence alone, without the detailed experimental structure, gives a strong bias toward the consensus binding site.
- Shimizu M, Ichikawa K, Aoki S
- Photoperiod-regulated expression of the PpCOL1 gene encoding a homolog of CO/COL proteins in the moss Physcomitrella patens.
- Biochem Biophys Res Commun. 2004; 324: 1296-301
- Display abstract
The CONSTANS (CO) protein is a critical regulator of the photoperiodic control of flowering in Arabidopsis thaliana and Oryza sativa. We isolated a cDNA PpCOL1 encoding a homolog of the CO/CO-LIKE (COL) family proteins from a cryptogam Physcomitrella patens. The predicted PpCOL1 protein has N-terminal zinc finger and C-terminal CCT domains, which are conserved in the angiosperm CO/COL proteins. Structurally, PpCOL1 is the most closely related to the Group Ia or Ic proteins, which include AtCO and AtCOL1/2, among diverged members of the family. A transient expression assay using GFP showed that the CCT domain of PpCOL1 contains a nuclear-localizing signal. Northern blotting analyses revealed that the PpCOL1 expression is controlled by the circadian clock, and moreover, it is photoperiodically regulated at a gametophore stage when the rate of sporophyte formation is affected by day length. These observations indicate a possible involvement of PpCOL1 as a nuclear factor in the photoperiodic regulation of reproduction of Physcomitrella.
- Cornilescu G et al.
- Solution structure of a homodimeric hypothetical protein, At5g22580, a structural genomics target from Arabidopsis thaliana.
- J Biomol NMR. 2004; 29: 387-90
- Huang J, Wang JF, Zhang HS
- [Structure and function of plant C2H2 zinc finger protein.]
- Yi Chuan. 2004; 26: 414-8
- Display abstract
Zinc finger protein is one of the important transcription factors with zinc finger domain that regulates gene expression in the eukaryotic organisms mainly by specifically interacting with target DNA sequence(cis-acting element). It could be divided into several types of zinc finger proteins, such as C2H2, C2HC, C2C2, C2HCC2C2, C2C2C2C2 etc, based on numbers and positions of Cys and His residues. Of these, C2H2 type zinc finger protein is the most clearly identified zinc finger transcription factor, with the wide existence in human, animals and plants. The characterized plant C2H2 zinc finger proteins are mainly involved in plant growth and development and the responses to environmental stresses. Up to now, more than 50 C2H2 zinc finger proteins have been reported in plants including petunia, Arabidopsis, wheat and rice, and most of them have the plant-specific QALGGH motif in zinc finger domain. This paper briefly introduces the structure, recognition of target-DNA sequence and functions involved in development or environmental stresses of plant C2H2 zinc finger proteins.
- Bingman CA et al.
- Crystal structure of the protein from gene At3g17210 of Arabidopsis thaliana.
- Proteins. 2004; 57: 218-20
- Brautigam CA et al.
- Structure of the photolyase-like domain of cryptochrome 1 from Arabidopsis thaliana.
- Proc Natl Acad Sci U S A. 2004; 101: 12142-7
- Display abstract
Signals generated by cryptochrome (CRY) blue-light photoreceptors are responsible for a variety of developmental and circadian responses in plants. The CRYs are also identified as circadian blue-light photoreceptors in Drosophila and components of the mammalian circadian clock. These flavoproteins all have an N-terminal domain that is similar to photolyase, and most have an additional C-terminal domain of variable length. We present here the crystal structure of the photolyase-like domain of CRY-1 from Arabidopsis thaliana. The structure reveals a fold that is very similar to photolyase, with a single molecule of FAD noncovalently bound to the protein. The surface features of the protein and the dissimilarity of a surface cavity to that of photolyase account for its lack of DNA-repair activity. Previous in vitro experiments established that the photolyase-like domain of CRY-1 can bind Mg.ATP, and we observe a single molecule of an ATP analog bound in the aforementioned surface cavity, near the bound FAD cofactor. The structure has implications for the signaling mechanism of CRY blue-light photoreceptors.
- Fujikawa N et al.
- Structural and biochemical analyses of hemimethylated DNA binding by the SeqA protein.
- Nucleic Acids Res. 2004; 32: 82-92
- Display abstract
The Escherichia coli SeqA protein recognizes the 11 hemimethylated G-mA-T-C sites in the oriC region of the chromosome, and prevents replication over-initiation within one cell cycle. The crystal structure of the SeqA C-terminal domain with hemimethylated DNA revealed the N6-methyladenine recognition mechanism; however, the mechanism of discrimination between the hemimethylated and fully methylated states has remained elusive. In the present study, we performed mutational analyses of hemimethylated G-mA-T-C sequences with the minimal DNA-binding domain of SeqA (SeqA71-181), and found that SeqA71-181 specifically binds to hemimethylated DNA containing a sequence with a mismatched mA:G base pair [G-mA(:G)-T-C] as efficiently as the normal hemimethylated G-mA(:T)-T-C sequence. We determined the crystal structures of SeqA71-181 complexed with the mismatched and normal hemimethylated DNAs at 2.5 and 3.0 A resolutions, respectively, and found that the mismatched mA:G base pair and the normal mA:T base pair are recognized by SeqA in a similar manner. Furthermore, in both crystal structures, an electron density is present near the unmethylated adenine, which is only methylated in the fully methylated state. This electron density, which may be due to a water molecule or a metal ion, can exist in the hemimethylated state, but not in the fully methylated state, because of steric clash with the additional methyl group.
- Borrone JW, Kuhn DN, Schnell RJ
- Isolation, characterization, and development of WRKY genes as useful genetic markers in Theobroma cacao.
- Theor Appl Genet. 2004; 109: 495-507
- Display abstract
There is currently an international effort in improving disease resistance and crop yield in Theobroma cacao L., an economically important crop of the tropics, using marker-assisted selection for breeding. We are developing molecular genetic markers focusing upon gene families involved with disease resistance. One such family is the WRKY proteins, which are plant-specific transcriptional factors associated with regulating defense responses to both abiotic and biotic stresses. Degenerate PCR primers were designed to the highly conserved DNA-binding domain and other conserved motifs of group I and group II, subgroups a-c, WRKY genes. Sixteen individual WRKY fragments were isolated from a mixture of T. cacao DNA using one pair of primers. Of the 16 WRKY loci investigated, seven contained single nucleotide polymorphisms within the intron as detected by sequence comparison of the PCR products. Four of these were successfully converted into molecular markers and mapped in an F2 population by capillary electrophoresis-single strand conformation polymorphism analysis. This is the first report of a pair of degenerate primers amplifying WRKY loci directly from genomic DNA and demonstrates a simple method for developing useful genetic markers from members of a large gene family.
- Kuchar M, Fajkus J
- Interactions of putative telomere-binding proteins in Arabidopsis thaliana: identification of functional TRF2 homolog in plants.
- FEBS Lett. 2004; 578: 311-5
- Display abstract
Telomere-binding proteins are required for forming the functional structure of chromosome ends and regulating telomerase action. Although a number of candidate proteins have been identified by homology searches to plant genome databases and tested for their affinity to telomeric DNA sequences in vitro, there are minimal data relevant to their telomeric function. To address this problem, we made a collection of cDNAs of putative telomere-binding proteins of Arabidopsis thaliana to analyse their protein-protein interactions with the yeast two-hybrid system. Our results show that one myb-like protein, AtTRP1, interacts specifically with AtKu70, the latter protein having a previously described role in plant telomere metabolism. In analogy to the interaction between human Ku70 and TRF2 proteins, our results suggest that AtTRP1 is a likely homolog of TRF2. The AtTRP1 domain responsible for AtKu70 interaction occurs between amino acid sequence positions 80 and 269. The protein AtTRB1, a member of the single myb histone (Smh) family, shows self-interaction and interactions to the Smh family proteins AtTRB2 and AtTRB3. Protein AtTRB1 also interacts with AtPot1, the Arabidopsis homolog of oligonucleotide-binding-fold-containing proteins which bind G-rich telomeric DNA. In humans, the TRF1-complex recruits hPot1 to telomeres by protein-protein interactions where it is involved in telomere length regulation. Possibly, AtTRB1 has a similar role in recruiting AtPot1.
- Lagace M, Matton DP
- Characterization of a WRKY transcription factor expressed in late torpedo-stage embryos of Solanum chacoense.
- Planta. 2004; 219: 185-9
- Display abstract
A novel WRKY-like transcription factor was isolated from a screen for weakly expressed mRNAs in ovules in the self-incompatible wild potato species Solanum chacoense Bitt. This protein, named ScWRKY1, consisted of 525 amino acids and can be classified as a WRKY group-I member, having two WRKY domains. It is expressed at low levels in stems, roots, and petals, and expressed at much higher levels in leaves. Interestingly, although barely detectable in developing seeds, it is strongly and transiently expressed in fertilized ovules bearing late torpedo-staged embryos, suggesting a specific role during embryogenesis.
- Yamasaki K et al.
- Solution structure of the B3 DNA binding domain of the Arabidopsis cold-responsive transcription factor RAV1.
- Plant Cell. 2004; 16: 3448-59
- Display abstract
The B3 DNA binding domain is shared amongst various plant-specific transcription factors, including factors involved in auxin-regulated and abscisic acid-regulated transcription. Herein, we report the NMR solution structure of the B3 domain of the Arabidopsis thaliana cold-responsive transcription factor RAV1. The structure consists of a seven-stranded open beta-barrel and two alpha-helices located at the ends of the barrel and is significantly similar to the structure of the noncatalytic DNA binding domain of the restriction enzyme EcoRII. An NMR titration experiment revealed a DNA recognition interface that enabled us to propose a structural model of the protein-DNA complex. The locations of the DNA-contacting residues are also likely to be similar to those of the EcoRII DNA binding domain.
- Mitsuda N, Hisabori T, Takeyasu K, Sato MH
- VOZ; isolation and characterization of novel vascular plant transcription factors with a one-zinc finger from Arabidopsis thaliana.
- Plant Cell Physiol. 2004; 45: 845-54
- Display abstract
A 38-bp pollen-specific cis-acting region of the AVP1 gene is involved in the expression of the Arabidopsis thaliana V-PPase during pollen development. Here, we report the isolation and structural characterization of AtVOZ1 and AtVOZ2, novel transcription factors that bind to the 38-bp cis-acting region of A. thaliana V-PPase gene, AVP1. AtVOZ1 and AtVOZ2 show 53% amino acid sequence similarity. Homologs of AtVOZ1 and AtVOZ2 are found in various vascular plants as well as a moss, Physcomitrella patens. Promoter-beta-glucuronidase reporter analysis shows that AtVOZ1 is specifically expressed in the phloem tissue and AtVOZ2 is strongly expressed in the root. In vivo transient effector-reporter analysis in A. thaliana suspension-cultured cells demonstrates that AtVOZ1 and AtVOZ2 function as transcriptional activators in the Arabidopsis cell. Two conserved regions termed Domain-A and Domain-B were identified from an alignment of AtVOZ proteins and their homologs of O. sativa and P. patens. AtVOZ2 binds as a dimer to the specific palindromic sequence, GCGTNx7ACGC, with Domain-B, which is comprised of a functional novel zinc coordinating motif and a conserved basic region. Domain-B is shown to function as both the DNA-binding and the dimerization domains of AtVOZ2. From highly the conservative nature among all identified VOZ proteins, we conclude that Domain-B is responsible for the DNA binding and dimerization of all VOZ-family proteins and designate it as the VOZ-domain.
- Hothorn M, Wolf S, Aloy P, Greiner S, Scheffzek K
- Structural insights into the target specificity of plant invertase and pectin methylesterase inhibitory proteins.
- Plant Cell. 2004; 16: 3437-47
- Display abstract
Pectin methylesterase (PME) and invertase are key enzymes in plant carbohydrate metabolism. Inhibitors of both enzymes constitute a sequence family of extracellular proteins. Members of this family are selectively targeted toward either PME or invertase. In a comparative structural approach we have studied how this target specificity is implemented on homologous sequences. By extending crystallographic work on the invertase inhibitor Nt-CIF to a pectin methylesterase inhibitor (PMEI) from Arabidopsis thaliana, we show an alpha-helical hairpin motif to be an independent and mobile structural entity in PMEI. Removal of this hairpin fully inactivates the inhibitor. A chimera composed of the alpha-hairpin of PMEI and the four-helix bundle of Nt-CIF is still active against PME. By contrast, combining the corresponding segment of Nt-CIF with the four-helix bundle of PMEI renders the protein inactive toward either PME or invertase. Our experiments provide insight in how these homologous inhibitors can make differential use of similar structural modules to achieve distinct functions. Integrating our results with previous findings, we present a model for the PME-PMEI complex with important implications.
- Ulker B, Somssich IE
- WRKY transcription factors: from DNA binding towards biological function.
- Curr Opin Plant Biol. 2004; 7: 491-8
- Display abstract
WRKY proteins comprise a large family of transcription factors. Despite their dramatic diversification in plants, WRKY genes seem to have originated in early eukaryotes. The cognate DNA-binding site of WRKY factors is well defined, but determining the roles of individual family members in regulating specific transcriptional programs during development or in response to environmental signals remains daunting. This review summarises the recent advances made in starting to unravel the various functions controlled by WRKY proteins.
- Ernst HA, Olsen AN, Larsen S, Lo Leggio L
- Structure of the conserved domain of ANAC, a member of the NAC family of transcription factors.
- EMBO Rep. 2004; 5: 297-303
- Display abstract
The structure of the DNA-binding NAC domain of Arabidopsis ANAC (abscisic-acid-responsive NAC) has been determined by X-ray crystallography to 1.9A resolution (Protein Data Bank codes 1UT4 and 1UT7). This is the first structure determined for a member of the NAC family of plant-specific transcriptional regulators. NAC proteins are characterized by their conserved N-terminal NAC domains that can bind both DNA and other proteins. NAC proteins are involved in developmental processes, including formation of the shoot apical meristem, floral organs and lateral shoots, as well as in plant hormonal control and defence. The NAC domain does not possess a classical helix-turn-helix motif; instead it reveals a new transcription factor fold consisting of a twisted beta-sheet surrounded by a few helical elements. The functional dimer formed by the NAC domain was identified in the structure, which will serve as a structural template for understanding NAC protein function at the molecular level.
- Bauer S, Schott AK, Illarionova V, Bacher A, Huber R, Fischer M
- Biosynthesis of tetrahydrofolate in plants: crystal structure of 7,8-dihydroneopterin aldolase from Arabidopsis thaliana reveals a novel adolase class.
- J Mol Biol. 2004; 339: 967-79
- Display abstract
Dihydroneopterin aldolase (DHNA) catalyses a retroaldol reaction yielding 6-hydroxymethyl-7,8-dihydropterin, a biosynthetic precursor of the vitamin, tetrahydrofolate. The enzyme is a potential target for antimicrobial and anti-parasite chemotherapy. A gene specifying a dihydroneopterin aldolase from Arabidopsis thaliana was expressed in a recombinant Escherichia coli strain. The recombinant protein was purified to apparent homogeneity and crystallised using polyethylenglycol as the precipitating agent. The crystal structure was solved by X-ray diffraction analysis at 2.2A resolution. The enzyme forms a D(4)-symmetric homooctamer. Each polypeptide chain is folded into a single domain comprising an antiparallel four-stranded beta-sheet and two long alpha-helices. Four monomers are arranged in a tetrameric ring, and two of these rings form a hollow cylinder. Well defined purine derivatives are found at all eight topologically equivalent active sites. The subunit fold of the enzyme is related to substructures of dihydroneopterin triphosphate epimerase, GTP cyclohydrolase I, and pyruvoyltetrahydropterin synthase, which are all involved in the biosynthesis of pteridine type cofactors, and to urate oxidase, although some members of that superfamily have no detectable sequence similarity. Due to structural and mechanistical differences of DHNA in comparison with class I and class II aldolases, a new aldolase class is proposed.
- Toledo-Ortiz G, Huq E, Quail PH
- The Arabidopsis basic/helix-loop-helix transcription factor family.
- Plant Cell. 2003; 15: 1749-70
- Display abstract
The basic/helix-loop-helix (bHLH) proteins are a superfamily of transcription factors that bind as dimers to specific DNA target sites and that have been well characterized in nonplant eukaryotes as important regulatory components in diverse biological processes. Based on evidence that the bHLH protein PIF3 is a direct phytochrome reaction partner in the photoreceptor's signaling network, we have undertaken a comprehensive computational analysis of the Arabidopsis genome sequence databases to define the scope and features of the bHLH family. Using a set of criteria derived from a previously defined consensus motif, we identified 147 bHLH protein-encoding genes, making this one of the largest transcription factor families in Arabidopsis. Phylogenetic analysis of the bHLH domain sequences permits classification of these genes into 21 subfamilies. The evolutionary and potential functional relationships implied by this analysis are supported by other criteria, including the chromosomal distribution of these genes relative to duplicated genome segments, the conservation of variant exon/intron structural patterns, and the predicted DNA binding activities within subfamilies. Considerable diversity in DNA binding site specificity among family members is predicted, and marked divergence in protein sequence outside of the conserved bHLH domain is observed. Together with the established propensity of bHLH factors to engage in varying degrees of homodimerization and heterodimerization, these observations suggest that the Arabidopsis bHLH proteins have the potential to participate in an extensive set of combinatorial interactions, endowing them with the capacity to be involved in the regulation of a multiplicity of transcriptional programs. We provide evidence from yeast two-hybrid and in vitro binding assays that two related phytochrome-interacting members in the Arabidopsis family, PIF3 and PIF4, can form both homodimers and heterodimers and that all three dimeric configurations can bind specifically to the G-box DNA sequence motif CACGTG. These data are consistent, in principle, with the operation of this combinatorial mechanism in Arabidopsis.
- Despres C et al.
- The Arabidopsis NPR1 disease resistance protein is a novel cofactor that confers redox regulation of DNA binding activity to the basic domain/leucine zipper transcription factor TGA1.
- Plant Cell. 2003; 15: 2181-91
- Display abstract
The Arabidopsis NPR1 protein is essential for regulating salicylic acid-dependent gene expression during systemic acquired resistance. NPR1 interacts differentially with members of the TGA class of basic domain/Leu zipper transcription factors and regulates their DNA binding activity. Here, we report that although TGA1 does not interact with NPR1 in yeast two-hybrid assays, treatment with salicylic acid induces the interaction between these proteins in Arabidopsis leaves. This phenomenon is correlated with a reduction of TGA1 Cys residues. Furthermore, site-directed mutagenesis of TGA1 Cys-260 and Cys-266 enables the interaction with NPR1 in yeast and Arabidopsis. Together, these results indicate that TGA1 relies on the oxidation state of Cys residues to mediate the interaction with NPR1. An intramolecular disulfide bridge in TGA1 precludes interaction with NPR1, and NPR1 can only stimulate the DNA binding activity of the reduced form of TGA1. Unlike its animal and yeast counterparts, the DNA binding activity of TGA1 is not redox regulated; however, this property is conferred by interaction with the NPR1 cofactor.
- Surdo PL, Bottomley MJ, Sattler M, Scheffzek K
- Crystal structure and nuclear magnetic resonance analyses of the SAND domain from glucocorticoid modulatory element binding protein-1 reveals deoxyribonucleic acid and zinc binding regions.
- Mol Endocrinol. 2003; 17: 1283-95
- Display abstract
The glucocorticoid-modulatory element-binding proteins, GMEB1 and GMEB2, are ubiquitous, multifunctional DNA-binding proteins with important roles in the modulation of transcription upon steroid hormone activation. The GMEB proteins have intrinsic transactivation ability, but also control the glucocorticoid response via direct binding to the glucocorticoid receptor. They are also mandatory host proteins for Parvovirus replication. Here we present the 1.55 A resolution crystal structure of a central portion of GMEB1, encompassing its SAND domain, which shares 80% sequence identity with the GMEB2 SAND domain. We demonstrate that this domain, also present in numerous proteins implicated in chromatin-associated transcriptional regulation, is necessary and sufficient to bind the glucocorticoid-modulatory element (GME) DNA target. We use nuclear magnetic resonance (NMR) and binding studies to map the DNA recognition surface to an alpha-helical region exposing the conserved KDWK motif. Using site-directed mutagenesis, key residues for DNA binding are identified. In contrast to the previously determined NMR structure of the Sp100b SAND domain, we find that the GMEB1 SAND domain also comprises a zinc-binding motif. Although the zinc ion is not necessary for DNA binding, it is found to determine the C-terminal conformation of the GMEB1 SAND domain. We also show that homologous zinc-binding motifs exist in a subset of SAND domain proteins and probe the roles of this novel motif.
- Dong J, Chen C, Chen Z
- Expression profiles of the Arabidopsis WRKY gene superfamily during plant defense response.
- Plant Mol Biol. 2003; 51: 21-37
- Display abstract
WRKY proteins are a recently identified class of DNA-binding proteins that recognize the TTGAC(C/T) W-box elements found in the promoters of a large number of plant defense-related genes. With oligo molecules containing the W-box sequences as probes, we detected a number of WRKY DNA-binding activities in Arabidopsis that were induced by salicylic acid (SA). Search of the Arabidopsis genome identifies 72 genes encoding proteins characteristic of WRKY DNA-binding transcription factors that can be divided into three groups based on the number and structures of their WRKY zinc-finger motifs. Northern blotting analysis revealed that 49 of the 72 AtWRKY genes were differentially regulated in the plants infected by an avirulent strain of the bacterial pathogen Pseudomonas syringae or treated by SA. These pathogen- and/or SA-regulated WRKY genes can be further categorized into groups based on their expression patterns in both wild-type plants and mutants defective in defense signaling pathways. Inspection of the 5' sequences upstream of the predicated translation start sites revealed a substantial enrichment of W boxes in the promoters of pathogen- and/or SA-regulated Arabidopsis WRKY genes. These results suggest that defense-regulated expression of WRKY genes involves extensive transcriptional activation and repression by its own members of the transcription factor superfamily.
- Nagae M et al.
- The crystal structure of the novel calcium-binding protein AtCBL2 from Arabidopsis thaliana.
- J Biol Chem. 2003; 278: 42240-6
- Display abstract
Arabidopsis thaliana calcineurin B-like protein (AtCBL2) is a member of a recently identified family of calcineurin B-like calcium-binding proteins in A. thaliana. The crystal structure of AtCBL2 has been determined at 2.1 A resolution. The protein forms a compact alpha-helical structure with two pairs of EF-hand motifs. The structure is similar in overall folding topology to the structures of calcineurin B and neuronal calcium sensor 1, but differs significantly in local conformation. The two calcium ions are coordinated in the first and fourth EF-hand motifs, whereas the second and third EF-hand motifs are maintained in the open form by internal hydrogen bonding without coordination of calcium ions. Both a possible site and a possible mechanism for the target binding to AtCBL2 are discussed based on the three-dimensional structure.
- Tournier B et al.
- New members of the tomato ERF family show specific expression pattern and diverse DNA-binding capacity to the GCC box element.
- FEBS Lett. 2003; 550: 149-54
- Display abstract
Four new members of the ERF (ethylene-response factor) family of plant-specific DNA-binding (GCC box) factors were isolated from tomato fruit (LeERF1-4). Phylogenetic analysis indicated that LeERF2 belongs to a new ERF class, characterized by a conserved N-terminal signature sequence. Expression patterns and cis/trans binding affinities differed between the LeERFs. Combining experimental data and modeled three-dimensional analysis, it was shown that binding affinity of the LeERFs was affected by both the variation of nucleotides surrounding the DNA cis-element sequence and the nature of critical amino acid residues within the ERF domain.
- Desveaux D, Allard J, Brisson N, Sygusch J
- A new family of plant transcription factors displays a novel ssDNA-binding surface.
- Nat Struct Biol. 2002; 9: 512-7
- Display abstract
The crystal structure of p24, the single-stranded DNA (ssDNA) binding subunit of the plant defense transcription factor PBF-2, has been determined to 2.3 A resolution. p24 is representative of a novel family of ubiquitous plant-specific proteins that we refer to as the Whirly family because of their quaternary structure. PBF-2 is composed of four p24 molecules that interact through a helix-loop-helix motif. This interaction produces a central pore, with beta-strands radiating outwards, resulting in a whirligig appearance to the quaternary structure. The noncrystallographic C(4) symmetry arrangement of p24 subunits is novel for ssDNA binding proteins and may explain the binding specificity of PBF-2. This structural arrangement also supports the role of PBF-2 in binding melted promoter regions to modulate gene expression.
- Hosoda K et al.
- Molecular structure of the GARP family of plant Myb-related DNA binding motifs of the Arabidopsis response regulators.
- Plant Cell. 2002; 14: 2015-29
- Display abstract
The B motif is a signature of type-B response regulators (ARRs) involved in His-to-Asp phosphorelay signal transduction systems in Arabidopsis. Homologous motifs occur widely in the GARP family of plant transcription factors. To gain general insight into the structure and function of B motifs (or GARP motifs), we characterized the B motif derived from a representative ARR, ARR10, which led to a number of intriguing findings. First, the B motif of ARR10 (named ARR10-B and extending from Thr-179 to Ser-242) possesses a nuclear localization signal, as indicated by the intracellular localization of a green fluorescent protein-ARR10-B fusion protein in onion epidermal cells. Second, the purified ARR10-B molecule binds specifically in vitro to DNA with the core sequence AGATT. This was demonstrated by several in vitro approaches, including PCR-assisted DNA binding site selection, gel retardation assays, and surface plasmon resonance analysis. Finally, the three-dimensional structure of ARR10-B in solution was determined by NMR spectroscopy, showing that it contains a helix-turn-helix structure. Furthermore, the mode of interaction between ARR10-B and the target DNA was assessed extensively by NMR spectroscopy. Together, these results lead us to propose that the mechanism of DNA recognition by ARR10-B is essentially the same as that of homeodomains. We conclude that the B motif is a multifunctional domain responsible for both nuclear localization and DNA binding and suggest that these insights could be applicable generally to the large GARP family of plant transcription factors.
- Dathan N et al.
- The Arabidopsis SUPERMAN protein is able to specifically bind DNA through its single Cys2-His2 zinc finger motif.
- Nucleic Acids Res. 2002; 30: 4945-51
- Display abstract
The Arabidopsis SUPERMAN (SUP) gene has been shown to be important in maintaining the boundary between stamens and carpels, and is presumed to act by regulating cell proliferation. In this work, we show that the SUP protein, which contains a single Cys2-His2 zinc finger domain including the QALGGH sequence, highly conserved in the plant zinc finger proteins, binds DNA. Using a series of deletion mutants, it was determined that the minimal domain required for specific DNA binding (residues 15-78) includes the single zinc finger and two basic regions located on either side of this motif. Furthermore, amino acid substitutions in the zinc finger or in the basic regions, including a mutation that knocks out the function of the SUP protein in vivo (glycine 63 to aspartate), have been found to abolish the activity of the SUP DNA-binding domain. These results strongly suggest that the SUP protein functions in vivo by acting as a DNA-binding protein, likely involved in transcriptional regulation. The association of both an N-terminal and a C-terminal basic region with a single Cys2-His2 zinc finger represents a novel DNA-binding motif suggesting that the mechanism of DNA recognition adopted by the SUP protein is different from that described so far in other zinc finger proteins.
- Backstrom S, Wolf-Watz M, Grundstrom C, Hard T, Grundstrom T, Sauer UH
- The RUNX1 Runt domain at 1.25A resolution: a structural switch and specifically bound chloride ions modulate DNA binding.
- J Mol Biol. 2002; 322: 259-72
- Display abstract
The evolutionarily conserved Runt homology domain is characteristic of the RUNX family of heterodimeric eukaryotic transcription factors, including RUNX1, RUNX2 and RUNX3. The genes for RUNX1, also termed acute myeloid leukemia protein 1, AML1, and its dimerization partner core-binding factor beta, CBFbeta, are essential for hematopoietic development and are together the most common targets for gene rearrangements in acute human leukemias. Here, we describe the crystal structure of the uncomplexed RUNX1 Runt domain at 1.25A resolution and compare its conformation to previously published structures in complex with DNA, CBFbeta or both. We find that complex formation induces significant structural rearrangements in this immunoglobulin (Ig)-like DNA-binding domain. Most pronounced is the movement of loop L11, which changes from a closed conformation in the free Runt structure to an open conformation in the CBFbeta-bound and DNA-bound forms. This transition, which we refer to as the S-switch, and accompanying structural movements that affect other parts of the Runt domain are crucial for sustained DNA binding. The closed to open transition can be induced by CBFbeta alone; suggesting that one role of CBFbeta is to trigger the S-switch and to stabilize the Runt domain in a conformation enhanced for DNA binding.A feature of the Runt domain hitherto unobserved in any Ig-like DNA-binding domain is the presence of two specifically bound chloride ions. One chloride ion is coordinated by amino acid residues that make direct DNA contact. In a series of electrophoretic mobility-shift analyses, we demonstrate a chloride ion concentration-dependent stimulation of the DNA-binding activity of Runt in the physiological range. A comparable DNA-binding stimulation was observed for negatively charged amino acid residues. This suggests a regulatory mechanism of RUNX proteins through acidic amino acid residues provided by activation domains during cooperative interaction with other transcription factors.
- Yanagisawa S
- The Dof family of plant transcription factors.
- Trends Plant Sci. 2002; 7: 555-60
- Display abstract
Dof proteins are members of a major family of plant transcription factors. The proteins have similar DNA-binding properties because of the highly conserved DNA-binding domain. However, recent studies are disclosing their diverse roles in gene expression when associated with plant-specific phenomena including light, phytohormone and defense responses, seed development and germination. Based on the structural diversity indicated by the complete catalog of Arabidopsis Dof proteins, Dof genes appear to have evolved multiple times, preceding and paralleling the diversification of angiosperms. Such gene multiplication might have led to the functional diversification of Dof proteins proceeding differently in distinct plant species.
- Hinderhofer K, Zentgraf U
- Identification of a transcription factor specifically expressed at the onset of leaf senescence.
- Planta. 2001; 213: 469-73
- Display abstract
The differential expression of genes was analyzed during leaf senescence in Arabidopsis thaliana (L.) Heynh., using suppression subtractive hybridization (SSH). In order to characterize the differential expression of regulatory genes, the analysis was performed at a very early time point when leaves first differed in their photochemical efficiency (Fv/Fm) and cab transcript levels, but no visible sign of senescence, and no expression of SAG12 could be determined. After high-throughput screening, we isolated several differentially expressed cDNA clones, including a transcription factor of the WRKY family, WRKY53. All family members contained the WRKY domain, a 60-amino-acid domain with the conserved WRKYGQK motif at the N-terminal end, together with a novel zinc-finger motif. The mRNA level of WRKY53 increased substantially within the rosette leaves of a 6-week-old plant before the expression of SAG12 became detectable, was constant in all leaves of a 7-week-old plant and decreased again in 8-week-old plants. This indicates that WRKY53 is expressed at a very early time point of leaf senescence and might therefore play a regulatory role in the early events of leaf senescence.
- Maeo K, Hayashi S, Kojima-Suzuki H, Morikami A, Nakamura K
- Role of conserved residues of the WRKY domain in the DNA-binding of tobacco WRKY family proteins.
- Biosci Biotechnol Biochem. 2001; 65: 2428-36
- Display abstract
Four cDNA clones of tobacco that could code for polypeptides with two WRKY domains were isolated. Among four NtWRKYs and other WRKY family proteins, sequence similarity was basically limited to the two WRKY domains. Glutathione S-transferase fusion proteins with the C-terminal WRKY domain of four NtWRKYs bound specifically to the W-box (TTGACC), and the N-terminal WRKY domain showed weaker binding activity with the W-box compared to the C-terminal domain. The DNA-binding activity of the WRKY domain was abolished by o-phenanthroline and this inhibition was recovered specifically by Zn2+. Substitution of the conserved cysteine and histidine residues of the plant-specific C2H2-type zinc finger-like motif in the WRKY domain abolished the DNA binding. In addition, mutations in the invariable WRKYGQK sequence at the N-terminal side of the zinc finger-like motif also significantly reduced the DNA-binding activity, suggesting that these residues are required for proper folding of the DNA-binding zinc finger.
- Zhang L, Eggers-Schumacher G, Schoffl F, Prandl R
- Analysis of heat-shock transcription factor-DNA binding in Arabidopsis suspension cultures by UV laser crosslinking.
- Plant J. 2001; 28: 217-23
- Display abstract
Crosslinking techniques are important in examining protein-DNA interactions in living cells. Formaldehyde and UV light emitted by conventional lamps are the most commonly used crosslinking agents. The crosslinking step is followed by immunoprecipitation of specific protein-DNA adducts, and by analysis and quantification of the co-immunoprecipitated DNA. There are a few reported cases of fruitful in vivo protein-DNA crosslinking experiments, but not in plants. In this report, we analyse the binding of heat-shock transcription factor (HSF) to heat-shock promoters in intact Arabidopsis cells. Efficient protein-DNA crosslinking by irradiation of Arabidopsis suspension culture tissue was achieved using UV laser pulses. In addition, methods for immunoprecipitation and detection of the co-immunoprecipitated DNA are reported. Our results suggest that Arabidopsis HSFs immunoreactive for HSF1 antibodies bind constitutively to the HSP18.2 gene.
- Nesi N, Jond C, Debeaujon I, Caboche M, Lepiniec L
- The Arabidopsis TT2 gene encodes an R2R3 MYB domain protein that acts as a key determinant for proanthocyanidin accumulation in developing seed.
- Plant Cell. 2001; 13: 2099-114
- Display abstract
In Arabidopsis, proanthocyanidins specifically accumulate in the endothelium during early seed development. At least three TRANSPARENT TESTA (TT) genes, TT2, TT8, and TTG1, are necessary for the normal expression of several flavonoid structural genes in immature seed, such as DIHYDROFLAVONOL-4-REDUCTASE and BANYULS (BAN). TT8 and TTG1 were characterized recently and found to code for a basic helix-loop-helix domain transcription factor and a WD-repeat-containing protein, respectively. Here the molecular cloning of the TT2 gene was achieved by T-DNA tagging. TT2 encoded an R2R3 MYB domain protein with high similarity to the rice OsMYB3 protein and the maize COLORLESS1 factor. A TT2-green fluorescent protein fusion protein was located mostly in the nucleus, in agreement with the regulatory function of the native TT2 protein. TT2 expression was restricted to the seed during early embryogenesis, consistent with BAN expression and the proanthocyanidin deposition profile. Finally, in gain-of-function experiments, TT2 was able to induce ectopic expression of BAN in young seedlings and roots in the presence of a functional TT8 protein. Therefore, our results strongly suggest that stringent spatial and temporal BAN expression, and thus proanthocyanidin accumulation, are determined at least partially by TT2.
- Eulgem T, Rushton PJ, Robatzek S, Somssich IE
- The WRKY superfamily of plant transcription factors.
- Trends Plant Sci. 2000; 5: 199-206
- Display abstract
The WRKY proteins are a superfamily of transcription factors with up to 100 representatives in Arabidopsis. Family members appear to be involved in the regulation of various physio-logical programs that are unique to plants, including pathogen defense, senescence and trichome development. In spite of the strong conservation of their DNA-binding domain, the overall structures of WRKY proteins are highly divergent and can be categorized into distinct groups, which might reflect their different functions.
- Du L, Chen Z
- Identification of genes encoding receptor-like protein kinases as possible targets of pathogen- and salicylic acid-induced WRKY DNA-binding proteins in Arabidopsis.
- Plant J. 2000; 24: 837-47
- Display abstract
To understand how plant host genes are regulated during the activation of plant defence responses, we are studying a group of pathogen- and salicylic acid (SA)-induced DNA-binding proteins containing the novel WRKY domain. To identify downstream target genes of these WRKY proteins, we have searched the Arabidopsis genome and identified four closely linked genes on chromosome IV that contain an unusually large number of the W-box sequences [(T)TGAC(C/T)] recognized by WRKY proteins within a few hundred base pairs upstream of their coding regions. All four genes encode proteins characteristic of receptor-like protein kinases (RLK), each consisting of an N-terminal signal sequence, an extracellular receptor domain, a single transmembrane domain and a C-terminal cytoplasmic serine/threonine protein kinase domain. All four RLK genes were induced by treatment with SA or infection by a bacterial pathogen. Studies with one of the RLK genes (RLK4) indicated that a cluster of W-box elements in its promoter region were recognized by both purified WRKY proteins and SA-induced W-box binding activities from SA-treated Arabidopsis plants. Further analysis using the RLK4 gene promoter fused to a reporter gene in transgenic Arabidopsis indicated that the consensus WRKY protein-binding sites in the RLK4 gene promoter were important for the inducible expression of the reporter gene. These results indicate that pathogen- and SA-induced W-box binding proteins regulate not only genes encoding defence proteins with direct or indirect anti-microbial activities, but also genes encoding proteins with regulatory functions.
- Ulmasov T, Hagen G, Guilfoyle TJ
- Dimerization and DNA binding of auxin response factors.
- Plant J. 1999; 19: 309-19
- Display abstract
Auxin response factors (ARFs) are transcription factors that bind with specificity to TGTCTC auxin response elements (AuxREs) found in promoters of primary/early auxin response genes. ARFs are encoded by a multi-gene family, consisting of more than 10 genes. Ten ARFs have been analyzed by Northern analysis and were found to be expressed in all major plant organs and suspension culture cells of Arabidopsis. The predicted amino acid sequences indicate that the 10 ARFs contain a novel amino-terminal DNA binding domain and a carboxyl-terminal dimerization domain, with the exception of ARF3 which lacks this dimerization domain. All ARFs tested bind with specificity to the TGTCTC AuxRE, but there are subtle variations in the sequence requirements at positions 5 (T) and 6 (C) of the AuxRE. While the amino-terminal domain of about 350 amino acids is sufficient for binding ARF1 to TGTCTC AuxREs, this domain is not sufficient for the binding of some other ARFs to palindromic AuxREs. Our results suggest that ARFs must form dimers on palindromic TGTCTC AuxREs to bind stably, and this dimerization may be facilitated by conserved motifs found in ARF carboxyl-terminal domains. Dimerization in at least some cases may dictate which ARF(s) are targeted to AuxREs.
- Cho S et al.
- Analysis of the C-terminal region of Arabidopsis thaliana APETALA1 as a transcription activation domain.
- Plant Mol Biol. 1999; 40: 419-29
- Display abstract
APETALA1 (AP1) of Arabidopsis thaliana is a transcription factor controlling flower development. AP2 is a member of the MADS (MCM1, AGAMOUS, DEFICIENS, SRF) superfamily, which plays important roles in differentiation in plants and animals. MADS domains, which function most importantly in DNA binding, are found in all major eukaryotic kingdoms. In plants, MADS domain-containing proteins also possess a region of moderate sequence similarity named the K domain, which is involved in protein-protein interaction. Little is known about the function of a third, highly variable, domain designated the C domain, as it resides at the C terminus of the MADS proteins of plants. Here we report that the C-terminal domain of Arabidopsis thaliana AP1 and its homologues perform a transcriptional activation function. The C-terminal region of AP1 is composed of at least two separable transcriptional activation domains that function synergistically.
- Li YF, Le Gourierrec J, Torki M, Kim YJ, Guerineau F, Zhou DX
- Characterization and functional analysis of Arabidopsis TFIIA reveal that the evolutionarily unconserved region of the large subunit has a transcription activation domain.
- Plant Mol Biol. 1999; 39: 515-25
- Display abstract
TFIIA has initially been identified as a component of transcription initiation complex of RNA polymerase II. Its role in transcription has been controversial. In this paper, we report the characterization and functional analysis of both the Arabidopsis TFIIA large and small subunits. Sequence analysis revealed that Arabidopsis TFIIA is structurally more related to animal than to yeast counterparts. Arabidopsis has at least two genes for the large subunit and one for the small subunit. Both types of genes are constitutively transcribed in various plant organs. The proteins encoded by the cDNA interact each other in yeast 2-hybrid system. Only the N-terminal part of the large subunit is necessary for the interaction with the small subunit. Recombinant Arabidopsis TFIIA polypeptides bind to TBP-DNA complex in gel shift assays. The large subunit of TFIIA can stimulate transcription in yeast and in plant cells when fused to a DNA-binding domain binding to cis sequences upstream of a minimal promoter. This trans-activating activity is localized to a 35 amino acid segment within the evolutionarily unconserved central region.
- McIntosh PB et al.
- Solution structure of the B-Myb DNA-binding domain: a possible role for conformational instability of the protein in DNA binding and control of gene expression.
- Biochemistry. 1998; 37: 9619-29
- Display abstract
Double- and triple-resonance heteronuclear NMR spectroscopy have been used to determine the high-resolution solution structure of the minimal B-Myb DNA-binding domain (B-MybR2R3) and to characterize the specific complex formed with a synthetic DNA fragment corresponding to the Myb target site on the Myb-regulated gene tom-1. B-MybR2R3 is shown to consist of two independent protein domains (R2 and R3) joined by a short linker, which have strikingly different tertiary structures despite significant sequence similarities. In addition, the C-terminal region of B-Myb R2 is confirmed to have a poorly defined structure, reflecting the existence of multiple conformations in slow to intermediate exchange. This contrasts with the tertiary structure reported for c-MybR2R3, in which both R2 and R3 have the same fold and the C-terminal region of R2 forms a stable, well-defined helix [Ogata, K., et al. (1995) Nat. Struct. Biol. 2, 309-320]. The NMR data suggest there are extensive contacts between B-MybR2R3 and its DNA target site in the complex and are consistent with a significant conformational change in the protein on binding to DNA, with one possibility being the formation of a stable helix in the C-terminal region of R2. In addition, conformational heterogeneity identified in R2 of B-MybR2R3 bound to the tom-1-A target site may play an important role in the control of gene expression by Myb proteins.
- Sakai H, Aoyama T, Bono H, Oka A
- Two-component response regulators from Arabidopsis thaliana contain a putative DNA-binding motif.
- Plant Cell Physiol. 1998; 39: 1232-9
- Display abstract
An expression sequence tag database of higher plants was screened by in silico profile analysis for response regulators of the two-component regulatory system. Two closely related clones (ARR1 and ARR2), corresponding to one of the extracted candidates, were isolated from Arabidopsis thaliana. The two genes were comparably expressed in all tissues, and at higher levels in the roots. The amino-terminal half of their translation products was highly conserved. This is where a phosphate receiver domain with the landmark aspartate residue and a putative DNA-binding domain were located. Their carboxyl-terminal halves, although less similar to each other, included glutamine-rich and proline-rich regions characteristic of the transcriptional activation domain of eukaryotes. This architecture resembles that of typical bacterial response regulators serving as transcription factors.
- Stockinger EJ, Gilmour SJ, Thomashow MF
- Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit.
- Proc Natl Acad Sci U S A. 1997; 94: 1035-40
- Display abstract
Recent efforts have defined a cis-acting DNA regulatory element in plants, the C-repeat/dehydration responsive element (DRE), that stimulates transcription in response to low temperature and water deficit. Here we report the isolation of an Arabidopsis thaliana cDNA that encodes a C-repeat/DRE binding factor, CBF1 (C-repeat/DRE Binding Factor 1). Analysis of the deduced CBF1 amino acid sequence indicates that the protein has a molecular mass of 24 kDa, a potential nuclear localization sequence, and a possible acidic activation domain. CBF1 also has an AP2 domain, which is a DNA-binding motif of about 60 aa present in the Arabidopsis proteins APETALA2, AINTEGUMENTA, and TINY; the tobacco ethylene response element binding proteins; and numerous other plant proteins of unknown function. The transcript levels for CBF1, which appears to be a single or low copy number gene, did not change appreciably in plants exposed to low temperature or in detached leaves subjected to water deficit. Binding of CBF1 to the C-repeat/DRE was demonstrated in gel shift assays using recombinant CBF1 protein expressed in Escherichia coli. Moreover, expression of CBF1 in yeast was found to activate transcription of reporter genes containing the C-repeat/DRE as an upstream activator sequence but not mutant versions of the DNA element. We conclude that CBF1 can function as a transcriptional activator that binds to the C-repeat/DRE DNA regulatory element and, thus, is likely to have a role in cold- and dehydration-regulated gene expression in Arabidopsis.